首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For order-disorder transitions of double- and triple-stranded nucleic acid helices, the midpoint temperatures Tm depend strongly on a +/-, the mean ionic activity of uniunivalent salt. Experimental determinations of dTm/d ln a +/- and of the enthalpy change (delta H(o)) accompanying the transition in excess salt permit evaluation of delta gamma, the stoichiometrically weighted combination of preferential interaction coefficients, each of which reflects thermodynamic effects of interactions of salt ions with a reactant or product of the conformational transition (formula; see text) Here delta H(o) is defined per mole of nucleotide by analogy to delta gamma. Application of Eq. 1 to experimental values of delta H(o) and Tm yields values of delta gamma for the denaturation of B-DNA over the range of NaCl concentrations 0.01-0.20 M (Privalov et al. (1969), Biopolymers 8,559) and for each of four order-disorder transitions of poly rA.(poly rU)n, n = 1, 2 over the range of NaCl concentrations 0.01-1.0 M (Krakauer and Sturtevant (1968), Biopolymers 6, 491). For denaturation of duplexes and triplexes, delta gamma is negative and not significantly dependent on a +/-, but delta gamma is positive and dependent on a +/- for the disproportionation transition of poly rA.poly rU duplexes. Quantitative interpretations of these trends and magnitudes of delta gamma in terms of coulombic and excluded volume effects are obtained by fitting separately each of the two sets of thermodynamic data using Eq. 1 with delta gamma PB evaluated from the cylindrically symmetric Poisson-Boltzmann (PB) equation for a standard model of salt-polyelectrolyte solutions. The only structural parameters required by this model are: b, the mean axial distance between the projections of adjacent polyion charges onto the cylindrical axis; and a, the mean distance of closest approach between a salt ion center and the cylindrical axis. Fixing bMS and aMS for the multi-stranded (ordered) conformations, we determined the corresponding best fitted values of bSS and aSS for single-stranded RNA and DNA. The resulting best fitted values of aSS are systematically less than aDS by 2-4 A. Uncertainty in the best-fitted values of bSS is significantly lower than in the aSS, because bMS is known with relatively high precision and because the larger uncertainty in aMS has a relatively small effect on the best-fitted values of bSS:bSS = 3.2 +/- 0.6 A for single-stranded poly rA and poly rU; and bSS = 3.4 +/- 0.2 A for single-stranded DNA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
E B Brown  W L Peticolas 《Biopolymers》1975,14(6):1259-1271
Normal coordinate analysis of diethyl phosphate has been made, which predicts all observed Raman frequencies in the range 170–1300 cm?1. The force constants from this calculation have been transferred to a vibrational calculation for a simplified model of the backbone of nucleic acids, which also involves the ? O? PO2?? O phosphate group and the ? C5′? C4′? C3′? linkage of the ribose. The coordinates of these atoms are those recently given by Arnott and Hukins, which place the ribose ring of B-DNA in a C3′-exo conformation. This simple polymer model appears to be able to describe adequately the frequency-dependent changes observed in the Raman spectra arising from the backbone vibrations of nucleic acid in going from the B- to A-form. The symmetric ? O? P? O? diester stretch increases in frequency from about 787 cm?1 in the B-form to 807 cm?1 in the A-form. The increased frequency characteristic of the A-form is due to the combining of the diester stretch with vibrations involving the C5′, C4′, and C3′ nuclei. The frequency of the symmetric ? O? P? O? diester stretch is shown to be very dependent on the conformation of the ribose ring, indicating that in polynucleotides the ribose ring takes on one of two rigid conformations: C3′-endo for A-form or C3′-exo for B-form and “disordered” polynucleotides. The calculation lends confirmation to the atomic coordinates of Arnott and Hukins since the use of other geometries with the same force constants failed to give results in agreement with experimental evidence. The calculations also demonstrate the lowering effect of hydration on the anionic PO stretching frequencies. Experimental results show that the 814-cm?1 band observed in the spectra of 5′GMP gel arises from a different vibrational mode than that of the 814-cm?1 band of A-DNA.  相似文献   

3.
The influence of protonation on the relative stability of matched and mismatched nucleic base pairs was considered. Protonation of a base has a significant effect on the bond energy and, in some cases, on the geometry of pairs. It was shown that protonation of guanine, adenine and uracil lead to an increased relative stability of matched pairs and, consequently, to decreased probability of mutations. Protonation of cytosine reduced the difference in energy formation of GC and AC complexes.  相似文献   

4.
5.
Translin is a highly conserved RNA- and DNA-binding protein that plays essential roles in eukaryotic cells. Human translin functions as an octamer, but in the octameric crystallographic structure, the residues responsible for nucleic acid binding are not accessible. Moreover, electron microscopy data reveal very different octameric configurations. Consequently, the functional assembly and the mechanism of nucleic acid binding by the protein remain unclear. Here, we present an integrative study combining small-angle X-ray scattering (SAXS), site-directed mutagenesis, biochemical analysis and computational techniques to address these questions. Our data indicate a significant conformational heterogeneity for translin in solution, formed by a lesser-populated compact octameric state resembling the previously solved X-ray structure, and a highly populated open octameric state that had not been previously identified. On the other hand, our SAXS data and computational analyses of translin in complex with the RNA oligonucleotide (GU)12 show that the internal cavity found in the octameric assemblies can accommodate different nucleic acid conformations. According to this model, the nucleic acid binding residues become accessible for binding, which facilitates the entrance of the nucleic acids into the cavity. Our data thus provide a structural basis for the functions that translin performs in RNA metabolism and transport.  相似文献   

6.
There are seven significantly variable torsion angles in each monomer unit of a polynucleotide. Because of this, it is computationally infeasible to consider the energetics of all conformations available to a nucleic acid without the use of simplifications. In this paper, we develop functions suggested by and regression fit to crystallographic data which allow three of these torsion angles, alpha (O3'-P-O5'-C5'), delta (C5'-C4'-C3'-O3') and epsilon (C4'-C3'-O3'-P), to be calculated as dependent variables of those remaining. Using these functions, the seven independent torsions are reduced to four, a reduction in complexity sufficient to allow an examination of the global conformational energetics of a nucleic acid for the remaining independent torsion angles. These functions are the first to quantitatively relate a dependent nucleic acid torsion angle to several different independent angles. In all three cases the data are fit reasonably well, and in one case, alpha, the fit is exceptionally good, lending support for the suitability of the functions in conformational searches. In addition, an examination of the most significant terms in each of the correlation functions allows insight into the physical basis for the correlations.  相似文献   

7.
Laser-Raman spectra of poly(rI) show the formation of an ordered complex in aqueous solutions of high ionic strength. This structure exhibits the A-helix geometry, contains stacked bases and is apparently stabilized by specific hydrogen bonding involving hypoxanthine C6=0 groups. Thermal dissociation of the poly(rI) complex (Tm=45 degrees C) yields single-stranded and disordered poly (RI) chains. A disordered structure also occurs for poly (rI) in aqueous solutions of low ionic strength. In oriented films, poly (rI) forms an ordered structure probably the same as that which occurs in solutions of high ionic strength. Raman intensities measured at 815 and 1100 cm-1 in spectra of poly (rI) and poly (rU)-poly (rA)-poly(rU) indicate that the correlation previously established for single- and double-stranded ribopolymer structures is valid also for these multi-stranded structures. X-ray diffraction and model-building studies confirm the A-helix structure.  相似文献   

8.
The kink parameters would provide the tolerant aspect for irregular helical structure of nucleic acid. Using these kink parameters, the classification of conformation space was carried for the functional nucleic acid molecules. The kink parameters could afford us the simple structural aspects about the constructive parts of functional molecules. Local elastic kink phenomena can be classified by rod like models with the combination of kink parameters. The constructive parts, such as the stable tetra nucleotides loop, U-turn conformation and adenosine platform, were selected and the statistical analyses were carried on the parameters calculated by program BIOCON.  相似文献   

9.
Single-stranded junctions/loops are frequently occurring structural motifs in nucleic acid structures. Due to the polyanionic nature of the nucleic acid backbone, metal ions play a crucial role in the loop stability. Here we use the tightly bound ion theory, which can account for the possible ion correlation and ensemble (fluctuation) effects, to predict the ion-dependence of loop and stem-loop (hairpin) free energies. The predicted loop free energy is a function of the loop length, the loop end-to-end distance, and the ion (Na+ and Mg2+ in this study) concentrations. Based on the statistical mechanical calculations, we derive a set of empirical formulas for the loop thermodynamic parameters as functions of Na+ and Mg2+ concentrations. For three specific types of loops, namely, hairpin, bulge, and internal loops, the predicted free energies agree with the experimental data. Further applications of these empirical formulas to RNA and DNA hairpin stability lead to good agreements with the available experimental data. Our results indicate that the ion-dependent loop stability makes significant contribution to the overall ion-dependence of the hairpin stability.  相似文献   

10.
While sequence-selective dsDNA targeting by triplex forming oligonucleotides has been studied extensively, only very little is known about the properties of PNA–dsDNA triplexes—mainly due to the competing invasion process. Here we show that when appropriately modified using pseudoisocytosine substitution, in combination with (oligo)lysine or 9-aminoacridine conjugation, homopyrimidine PNA oligomers bind complementary dsDNA targets via triplex formation with (sub)nanomolar affinities (at pH 7.2, 150 mM Na+). Binding affinity can be modulated more than 1000-fold by changes in pH, PNA oligomer length, PNA net charge and/or by substitution of pseudoisocytosine for cytosine, and conjugation of the DNA intercalator 9-aminoacridine. Furthermore, 9-aminoacridine conjugation also strongly enhanced triplex invasion. Specificity for the fully matched target versus one containing single centrally located mismatches was more than 150-fold. Together the data support the use of homopyrimidine PNAs as efficient and sequence selective tools in triplex targeting strategies under physiological relevant conditions.  相似文献   

11.
Flavodoxins are alpha/beta proteins that mediate electron transfer reactions. The conformational stability of apoflavodoxin from Anaboena PCC 7119 has been studied by calorimetry and urea denaturation as a function of pH and ionic strength. At pH > 12, the protein is unfolded. Between pH 11 and pH 6, the apoprotein is folded properly as judged from near-ultraviolet (UV) circular dichroism (CD) and high-field 1H NMR spectra. In this pH interval, apoflavodoxin is a monomer and its unfolding by urea or temperature follows a simple two-state mechanism. The specific heat capacity of unfolding for this native conformation is unusually low. Near its isoelectric point (3.9), the protein is highly insoluble. At lower pH values (pH 3.5-2.0), apoflavodoxin adopts a conformation with the properties of a molten globule. Although apoflavodoxin at pH 2 unfolds cooperatively with urea in a reversible fashion and the fluorescence and far-UV CD unfolding curves coincide, the transition midpoint depends on the concentration of protein, ruling out a simple two-state process at acidic pH. Apoflavodoxin constitutes a promising system for the analysis of the stability and folding of alpha/beta proteins and for the study of the interaction between apoflavoproteins and their corresponding redox cofactors.  相似文献   

12.
Naphthalene diimides function as effective intercalators and when tethered to the 5'-terminus of a pyrimidine-rich oligonucleotide can contribute significantly to the overall stabilization of DNA triplexes. This stabilization can be further enhanced by alterations to the linker tethering the DNA sequence and the intercalator. Less flexible linkers, and particularly one with a phenyl ring present, appear to permit the stabilization afforded by the bound intercalator to be transferred more effectively to the three-stranded complex. The conjugate containing the phenyl linker exhibits a T(M) value that is increased by 28 degrees C relative to the unconjugated triplex. That the linker itself contributes to the observed stabilization is clear since introduction of the phenyl linker increases the observed T(M) by 11 degrees C relative to a simple flexible linker.  相似文献   

13.
Bentin T  Larsen HJ  Nielsen PE 《Biochemistry》2003,42(47):13987-13995
"Tail-clamp" PNAs composed of a short (hexamer) homopyrimidine triplex forming domain and a (decamer) mixed sequence duplex forming extension have been designed. Tail-clamp PNAs display significantly increased binding to single-stranded DNA compared with PNAs lacking a duplex-forming extension as determined by T(m) measurements. Binding to double-stranded (ds) DNA occurred by combined triplex and duplex invasion as analyzed by permanganate probing. Furthermore, C(50) measurements revealed that tail-clamp PNAs consistently bound the dsDNA target more efficiently, and kinetics experiments revealed that this was due to a dramatically reduced dissociation rate of such complexes. Increasing the PNA net charge also increased binding efficiency, but unexpectedly, this increase was much more pronounced for tailless-clamp PNAs than for tail-clamp PNAs. Finally, shortening the tail-clamp PNA triplex invasion moiety to five residues was feasible, but four bases were not sufficient to yield detectable dsDNA binding. The results validate the tail-clamp PNA concept and expand the applications of the P-loop technology.  相似文献   

14.
ScanMoment is a webserver designed to identify the presence of the basic faced α‐helix (BFAH) motif in the nucleic acid binding sites of proteins. The program calculates the ’Basic Moment‘, a parameter that quantitizes the distribution of basic residues on the surface of an α‐helix. A sliding window is used to generate a plot displaying regions of the protein sequence that possesses a high Basic Moment and hus likely to possess a BFAH motif. The user may vary the periodicity from that of an alpha‐helix (100°), to those of other secondary structures such as beta sheets and 310 helices. The program can also plot the periodicity of basic residues in a protein sequence using a Fourier transformation. The procedure has been used to characterize the presence of BFAHs in the N‐terminal extensions of the eukaryotic aminoacyl‐tRNA synthetases and to indicate the presence of a BFAH in the tRNA binding site of alanyl‐tRNA synthetase.  相似文献   

15.
The lysine residues were modified to varying degrees (50-91%) with citraconic anhydride to determine the extent of conformational change in ovalbumin. Major findings included: 1. Sixteen of the 20 lysine residues are located on the protein surface, while the remaining four are buried. 2. The tertiary structure changed progressively with the degree of modification. 3. However, the secondary structure was disrupted only after one or more of the four buried lysines had been citraconylated. 4. Although the secondary structure was unaltered, the alpha-helix was nevertheless progressively destabilized as the surface 16 lysine residues were modified. This destabilization was due to electrostatic repulsions introduced by the entering citraconyl groups.  相似文献   

16.
Summary In order to study any Conformational changes associated with ultraviolet irradiation of TMV-RNA, methods of circular dichroism and absorbance-temperature profile were applied. RNA irradiated in water at 254 nm showed a distinct change in CD spectrum, but there was only a slight change accompanying irradiation in phosphate buffer.A small change in absorbance-temperature profile at 258 nm is associated with irradiation of RNA in water; RNA irradiated in phosphate buffer and Mg++ solutions showed essentially no changes.It is concluded that conformational changes accompanying irradiation of RNA in water are greater than those taking place in phosphate or magnesium solutions, and the enhanced change in water is related to the larger quantum yield for inactivation found in water than in buffer solutions.Photochemistry of Macromolecules XXXIII, supported in part by the U.S. Atomic Energy Commission, contract AT(11-1)-34, Project 116.  相似文献   

17.
Cell adhesion occurs via a highly regulated set of sequential interactions. Prototypic components of a variety of adhesion cascades are discussed, including integrins, triggering molecules and lectin-carbohydrate interactions. Selectivity and efficiency are achieved by utilizing the right combination of multiple adhesion molecules and by their coordinated biochemical regulation.  相似文献   

18.
Studies on a single component human cryoimmunoglobulin (cryo-IgG) (gamma 1 : lambda, Gm 4) were undertaken to gain a better understanding of the conformational stability of macromolecular interfaces essential for self-association of cryo-IgG leading to the formation of visible gel mass. Changes in the gross and localized conformation of cryo-IgG and a monoclonal IgG (gamma 1 : lambda, Gm 4) isolated from a myeloma patient (Hy) (Hy IgG) (gamma 1 : lambda, Gm 4) in alkaline media were determined by analytical ultracentrifugation, fluorescence characteristics, tyrosine ionization and H+ titration. Ultracentrifugal studies revealed that major transition in gross conformation took place at pH 11.4 for cryo-IgG and pH 11.7 for Hy IgG, whereby the number of charges and tyrosine residues exposed to aqueous environment was 110 and 26 for cryo-IgG, and 111 and 48 for Hy IgG, respectively. Beyond this transition pH fragmentation of both the proteins occurred and cryo-IgG lost its capacity for gel formation. Self-association of cryo-IgG was observed upto pH 11.4 in decreasing order with increase in denaturation pH. Cryo-IgG renatured from exposure to higher alkaline pH upto pH 11.4, showed the capability for forming gel, in spite of the irreversible local conformational changes as established by direct and reverse fluorimetric titration and tyrosine ionization studies. Cryo-IgG could be maintained in the optically clear sol phase at pH 10.5, at which pH 12 out of 62 tyrosine residues became exposed to aqueous media. There are distinct differences in the accessibility of tyrosine residues of cryo-IgG and Hy IgG as reflected in their tyrosine ionization profiles.  相似文献   

19.
During the origin of life, the biological information of nucleic acid polymers must have increased to encode functional molecules (the RNA world). Ribozymes tend to be compositionally unbiased, as is the vast majority of possible sequence space. However, ribonucleotides vary greatly in synthetic yield, reactivity and degradation rate, and their non-enzymatic polymerization results in compositionally biased sequences. While natural selection could lead to complex sequences, molecules with some activity are required to begin this process. Was the emergence of compositionally diverse sequences a matter of chance, or could prebiotically plausible reactions counter chemical biases to increase the probability of finding a ribozyme? Our in silico simulations using a two-letter alphabet show that template-directed ligation and high concatenation rates counter compositional bias and shift the pool toward longer sequences, permitting greater exploration of sequence space and stable folding. We verified experimentally that unbiased DNA sequences are more efficient templates for ligation, thus increasing the compositional diversity of the pool. Our work suggests that prebiotically plausible chemical mechanisms of nucleic acid polymerization and ligation could predispose toward a diverse pool of longer, potentially structured molecules. Such mechanisms could have set the stage for the appearance of functional activity very early in the emergence of life.  相似文献   

20.
Holo and apo adrenodoxin were studied by differential scanning calorimetry, absorption spectroscopy, limited proteolysis, and size-exclusion chromatography. To determine the conformational stability of adrenodoxin, a method was found that prevents the irreversible destruction of the iron-sulfur center. The approach makes use of a buffer solution that contains sodium sulfide and mercaptoethanol. The thermal transition of adrenodoxin takes place at Ttrs = 46-57 degrees C, depending on the Na2S concentration with a denaturation enthalpy of delta H = 300-380 kJ/mol. From delta H versus Ttrs a heat capacity change was determined as delta Cp = 7.5 +/- 1.2 kJ/mol/K. The apo protein is less stable than the holo protein as judged by the lower denaturation enthalpy (delta H = 93 +/- 14 kJ/mol at Ttrs = 37.4 +/- 3.3 degrees C) and the higher proteolytic susceptibility. The importance of the iron-sulfur cluster for the conformational stability of adrenodoxin and some conditions for refolding of the thermally denatured protein are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号