首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth of six rapid-cycling lines of Brassica species, B. napus, B. campestris, B. nigra, B. juncea, B. oleracea and B. carinata was inhibited by seawater salinity. Based on the change in dry matter reduction relative to the control at varying concentrations of salts (4, 8 and 12 dS m-1), the relative salt tolerance of these species was evaluated. B. napus and B. carinata were the most tolerant and most sensitive species, respectively, while the other four species were moderately tolerant. The influence of seawater on the concentrations of 12 elements including macronutrients and micronutrients in the shoots of these Brassica plants was characterized to determine the relationship between nutritional disturbance and relative salt tolerance. It was found that seawater salinity had a significant effect on the concentrations of Ca, Mg, K, Cl, Na and total N in the shoots of these plants but only the change in Ca concentration was significantly related to the relative salt tolerance of these six rapid-cycling Brassica species according to a rank analysis of the data. This finding indicates that Ca may play a regulatory role in the responses of Brassica species to saline conditions.  相似文献   

2.
Protoplasts were isolated from aseptic shoot cultures of commercial cultivars ofBrassica napus, B. oleracea andB. campestris, and from the six rapid-cycling brassica species. Of the rapid-cycling species, onlyB. napus responded well to the culture conditions used; 2% of protoplasts formed calli and up to 5% of calli regenerated shoots. Regeneration was also achieved from commercial cultivars ofB. napus andB. oleracea. For these two species the plating density, time of dilution with fresh medium and the composition of the shoot-inducing medium were all found to have an important influence on the efficiency of plant regeneration. Both responded better to maltose than to sucrose-based media. Under the optimum conditionsB. napus showed a plating efficiency of 7.8% and shooting efficiency of 17%; forB. oleracea the figures were 2% and 56%, respectively.Abbreviations BAP 6-benzylaminopurine - NAA -naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

3.
The increasing levels of ultraviolet-B (UV-B) radiation reaching the earth's surface caused by ozone destruction have prompted many studies of UV-B effects on plants. Most of these studies have focused on physiological and growth responses of plants to increased UV-B, but these measures may not be closely related to future survival of plant populations. We examined the effects of two different levels of increased UV-B on total female fitness, including seed number and quality, in rapid-cycling strains of Brassica nigra and B. rapa (Brassicaceae). We also measured the effects of UV-B on fitness components, particularly those related to pollination success. Two separate experiments, examining two different levels of UV-B, were performed. Sixty plants of each species were grown under control and enhanced levels of UV-B for a total of 480 plants (60 plantsx2 speciesx2 UV-B levelsx2 experiments). Increased UV-B was generally detrimental to growth and flowering in both species; however, total seed production was actually greater at higher UV-B doses in three of four dose/plant species combinations examined. UV-B had little effect on pollination success or offspring quality in either species. Therefore, in spite of the detrimental effects of UV-B on growth and flowering that we found, there is little evidence that fitness of these plant species would suffer with increasing UV-B, and we caution against using solely physiological or growth measurements to infer effects of UV-B on plant population fitness.  相似文献   

4.
In recent years, increasing attention has been paid in exploring the role of direct plant defence, through the production of allelochemicals, on the performance of parasitoid wasps and their hosts. However, few studies have determined if parasitoids can detect differences in plant quality and thus preferentially attack hosts on which their progeny develop most successfully. In this study we examined the development and preference of two endoparasitoids, Diadegma semiclausum and Cotesia glomerata , developing in larvae of their respective hosts, Plutella xylostella and Pieris brassicae . In turn, these were reared on different wild populations of black mustard Brassica nigra originating in the Netherlands and Sicily (Italy), as well as single cultivated strains of B. nigra and brown mustard, B. juncea . Chemical analyses of foliar glucosinolates and volatile emissions by P. xylostella -damaged plants revealed large differences between B. nigra and B. juncea plants, with smaller differences among the B. nigra populations. The four mustard populations differentially affected development time and body mass of the herbivores and parasitoids. Contrasts among the means revealed significant differences mainly between B. nigra and B. juncea . Both parasitoids, however, preferred to alight on plants in which their progeny developed most successfully. In behavioural bioassays, D. semiclausum did not discriminate among the B. nigra populations and preferred to alight on B. juncea , which was the best plant population for parasitoid development. By contrast, C. glomerata females exhibited the lowest preference for Italian B. nigra populations, on which adult parasitoid size was the smallest. These results reveal that parasitoids can detect even small differences in plant quality presumably through their volatile blends and that plant preference and offspring performance in the two species are 'optimally synchronized'.  相似文献   

5.
Quantitative trait loci (QTLs) controlling the plant-regeneration ability of Brassica oleracea protoplasts were mapped in a population of 128 F2 plants derived from a cross between the high-responding, rapid-cycling line and a low-responding, broccoli breeding line of B. oleracea. A modified bulked segregant analysis with AFLP markers identified two QTLs for plant regeneration. In a multiple regression analysis, the two QTLs explained 83% of the total genetic variation for regeneration recorded 15 weeks after initial transfer of microcalli to regeneration medium. Both QTLs showed additive effects, and the alleles contributing to the high regeneration frequencies were derived from the high-responding, rapid-cycling line. Using microsatellites with known location, the two QTLs were mapped to linkage groups O2 and O9 on the map published by Sebastian et al. [(2000) Theor Appl Genet 100:75–81] or to chromosomes C8 and C7 on the map published by Saal et al. [(2001) Theor Appl Genet 102:695–699]. QTLs for the early flowering trait of the rapid-cycling parent have previously been mapped to the same two linkage groups. Association between flowering time and regeneration ability was, however, not found in the present material, indicating that plant-regeneration ability can be transferred between cultivars independently of the early flowering trait. The detection of two major QTLs for plant regeneration in B. oleracea may provide the initial step towards the identification of markers suitable for marker-assisted selection of regeneration ability.  相似文献   

6.
A study was made to determine the feasibility of producing,by inbreeding and selection, lines of rapid-cycling Brassicacampestris with high or low potential for anther culture. Sincethe base population of rapid-cycling B. campestris is self-incompatible,inbreeding was achieved by a combination of bud-pollinationand the application of pollen to the cut surfaces of decapitatedstigmas. Three inbred generations were raised, and in each generationplants were selected for high or low potential for anther embryogenesis.The proportion of viable pollen present in anthers, as indicatedby a fluorochromatic reaction and a germination test, was alsodetermined at each stage. Lines of rapid-cycling B. campestriswith clearly defined high or low potential for anther embryogenesiswere isolated in these experiments. Within each line, however,continuous variation was always observed. Pollen viability andanther efficiency were not correlated. Although inbreeding depressioncaused a significant decrease in pollen viability over the threegenerations, there were no obvious deleterious effects on antherefficiency. In general, over the three generations of inbreeding,no segregation in plant morphological characters was observed,although many developmental abnormalities were seen in the 3rdinbred generation and there was a marked reduction in the numberof seeds set. No association between plant vigour and high orlow anther efficiency was noted. All plants regenerated fromanther embryoids of rapid cycling B. campestris were haploid.By treating anther-derived embryoids, axillary buds and wholeplants with colchicine, dihaploid plants were produced, butthese failed to set seed after self-pollination. The diploidnature of the plants was confirmed, however, when they producednormal seeds after cross-pollination with plants of the basepopulation. Brassica campestris, anther culture, inbreeding, selection  相似文献   

7.
从快速生长的甘蓝型油菜的小孢子培养中共获得23个再生植株。经倍性鉴定,其中自发加倍成二倍体的有10株,单倍体13株。单倍体再用秋水仙碱处理后获得DH系,所得材料对油菜功能基因组学的研究可能有一定的价值。  相似文献   

8.
Genomic research in any organism encompasses understanding structure of the target genome and genes, their function, and evolution. Brassica rapa , which is phylogenetically related to Arabidopsis thaliana , is an important species with respect to its uses as vegetable, oil, and fodder. The availability of suitable genetic and genomic resources is a prerequisite to undertake genomic research in B. rapa . We have developed reference mapping populations of Chinese cabbage ( B. rapa ssp. pekinensis ) comprising 78 doubled haploid lines and over 250 recombinant inbred lines. Two Bacterial Artificial Chromosome (BAC) libraries, generated by restriction enzymes Hin dIII (KBrH) and Bam HI (KBrB), comprise 56 592 and 50 688 clones, respectively. We have also constructed 22 cDNA libraries from different plant tissues consisting of 104 914 clones with an average length of 575 bp. Initial BAC-end sequence analysis of 1473 clones of the KBrH library led us to understand the structure of B. rapa genome with respect to extent of genic sequences and their annotation, and relative abundance of different types of repetitive DNAs. Full-length sequence analysis of BAC clones revealed extensive triplication of B. rapa DNA segments coupled with variable gene losses within the segments. The formulation of the 'Multinational Brassica Genome Project' has laid the foundation to sequence the complete genome of B. rapa ssp. pekinensis by the international Brassica research community. It has been proposed to undertake BAC-to-BAC sequencing of genetically mapped seed BACs. In recent years, development of bioinformatics tools in Brassica has given a boost to structural genomics research in Brassica species. The research undertaken with the availability of various genomic resources in the public domain has added to our understanding of the structure of B. rapa .  相似文献   

9.
Briggs WH  Goldman IL 《Genetics》2006,172(1):457-465
Domestication and breeding share a common feature of population bottlenecks followed by significant genetic gain. To date, no crop models for investigating the evolution of genetic variance, selection response, and population diversity following bottlenecks have been developed. We developed a model artificial selection system in the laboratory using rapid-cycling Brassica rapa. Responses to 10 cycles of recurrent selection for cotyledon size were compared across a broad population founded with 200 individuals, three bottleneck populations initiated with two individuals each, and unselected controls. Additive genetic variance and heritability were significantly larger in the bottleneck populations prior to selection and this corresponded to a heightened response of bottleneck populations during the first three cycles. However, the overall response was ultimately greater and more sustained in the broad population. AFLP marker analyses revealed the pattern and extent of population subdivision were unaffected by a bottleneck even though the diversity retained in a selection population was significantly limited. Rapid gain in genetically more uniform bottlenecked populations, particularly in the short term, may offer an explanation for why domesticators and breeders have realized significant selection progress over relatively short time periods.  相似文献   

10.
11.
Elevated levels of tropospheric ozone and their effects on plants have been studied for a great number of years. Ozone is a gaseous pollutant and acts as a phytotoxin. Even though ozone is known to change the physiology of plants, little attention has been given to the indirect effects of ozone on plant-insect interactions. This paper addresses this question by investigating the interactive effects of ozone and plant genotype on insects. Lines of rapid-cycling Brassica rapa (L.) selected for their contrasting sensitivity to ozone and Pieris brassicae (L.) (Lepidoptera: Pieridae) were used as a model system. The effect of differences in ozone sensitivity and ozone fumigation on the plant's carbon and nitrogen pools, the feeding preference, and behaviour of P. brassicae larvae were investigated. The results show that the plant's susceptibility to ozone interacts in a complex way with ozone induced alterations in the suitability of the plant for the insect. Only the larval performance on the sensitive line was affected by ozone exposure. Biochemical changes in the resistant B. rapa line made the plant a better food source for the insects, since the digestibility of this plant was significantly higher than that of the sensitive line, and the larvae pupated more quickly and were heavier.  相似文献   

12.
Plant biodiversity is known to affect insect populations, both herbivores and their natural enemies, and as a consequence, habitat management through increased plant species composition and abundance can be exploited for sustainable pest management. In agroecosystems where crop monocultures are the routine production practice, plant biodiversity can be increased by maintaining small populations of weeds, with potential beneficial effects arising from concomitant increases in the abundance of predator and parasitoid populations. We manipulated weed populations in both species of canola, Brassica rapa L. and Brassica napus L., to investigate responses of adults of Aleochara bilineata Gyllenhal (Coleoptera: Staphylinidae), an important natural enemy of root maggots (Delia spp., Diptera: Anthomyiidae). Larval root maggots feed on canola taproots, disrupting the flow of water and nutrients within the plants, causing substantial yield reductions. Aleochara bilineata is a predator–parasitoid that attacks all root maggot pre-imaginal life stages. Activity density of A. bilineata increased as monocotyledonous weed biomass declined. Significant preferences between canola species were observed, with A. bilineata associated most frequently with B. rapa compared with B. napus. Our research suggests that improved management of root maggot infestations in canola through enhancement of populations of the A. bilineata predator–parasitoid could be accomplished by reducing weed infestations; however, such recommendations should consider other predators in the system and the role of weeds in reducing root maggot oviposition and damage.  相似文献   

13.
Self-thinning B. ericifolia stands were observed to have high mean plant weights for their density, exceeding the upper boundary of the (log mean plant weight = 4.4–1.5 log mean plant density) line of White (1980) by approximately 0.5 units on the y scale (log mean weight per plant (g)). While proportion of shoot as stem and leaf area indices were similar in thinning stands of B. ericifolia and other species, specific leaf area was six to eight times less in the Banksia populations.  相似文献   

14.
A population genetic analysis of chloroplast and nuclear DNA was performed covering nine wild populations of Brassica oleracea. Three members of the n = 9 group, all close to B. oleracea, Brassica alboglabra Bailey, Brassica bourgeaui (Webb) O. Kuntze and Brassica montana Pourret, were also studied to better understand their relationship with B. oleracea. Chloroplast DNA was analysed using the PCR-RFLP (polymerase chain reaction - restriction fragment length polymorphism) method. The ISSR-PCR (inter-simple sequence repeat - polymerase chain reaction) technique was adopted to study nuclear DNA. Twelve primer pairs of chloroplast DNA showed very good amplification. The amplified product of each primer pair, digested by three restriction enzymes, revealed no variation of cpDNA among the taxa studied. This indicates they may have the same chloroplast genotype. Seven selected ISSR primers have detected genetic variation, both within and among the populations/taxa surveyed. The information obtained on the intra- and inter-populational genetic diversity of wild populations of B. oleracea neatly defined the individual plants. It could provide important guidelines for backing management and conservation strategies in this species. The study confirms a close relationship between B. alboglabra, B. bourgeaui and B. montana, which is parallel to their morphological similitude.  相似文献   

15.
Selecting insect-resistant plant varieties is a key component of integrated management programs of oligophagous pests such as diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), but rigorous research on important life history parameters of P. xylostella in relation to host plant resistance is rare. We evaluated six conventional brassicaceous species, namely, Brassica napus L. 'Q2', B. rapa L., B. juncea (L.) Czern., B. carinata L., B. oleracea L., and Sinapis alba L., and two herbicide-tolerant cultivars, namely, B. napus 'Liberty' and B. napus 'Conquest' for their resistance against P. xylostella. Brassicaceae species and cultivars varied considerably in their susceptibilities as hosts for P. xylostella. Sinapis alba and B. rapa plants were highly preferred by ovipositing females and trichome density on adaxial and abaxial leaf surfaces had nonsignificant effects on P. xylostella oviposition. Larval survival was similar on the genotypes we tested, but host plants significantly affected larval and pupal developmental time, herbivory, pupal weight, silk weight, adult body weight, forewing area and longevity (without food) of both male and female P. xylostella. Larval and pupal development of females was fastest on B. juncea and S. alba, respectively. Specimens reared on B. napus Liberty and B. oleracea, respectively, produced the lightest female and male pupae. Defoliation by both female and male larvae was highest on B. rapa, whereas least herbivory occurred on S. alba. Females reared on S. alba were heavier and lived longer in the absence of food than their counterparts raised on other tested host plants. Brassica oleracea could not compensate for larval feeding to the level of the other species we evaluated. B. napus Conquest, B. napus Q2, B. carinata, B. rapa, and S. alba produced, respectively, 1.6-, 1.8-, 1.8-, 3.9-, and 5.5-fold heavier root systems when infested than their uninfested counterparts, suggesting that these species were better able to tolerate P. xylostella infestations.  相似文献   

16.
? Transgenic plants can offer agricultural benefits, but the escape of transgenes is an environmental concern. In this study we tested the hypothesis that glyphosate drift and herbivory selective pressures can change the rate of transgene flow between the crop Brassica napus (canola), and weedy species and contribute to the potential for increased transgene escape risk and persistence outside of cultivation. ? We constructed plant communities containing single transgenic B. napus genotypes expressing glyphosate herbicide resistance (CP4 EPSPS), lepidopteran insect resistance (Cry1Ac), or both traits ('stacked'), plus nontransgenic B. napus, Brassica rapa and Brassica nigra. Two different selective pressures, a sublethal glyphosate dose and lepidopteran herbivores (Plutella xylostella), were applied and rates of transgene flow and transgenic seed production were measured. ? Selective treatments differed in the degree in which they affected gene flow and production of transgenic hybrid seed. Most notably, glyphosate-drift increased the incidence of transgenic seeds on nontransgenic B. napus by altering flowering phenology and reproductive function. ? The findings of this study indicate that transgenic traits may be transmitted to wild populations and may increase in frequency in weedy populations through the direct and indirect effects of selection pressures on gene flow.  相似文献   

17.
Xiong Z  Pires JC 《Genetics》2011,187(1):37-49
Investigating recombination of homoeologous chromosomes in allopolyploid species is central to understanding plant breeding and evolution. However, examining chromosome pairing in the allotetraploid Brassica napus has been hampered by the lack of chromosome-specific molecular probes. In this study, we establish the identification of all homoeologous chromosomes of allopolyploid B. napus by using robust molecular cytogenetic karyotypes developed for the progenitor species Brassica rapa (A genome) and Brassica oleracea (C genome). The identification of every chromosome among these three Brassica species utilized genetically mapped bacterial artificial chromosomes (BACs) from B. rapa as probes for fluorescent in situ hybridization (FISH). With this BAC-FISH data, a second karyotype was developed using two BACs that contained repetitive DNA sequences and the ubiquitous ribosomal and pericentromere repeats. Using this diagnostic probe mix and a BAC that contained a C-genome repeat in two successive hybridizations allowed for routine identification of the corresponding homoeologous chromosomes between the A and C genomes of B. napus. When applied to the B. napus cultivar Stellar, we detected one chromosomal rearrangement relative to the parental karyotypes. This robust novel chromosomal painting technique will have biological applications for the understanding of chromosome pairing, homoeologous recombination, and genome evolution in the genus Brassica and will facilitate new applied breeding technologies that rely upon identification of chromosomes.  相似文献   

18.
J. D. Palmer 《Genetics》1988,118(2):341-351
Intraspecific variation was examined among 25 mitochondrial DNAs (mtDNAs), representing between two and five lines of eight agriculturally important Brassica species. Each of the approximately 140 restriction sites surveyed was invariant within each species. Only two length polymorphisms, deletions of 700 bp and 100 bp in a Brassica nigra line, were detected. A single inversion polymorphism was found; this distinguished two different mtDNA populations within a single line of Brassica hirta. Approximately 60% of the mtDNA molecules in this line and in two other B. hirta lines were identical, whereas the other 40% of the molecules in the first line differed by a 62-kb inversion. Levels of within-species variability in mtDNA appear to be lower in Brassica than in other groups of plants. These mtDNA comparisons are in agreement with cpDNA studies regarding the maternal ancestry of three amphidiploid Brassica species. This agreement and others imply that the two cytoplasmic genomes must have shared a common, maternal mode of transmission throughout the history of the genus. Finally, analysis of a supercoiled fraction of mtDNA from cauliflower (Brassica oleracea) provides the strongest evidence yet in support of the multicircular model for plant mtDNAs.  相似文献   

19.
Two species of Brassica were used to study their acclimation to heat and high illumination during the first stages of development. One, Brassica fruticulosa, is a wild species from south-east Spain and is adapted to both heat and high light intensity in its natural habitat, while the other, Brassica oleracea, is an agricultural species that is widely cultivated throughout the world. Growing Brassica plants under high irradiance and moderate heat was seen to affect the growth parameters and the functioning of the photosynthetic apparatus. The photosystem II (PSII) quantum yields and the capacity of photosynthetic electron transport, which were lower in B. fruticulosa than in B. oleracea, decreased in B. oleracea plants when grown under stress conditions, indicating inhibition of PSII. However, in B. fruticulosa, the values of these parameters were similar to the values of control plants. Photosystem I (PSI) activity was higher in B. fruticulosa than in B. oleracea, and in both species this activity increased in plants exposed to heat and high illumination. Immunoblot analysis of thylakoid membranes using specific antibodies raised against the NDH-K subunit of the thylakoidal NADH dehydrogenase complex (NADH DH) and against plastid terminal oxidase (PTOX) revealed a higher amount of both proteins in B. fruticulosa than in B. oleracea. In addition, PTOX activity in plastoquinone oxidation, and NADH DH activity in thylakoid membranes were higher in the wild species (B. fruticulosa) than in the agricultural species (B. oleracea). The results indicate that tolerance to high illumination and heat of the photosynthetic activity was higher in the wild species than in the agricultural species, suggesting that plant adaptation to these stresses in natural conditions favours subsequent acclimation, and that the chlororespiration process is involved in adaptation to heat and high illumination in Brassica.  相似文献   

20.
M Fourmann  F Chariot  N Froger  R Delourme  D Brunel 《Génome》2001,44(6):1083-1099
Numerous sequences analogous to resistance (R) genes exist in plant genomes and could be involved in resistance traits. The aim of this study was to identify a large number of Brassica napus sequences related to R genes and also to test the adequacy of specific PCR-based tools for studying them. Different consensus primers were compared for their efficiency in amplifying resistance-gene analogues (RGAs) related to the nucleotide-binding-site subgroup of R genes. Specific primers were subsequently designed to fine-study the different RGAs and we tested their efficiency in three species related to B. napus: Brassica oleracea, Brassica rapa, and Arabidopsis thaliana. Forty-four B. napus RGAs were identified. Among 29 examined, at least one-third were expressed. Eighteen RGAs were mapped on 10 of the 19 B. napus linkage groups. The high variability within these sequences permitted discrimination of each genotype within a B. napus collection. The RGA-specific primers amplified RGAs in the B. oleracea and B. rapa genomes, but the sequences appear to be poorly conserved in A. thaliana. Specific RGA primers are a precise tool for studying known-sequence RGAs. These sequences represent interesting markers that could be correlated with resistance traits in B. napus or related Brassica genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号