首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trypanosomes and leishmania, the causative agents of several tropical diseases, possess a unique redox metabolism which is based on trypanothione. The bis(glutathionyl)spermidine is the central thiol that delivers electrons for the synthesis of DNA precursors, the detoxification of hydroperoxides and other trypanothione-dependent pathways. Many of the reactions are mediated by tryparedoxin, a distant member of the thioredoxin protein family. Trypanothione is kept reduced by the parasite-specific flavoenzyme trypanothione reductase. Since glutathione reductases and thioredoxin reductases are missing, the reaction catalyzed by trypanothione reductase represents the only connection between the NADPH- and the thiol-based redox metabolisms. Thus, cellular thiol redox homeostasis is maintained by the biosynthesis and reduction of trypanothione. Nearly all proteins of the parasite-specific trypanothione metabolism have proved to be essential.  相似文献   

2.
3.
The dithiol protein tryparedoxin is a component of the unique trypanothione/trypanothione reductase metabolism of trypanosomatids and is involved in the parasite synthesis of deoxyribonucleotides and the detoxication of hydroperoxides. Tryparedoxin is a highly abundant protein in all life stages of Trypanosoma brucei, the causative agent of African sleeping sickness. As shown here, its functional properties are intermediate between those of classical thioredoxins and glutaredoxins. The redox potential of T. brucei tryparedoxin of -249 mV was determined by protein-protein redox equilibration with Escherichia coli thioredoxin. The trypanothione/tryparedoxin couple is probably the most significant factor determining the cytosolic redox potential of the parasites. The pK value of Cys(40), the first thiol in the WCPPC motif, is 7.2 as derived from the thiolate absorption at 240 nm and the rate of carboxymethylation. Alteration of the active site into that of thioredoxin (CGPC) did not affect the pK value. In contrast, in the mutant with the glutaredoxin motif (CPYC) the pK dropped to < or =4.0. The fact that the pK value of tryparedoxin coincides with the intracellular pH of the parasite may contribute to the reactivity of tryparedoxin in thiol disulfide exchange reactions.  相似文献   

4.
Hydroperoxide metabolism in diverse pathogens is reviewed under consideration of involved enzymes as potential drug targets. The common denominator of the peroxidase systems of Trypanosoma, Leishmania, Plasmodium, and Mycobacterium species is the use of NAD(P)H to reduce hydroperoxides including peroxynitrite via a flavin-containing disulfide reductase, a thioredoxin (Trx)-related protein and a peroxidase that operates with thiol catalysis. In Plasmodium falciparum, thioredoxin- and glutathione dependent systems appear to be linked via glutaredoxin and plasmoredoxin to terminal thioredoxin peroxidases belonging to both, the peroxiredoxin (Prx) and glutathione peroxidase (GPx) family. In Mycobacterium tuberculosis, a catalase-type peroxidase is complemented by the typical 2-C-Prx AhpC that, in contrast to most bacteria, is reduced by TrxC, and an atypical 2-C-Prx reduced by TrxB or C. A most complex variation of the scheme is found in trypanosomatids, where the unique redox metabolite trypanothione reduces the thioredoxin-related tryparedoxin, which fuels Prx- and GPx-type peroxidases as well as ribonucleotide reductase. In Trypanosoma brucei and Leishmania donovani the system has been shown to be essential for viability and virulence by inversed genetics. It is concluded that optimum efficacy can be expected from inhibitors of the most upstream components of the redox cascades. For trypanosomatids attractive validated drug targets are trypanothione reductase and trypanothione synthetase; for mycobacteria thioredoxin reductase appears most appealing, while in Plasmodium simultaneous inhibition of both the thioredoxin and the glutathione pathway appears advisable to avoid mutual substitution in co-substrate supply to the peroxidases. Financial and organisational needs to translate the scientific progress into applicable drugs are discussed under consideration of the socio-economic impact of the addressed diseases.  相似文献   

5.
Trypanosoma brucei, the causative agent of African sleeping sickness, has three nearly identical genes encoding cysteine homologues of classical selenocysteine-containing glutathione peroxidases. The proteins are expressed in the mammalian and insect stages of the parasite. One of the genes, which contains a mitochondrial as well as a glycosomal targeting signal has been overexpressed. The recombinant T. brucei peroxidase has a high preference for the trypanothione/tryparedoxin couple as electron donor for the reduction of different hydroperoxides but accepts also T. brucei thioredoxin. The apparent rate constants k(2)' for the regeneration of the reduced enzyme are 2 x 10(5) m(-1) s(-1) with tryparedoxin and 5 x 10(3) m(-1) s(-1) with thioredoxin. No saturation kinetics was observed and the rate-limiting step of the overall reaction is reduction of the hydroperoxide. With glutathione, the peroxidase has marginal activity and reduction of the enzymes becomes limiting with a k(2)' value of 3 m (-1) s(-1). The T. brucei peroxidase, in contrast to the related Trypanosoma cruzi enzyme, also accepts hydrogen peroxide as substrate. The catalytic efficiency of the peroxidase studied here is comparable with that of the peroxiredoxin-like tryparedoxin peroxidases, which shows that trypanosomes possess two distinct peroxidase systems both dependent on the unique dithiol trypanothione.  相似文献   

6.
Trypanosoma brucei, the causative agent of African sleeping sickness, synthesizes deoxyribonucleotides via a classical eukaryotic class I ribonucleotide reductase. The unique thiol metabolism of trypanosomatids in which the nearly ubiquitous glutathione reductase is replaced by a trypanothione reductase prompted us to study the nature of thiols providing reducing equivalents for the parasite synthesis of DNA precursors. Here we show that the dithiol trypanothione (bis(glutathionyl)spermidine), in contrast to glutathione, is a direct reductant of T. brucei ribonucleotide reductase with a K(m) value of 2 mm. This is the first example of a natural low molecular mass thiol directly delivering reducing equivalents for ribonucleotide reduction. At submillimolar concentrations, the reaction is strongly accelerated by tryparedoxin, a 16-kDa parasite protein with a WCPPC active site motif. The K(m) value of T. brucei ribonucleotide reductase for T. brucei tryparedoxin is about 4 micrometer. The disulfide form of trypanothione is a powerful inhibitor of the tryparedoxin-mediated reaction that may represent a physiological regulation of deoxyribonucleotide synthesis by the redox state of the cell. The trypanothione/tryparedoxin system is a new system providing electrons for a class I ribonucleotide reductase, in addition to the well known thioredoxin and glutaredoxin systems described in other organisms.  相似文献   

7.
Trypanosomatids, the causative agents of several tropical diseases, lack glutathione reductase and thioredoxin reductase but have a trypanothione reductase instead. The main low molecular weight thiols are trypanothione (N(1),N(8)-bis-(glutathionyl)spermidine) and glutathionyl-spermidine, but the parasites also contain free glutathione. To elucidate whether trypanosomes employ S-thiolation for regulatory or protection purposes, six recombinant parasite thiol redox proteins were studied by ESI-MS and MALDI-TOF-MS for their ability to form mixed disulfides with glutathione or glutathionylspermidine. Trypanosoma brucei mono-Cys-glutaredoxin 1 is specifically thiolated at Cys(181). Thiolation of this residue induced formation of an intramolecular disulfide bridge with the putative active site Cys(104). This contrasts with mono-Cys-glutaredoxins from other sources that have been reported to be glutathionylated at the active site cysteine. Both disulfide forms of the T. brucei protein were reduced by tryparedoxin and trypanothione, whereas glutathione cleaved only the protein disulfide. In the glutathione peroxidase-type tryparedoxin peroxidase III of T. brucei, either Cys(47) or Cys(95) became glutathionylated but not both residues in the same protein molecule. T. brucei thioredoxin contains a third cysteine (Cys(68)) in addition to the redox active dithiol/disulfide. Treatment of the reduced protein with GSSG caused glutathionylation of Cys(68), which did not affect its capacity to catalyze reduction of insulin disulfide. Reduced T. brucei tryparedoxin possesses only the redox active Cys(32)-Cys(35) couple, which upon reaction with GSSG formed a disulfide. Also glyoxalase II and Trypanosoma cruzi trypanothione reductase were not sensitive to thiolation at physiological GSSG concentrations.  相似文献   

8.
Kinetoplast DNA (kDNA) is the mitochondrial DNA of trypanosomatids. Its major components are several thousand topologically interlocked DNA minicircles. Their replication origins are recognized by universal minicircle sequence-binding protein (UMSBP), a CCHC-type zinc finger protein, which has been implicated with minicircle replication initiation and kDNA segregation. Interactions of UMSBP with origin sequences in vitro have been found to be affected by the protein's redox state. Reduction of UMSBP activates its binding to the origin, whereas UMSBP oxidation impairs this activity. The role of redox in the regulation of UMSBP in vivo was studied here in synchronized cell cultures, monitoring both UMSBP origin binding activity and its redox state, throughout the trypanosomatid cell cycle. These studies indicated that UMSBP activity is regulated in vivo through the cell cycle dependent control of the protein's redox state. The hypothesis that UMSBP's redox state is controlled by an enzymatic mechanism, which mediates its direct reduction and oxidation, was challenged in a multienzyme reaction, reconstituted with pure enzymes of the trypanosomal major redox-regulating pathway. Coupling in vitro of this reaction with a UMSBP origin-binding reaction revealed the regulation of UMSBP activity through the opposing effects of tryparedoxin and tryparedoxin peroxidase. In the course of this reaction, tryparedoxin peroxidase directly oxidizes UMSBP, revealing a novel regulatory mechanism for the activation of an origin-binding protein, based on enzyme-mediated reversible modulation of the protein's redox state. This mode of regulation may represent a regulatory mechanism, functioning as an enzyme-mediated, redox-based biological switch.  相似文献   

9.
Tryparedoxin I (TXNI) and tryparedoxin peroxidase (TXNPx), novel proteins isolated from Crithidia fasciculata, have been reported to reconstitute a trypanothione peroxidase activity in vitro (Nogoceke, E.; Gommel, D. U.; Kiess, M.; Kalisz, H. M.; Flohé, L. Biol. Chem. 378:827-836; 1997). Combined with trypanothione reductase, they may form an NADPH-fueled trypanothione-mediated defense system against hydroperoxides in the trypanosomatids. In situ confocal microscopy of antibody-stained TXNI and TXNPx and electron microscopy of the immunogold labeled proteins revealed their colocalization in the cytosol. Insignificant amounts of the enzymes were detected in the nucleus and vesicular structures, whereas the kinetoplast and the mitochondrion are virtually free of any label. Comparison of the PCR product sequences obtained with genomic and cDNA templates rules out any editing typical of kinetoplast mRNA. Sequence similarities with any of the established maxicircle genes of trypanosomatids were not detectable. It is concluded that both, TXNI as well as TXNPx are encoded by nuclear DNA and predominantly, if not exclusively localized in the cytosol. Working in concert with trypanothione reductase, they can function as an enzymatic system that reduces hydroperoxides at the expense of NADPH without any impairment of the flux of reduction equivalents by cellular compartmentation.  相似文献   

10.
The bis(glutathionyl)spermidine trypanothione exclusively occurs in parasitic protozoa of the order Kinetoplastida, such as trypanosomes and leishmania, some of which are the causative agents of several tropical diseases. The dithiol is kept reduced by the flavoenzyme trypanothione reductase and the trypanothione system replaces in these parasites the nearly ubiquitous glutathione/glutathione reductase couple. Trypanothione is a reductant of thioredoxin and tryparedoxin, small dithiol proteins, which in turn deliver reducing equivalents for the synthesis of deoxyribonucleotides as well as for the detoxification of hydroperoxides by different peroxidases. Depending on the individual organism and the developmental state, the parasites also contain significant amounts of glutathione, mono-glutathionylspermidine and ovothiol, whereby all four low molecular mass thiols are directly (trypanothione and mono-glutathionylspermidine) or indirectly (glutathione and ovothiol) maintained in the reduced state by trypanothione reductase. Thus the trypanothione system is central for any thiol regeneration and trypanothione reductase has been shown to be an essential enzyme in these parasites. The absence of this pathway from the mammalian host and the sensitivity of trypanosomatids toward oxidative stress render the enzymes of the trypanothione metabolism attractive target molecules for the rational development of new drugs against African sleeping sickness, Chagas' disease and the different forms of leishmaniasis.  相似文献   

11.
In Kinetoplastida, comprising the medically important parasites Trypanosoma brucei, T. cruzi, and Leishmania species, 2-Cys peroxiredoxins described to date have been shown to catalyze reduction of peroxides by the specific thiol trypanothione using tryparedoxin, a thioredoxin-related protein, as an immediate electron donor. Here we show that a mitochondrial peroxiredoxin from L. infantum (LimTXNPx) is also a tryparedoxin peroxidase. In an heterologous system constituted by nicotinamide adenine dinucleotide phosphate (NADPH), T. cruzi trypanothione reductase, trypanothione and Crithidia fasciculata tryparedoxin (CfTXN1 and CfTXN2), the recombinant enzyme purified from Escherichia coli as an N-terminally His-tagged protein preferentially reduces H(2)O(2) and tert-butyl hydroperoxide and less actively cumene hydroperoxide. Linoleic acid hydroperoxide and phosphatidyl choline hydroperoxide are poor substrates in the sense that they are reduced weakly and inhibit the enzyme in a concentration- and time-dependent way. Kinetic parameters deduced for LimTXNPx are a k(cat) of 37.0 s(-1) and K(m) values of 31.9 and 9.1 microM for CfTXN2 and tert-butyl hydroperoxide, respectively. Kinetic analysis indicates that LimTXNPx does not follow the classic ping-pong mechanism described for other TXNPx (Phi(1,2) = 0.8 s x microM(2)). Although the molecular mechanism underlying this finding is unknown, we propose that cooperativity between the redox centers of subunits may explain the unusual kinetic behavior observed. This hypothesis is corroborated by high-resolution electron microscopy and gel chromatography that reveal the native enzyme to preferentially exist as a homodecameric ring structure composed of five dimers.  相似文献   

12.
Trypanosoma brucei, the causative agent of African sleeping sickness, encodes three cysteine homologues (Px I-III) of classical selenocysteine-containing glutathione peroxidases. The enzymes obtain their reducing equivalents from the unique trypanothione (bis(glutathionyl)spermidine)/tryparedoxin system. During catalysis, these tryparedoxin peroxidases cycle between an oxidized form with an intramolecular disulfide bond between Cys(47) and Cys(95) and the reduced peroxidase with both residues in the thiol state. Here we report on the three-dimensional structures of oxidized T. brucei Px III at 1.4A resolution obtained by x-ray crystallography and of both the oxidized and the reduced protein determined by NMR spectroscopy. Px III is a monomeric protein unlike the homologous poplar thioredoxin peroxidase (TxP). The structures of oxidized and reduced Px III are essentially identical in contrast to what was recently found for TxP. In Px III, Cys(47), Gln(82), and Trp(137) do not form the catalytic triad observed in the selenoenzymes, and related proteins and the latter two residues are unaffected by the redox state of the protein. The mutational analysis of three conserved lysine residues in the vicinity of the catalytic cysteines revealed that exchange of Lys(107) against glutamate abrogates the reduction of hydrogen peroxide, whereas Lys(97) and Lys(99) play a crucial role in the interaction with tryparedoxin.  相似文献   

13.
Tryparedoxins (TXNs) catalyse the reduction of peroxiredoxin-type peroxidases by the bis-glutathionyl derivative of spermidine, trypanothione, and are relevant to hydroperoxide detoxification and virulence of trypanosomes. The 3D-structures of the following tryparedoxins are presented: authentic tryparedoxin1 of Crithidia fasciculata, CfTXN1; the his-tagged recombinant protein, CfTXN1H6; reduced and oxidised CfTXN2, and an alternative substrate derivative of the mutein CfTXN2H6-Cys44Ser. Cys41 (Cys40 in TXN1) of the active site motif 40-WCPPCR-45 proved to be the only solvent-exposed redox active residue in CfTXN2. In reduced TXNs, its nucleophilicity is increased by a network of hydrogen bonds. In oxidised TXNs it can be attacked by the thiol of the 1N-glutathionyl residue of trypanothione, as evidenced by the structure of 1N-glutathionylspermidine-derivatised CfTXN2H6-Cys44Ser. Modelling suggests Arg45 (44), Glu73 (72), the Ile110 (109) cis-Pro111 (110)-bond and Arg129 (128) to be involved in the binding of trypanothione to CfTXN2 (CfTXN1). The model of TXN-substrate interaction is consistent with functional characteristics of known and newly designed muteins (CfTXN2H6-Arg129Asp and Glu73Arg) and the 1N-glutathionyl-spermidine binding in the CfTXN2H6-Cys44Ser structure.  相似文献   

14.
Thiol-dependent hydroperoxide metabolism in parasites is reviewed in respect to potential therapeutic strategies. The hydroperoxide metabolism of Crithidia fasciculata has been characterized to comprise a cascade of three enzymes, trypanothione reductase, tryparedoxin, and tryparedoxin peroxidase, plus two supportive enzymes to synthesize the redox mediator trypanothione from glutathione and spermidine. The essentiality of the system in respect to parasite vitality and virulence has been verified by genetic approaches. The system appears to be common to all genera of the Kinetoplastida. The terminal peroxidase of the system belongs to the protein family of peroxiredoxins which is also represented in Entamoeba and a variety of metazoan parasites. Plasmodial hydroperoxide metabolism displays similarities to the mammalian system in comprising glutathione biosynthesis, glutathione reductase, and at least one glutathione peroxidase homolog having the active site selenocysteine replaced by cysteine. Nothing precise is known about the antioxidant defence systems of Giardia, Toxoplasma, and Trichomonas species. Also, the role of ovothiols and mycothiols reportedly present in several parasites remains to be established. Scrutinizing known enzymes of parasitic antioxidant defence for suitability as drug targets leaves only those of the trypanosomatid system as directly or indirectly validated. By generally accepted criteria of target selection and feasibility considerations tryparedoxin and tryparedoxin peroxidase can at present be rated as the most appealing target structures for the development of antiparasitic drugs.  相似文献   

15.
Methionine is an amino acid susceptible to being oxidized to methionine sulfoxide (MetSO). The reduction of MetSO to methionine is catalyzed by methionine sulfoxide reductase (MSR), an enzyme present in almost all organisms. In trypanosomatids, the study of antioxidant systems has been mainly focused on the involvement of trypanothione, a specific redox component in these organisms. However, no information is available concerning their mechanisms for repairing oxidized proteins, which would be relevant for the survival of these pathogens in the various stages of their life cycle. We report the molecular cloning of three genes encoding a putative A-type MSR in trypanosomatids. The genes were expressed in Escherichia coli, and the corresponding recombinant proteins were purified and functionally characterized. The enzymes were specific for L-Met(S)SO reduction, using Trypanosoma cruzi tryparedoxin I as the reducing substrate. Each enzyme migrated in electrophoresis with a particular profile reflecting the differences they exhibit in superficial charge. The in vivo presence of the enzymes was evidenced by immunological detection in replicative stages of T. cruzi and Trypanosoma brucei. The results support the occurrence of a metabolic pathway in Trypanosoma spp. involved in the critical function of repairing oxidized macromolecules.  相似文献   

16.
alpha-glycerophosphate dehydrogenase (alpha-GPDH-EC.1.1.1.8) has been considered absent in Trypanosoma cruzi in contradiction with all other studied trypanosomatids. After observing that the sole malate dehydrogenase can not maintain the intraglycosomal redox balance, GPDH activity was looked for and found, although in very variable levels, in epimastigotes extracts. GPDH was shown to be exclusively located in the glycosome of T. cruzi by digitonin treatment and isopycnic centrifugation. Antibody against T. brucei GPDH showed that this enzyme seemed to be present in an essentially inactive form at the beginning of the epimastigotes growth. GPDH is apparently linked to a salicylhydroxmic-sensitive glycerophosphate reoxidizing system and plays an essential role in the glycosome redox balance.  相似文献   

17.
Hydroperoxide metabolism in Crithidia fasciculata has recently been shown to be catalyzed by a cascade of three oxidoreductases comprising trypanothione reductase (TR), tryparedoxin (TXN1), and tryparedoxin peroxidase (TXNPx) (Nogoceke et al., Biol. Chem. 378, 827-836, 1997). The existence of this metabolic system in the human pathogen Trypanosoma cruzi is supported here by immunohistochemistry. Epimastigotes of T. cruzi display strong immunoreactivity with antibodies raised against TXN1 and TXNPx of C. fasciculata. In addition, a full-length open reading frame presumed to encode a peroxiredoxin-type protein in T. cruzi (Acc. Nr. AJ 012101) was heterologously expressed in Escherichia coli and shown to exhibit tryparedoxin peroxidase activity. With TXN, TXNPx, trypanothione and TR, T. cruzi possesses all components constituting the crithidial peroxidase system. It is concluded that the antioxidant defense of T. cruzi also depends on the NADPH-fuelled, trypanothione-mediated enzymatic hydroperoxide metabolism.  相似文献   

18.

Background

The principal oxidative-stress defense in the human parasite Trypanosoma cruzi is the tryparedoxin-dependent peroxide detoxification pathway, constituted by trypanothione reductase (TryR), tryparedoxin (TXN), tryparedoxin peroxidase (TXNPx) and tryparedoxin-dependent glutathione peroxidase A (GPxA). Here, Metabolic Control Analysis (MCA) was applied to quantitatively prioritize drug target(s) within the pathway by identifying its flux-controlling enzymes.

Methods

The recombinant enzymes were kinetically characterized at physiological pH/temperature. Further, the pathway was in vitro reconstituted using enzyme activity ratios and fluxes similar to those observed in the parasites; then, enzyme and substrate titrations were performed to determine their degree of control on flux. Also, kinetic characterization of the whole pathway was performed.

Results

Analyses of the kinetic properties indicated that TXN is the less efficient pathway enzyme derived from its high Kmapp for trypanothione and low Vmax values within the cell. MCA established that the TXN–TXNPx and TXN–GPxA redox pairs controlled by 90–100% the pathway flux, whereas 10% control was attained by TryR. The Kmapp values of the complete pathway for substrates suggested that the pathway flux was determined by the peroxide availability, whereas at high peroxide concentrations, flux may be limited by NADPH.

Conclusion

These quantitative kinetic and metabolic analyses pointed out to TXN as a convenient drug target due to its low catalytic efficiency, high control on the flux of peroxide detoxification and role as provider of reducing equivalents to the two main peroxidases in the parasite.

General Significance

MCA studies provide rational and quantitative criteria to select enzymes for drug-target development.  相似文献   

19.
Leishmaniasis is a neglected disease caused by Leishmania, an intracellular protozoan parasite which possesses a unique thiol metabolism based on trypanothione. Trypanothione is used as a source of electrons by the tryparedoxin/tryparedoxin peroxidase system (TXN/TXNPx) to reduce the hydroperoxides produced by macrophages during infection. This detoxification pathway is not only unique to the parasite but is also essential for its survival; therefore, it constitutes a most attractive drug target. Several forms of TXNPx, with very high sequence identity to one another, have been found in Leishmania strains, one of which has been used as a component of a potential anti-leishmanial polyprotein vaccine. The structures of cytosolic TXN and TXNPx from L. major (LmTXN and LmTXNPx) offer a unique opportunity to study peroxide reduction in Leishmania parasites at a molecular level, and may provide new tools for multienzyme inhibition-based drug discovery. Structural analyses bring out key structural features to elucidate LmTXN and LmTXNPx function. LmTXN displays an unusual N-terminal α-helix which allows the formation of a stable domain-swapped dimer. In LmTXNPx, crystallized in reducing condition, both the locally unfolded (LU) and fully folded (FF) conformations, typical of the oxidized and reduced protein respectively, are populated. The structural analysis presented here points to a high flexibility of the loop that includes the peroxidatic cysteine which facilitates Cys52 to form an inter-chain disulfide bond with the resolving cysteine (Cys173), thereby preventing over-oxidation which would inactivate the enzyme. Analysis of the electrostatic surface potentials of both LmTXN and LmTXNPx unveils the structural elements at the basis of functionally relevant interaction between the two proteins. Finally, the structural analysis of TXNPx allows us to identify the position of the epitopes that make the protein antigenic and therefore potentially suitable to be used in an anti-leishmanial polyprotein vaccine.  相似文献   

20.
Tryparedoxin peroxidases (TXNPx) are peroxiredoxin-type enzymes that detoxify hydroperoxides in trypanosomatids. Reduction equivalents are provided by trypanothione [T(SH)2] via tryparedoxin (TXN). The T(SH)2-dependent peroxidase system was reconstituted from TXNPx and TXN of T. brucei brucei (TbTXN-Px and TbTXN). TbTXNPx efficiently reduces organic hydroperoxides and is specifically reduced by TbTXN, less efficiently by thioredoxin, but not by glutathione (GSH) or T(SH)2. The kinetic pattern does not comply with a simple rate equation but suggests negative co-operativity of reaction centers. Gel permeation of oxidized TbTXNPx yields peaks corresponding to a decamer and higher aggregates. Electron microscopy shows regular ring structures in the decamer peak. Upon reduction, the rings tend to depolymerise forming open-chain oligomers. Co-oxidation of TbTXNPx with TbTXNC43S yields a dead-end intermediate mimicking the catalytic intermediate. Its size complies with a stoichiometry of one TXN per subunit of TXNPx. Electron microscopy of the intermediate displays pentangular structures that are compatible with a model of a decameric TbTXNPx ring with ten bound TbTXN molecules. The redox-dependent changes in shape and aggregation state, the kinetic pattern and molecular models support the view that, upon oxidation of a reaction center, other subunits adopt a conformation that has lower reactivity with the hydroperoxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号