首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J L Gabriel  G W Plaut 《Biochemistry》1990,29(14):3528-3535
The specificity of yeast NAD-specific isocitrate dehydrogenase for the structures of the allosteric effector 5'-AMP was examined with analogues modified in the purine ring, pentosyl group, and 5'-phosphate group. An unsubstituted 6-amino group was essential for activation as was the phosphoryl group at the 5'-position. Activity was retained when an oxygen function of the 5'-phosphoryl was replaced by sulfur (Murry & Atkinson, 1968) or by nitrogen (phosphoramidates). 2-NH2-AMP, 2-azido-AMP, and 8-NH2-AMP were active; 8-azido-AMP and 8-Br-AMP were inactive. The configuration or nature of substituents about carbons 2' and 3' of the pentosyl portion of AMP was not critical for allosteric activation since AMP analogues containing, e.g., 2',3'-dideoxyribose or the bulky 2',3'-O-(2,4,6-trinitrocyclo-hexadienylidene) substituent (TNP-AMP) were active. TNP-AMP was bound to the enzyme with fluorescence enhancement and had an S0.5 for activation similar to the S0.5 for AMP. Positive effector activity was decreased when the pentosyl moiety of 5'-AMP was replaced by the six-membered nitrogen-containing morpholine group, indicating that the pentosyl group may be critical as a spacer for the proper geometry of binding to enzyme at the 6-amino and 5'-phosphoryl groups of 5'-AMP. A comparison of molecular models of 5'-AMP with 8,5'-cycloAMP suggests that the species of 5'-AMP required for binding to the enzyme contains the purine and ribose moieties in an anti conformation and positioning of the 5'-phosphate trans with respect to carbon 4'.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Mitochondrial NAD(+)-specific isocitrate dehydrogenases (IDHs) are key regulators of flux through biosynthetic and oxidative pathways in response to cellular energy levels. Here we present the first structures of a eukaryotic member of this enzyme family, the allosteric, hetero-octameric, NAD(+)-specific IDH from yeast in three forms: 1) without ligands, 2) with bound analog citrate, and 3) with bound citrate + AMP. The structures reveal the molecular basis for ligand binding to homologous but distinct regulatory and catalytic sites positioned at the interfaces between IDH1 and IDH2 subunits and define pathways of communication between heterodimers and heterotetramers in the hetero-octamer. Disulfide bonds observed at the heterotetrameric interfaces in the unliganded IDH hetero-octamer are reduced in the ligand-bound forms, suggesting a redox regulatory mechanism that may be analogous to the "on-off" regulation of non-allosteric bacterial IDHs via phosphorylation. The results strongly suggest that eukaryotic IDH enzymes are exquisitely tuned to ensure that allosteric activation occurs only when concentrations of isocitrate are elevated.  相似文献   

3.
The crystal structure of the S642A mutant of mitochondrial aconitase (mAc) with citrate bound has been determined at 1.8 A resolution and 100 K to capture this binding mode of substrates to the native enzyme. The 2.0 A resolution, 100 K crystal structure of the S642A mutant with isocitrate binding provides a control, showing that the Ser --> Ala replacement does not alter the binding of substrates in the active site. The aconitase mechanism requires that the intermediate product, cis-aconitate, flip over by 180 degrees about the C alpha-C beta double bond. Only one of these two alternative modes of binding, that of the isocitrate mode, has been previously visualized. Now, however, the structure revealing the citrate mode of binding provides direct support for the proposed enzyme mechanism.  相似文献   

4.
Summary The influence of fructose 2,6-bisphosphate on the activation of purified swine kidney phosphofructokinase as a function of the concentration of fructose 6P, ATP and citrate was investigated. The purified enzyme was nearly completely inhibited in the presence of 2 mM ATP. The addition of 20 nM fructose 2,6-P2 reversed the inhibition and restored more than 80% of the activity. In the absence of fructose 2,6-P2 the reaction showed a sigmoidal dependence on fructose 6-phosphate. The addition of 10 nM fructose 2,6-bisphosphate decreased the K0.5 for fructose 6-phosphate from 3 mM to 0.4 mM in the presence of 1.5 mM ATP. These results clearly show that fructose 2,6-bisphosphate increases the affinity of the enzyme for fructose 6-phosphate and decreases the inhibitory effect of ATP. The extent of inhibition by citrate was also significantly decreased in the presence of fructose 2,6-phosphate.The influence of various effectors of phosphofructokinase on the binding of ATP and fructose 6-P to the enzyme was examined in gel filtration studies. It was found that kidney phosphofructokinase binds 5.6 moles of fructose 6-P per mole of enzyme, which corresponds to about one site per subunit of tetrameric enzyme. The KD for fructose 6-P was 13 µM and in the presence of 0.5 mM ATP it increased to 27 µM. The addition of 0.3 mM citrate also increased the KD for fructose 6-P to about 40 µM. AMP, 10 µM, decreased the KD to 5 µM and the addition of fructose 2,6-phosphate decreased the KD for fructose 6-P to 0.9 µM. The addition of these compounds did not effect the maximal amount of fructose 6-P bound to the enzyme, which indicated that the binding site for these compounds might be near, but was not identical to the fructose 6-P binding site. The enzyme bound a maximum of about 12.5 moles of ATP per mole, which corresponds to 3 moles per subunit. The KD of the site with the highest affinity for ATP was 4 µM, and it increased to 15 µM in the presence of fructose 2,6-bisphosphate. The addition of 50 µM fructose 1,6-bisphosphate increased the KD for ATP to 5.9 µM. AMP increased the KD to 5.9 µM whereas 0.3 mM citrate decreased the KD for ATP to about 2 µM. The KD for AMP, was 2.0 µM; the KD for cyclic AMP was 1.0 µM; the KD for ADP was 0.9 µM; the KD for fructose 1,6-bisphosphate was 0.5 µM; the KD for citrate was 0.4 µM and the KD for fructose 2,6-bisphosphate was about 0.1 µM. A maximum of about 4 moles of AMP, ADP and cyclic AMP and fructose 2,6-bisphosphate were bound per mole of enzyme. Taken collectively, these and previous studies (9) indicate that fructose 2,6-phosphate is a very effective activator of swine kidney phosphofructokinase. This effector binds to the enzyme with a very high affinity, and significantly decreases the binding of ATP at the inhibitory site on the enzyme.  相似文献   

5.
Kinetic properties of spermine synthase from bovine brain.   总被引:4,自引:0,他引:4       下载免费PDF全文
Phosphofructokinase (EC 2.7.1.11) from a citric acid-producing strain of Aspergillus niger was partially purified by the application of affinity chromatography on Blue Dextran--Sepharose and the use of fructose 6-phosphate and glycerol as stabilizers in the working buffer. The resulting preparation was still impure, but free of enzyme activities interfering with kinetic investigations. Kinetic studies showed that the enzyme exhibits high co-operativity with fructose 6-phosphate, but shows Michaelis--Menten kinetics with ATP, which inhibits at concentrations higher than those for maximal activity. Citrate and phosphoenolpyruvate inhibit the enzyme; citrate increases the substrate (fructose 6-phosphate) concentration for half-maximal velocity, [S]0.5, and the Hill coefficient, h. The inhibition by citrate is counteracted by NH4+, AMP and phosphate. Among univalent cations tested only NH4+ activates by decreasing the [S]0.5 for fructose 6-phosphate and h, but has no effect on Vmax. AMP and ADP activate at low and inhibit at high concentrations of fructose 6-phosphate, thereby decreasing the [S]0.5 for fructose 6-phosphate. Phosphate has no effect in the absence of citrate. The results indicate that phosphofructokinase from A. niger is a distinct species of this enzyme, with some properties similar to those of the yeast enzyme and in some other properties resembling the mammalian enzyme. The results of determinations of activity at substrate and effector concentrations resembling the conditions that occur in vivo support the hypothesis that the apparent insensitivity of the enzyme to citrate during the accumulation of citric acid in the fungus is due to counteraction of citrate inhibition by NH4+.  相似文献   

6.
7.
The cytosolic fumarase [EC 4.2.1.2[ of rat liver was bound, after dialysis, to the microsomal membrane in vitro. Binding of the enzyme was dependent on pH, and was facilitated in the pH range below 7.5. The binding reaction was completely inhibited by 0.5 mM fumarate, aurintricarboxylate or colchicine. The bound fumarase was released from the membrane by the substrates, isocitrate, citrate or 2,3-diphosphoglycerate at low concentrations. Desorption of the enzyme by metabolites was also dependent on pH, and was more rapid in the alkaline pH range. The enzyme desorption curves were sigmoidal, and kinetic studies suggested a biphasic cooperative mechanism for the action of the metabolites. The apparent desorption constants (concentrations necessary for 50% desorption of the enzyme) estimated at pH 7.3 for isocitrate, 2,3-diphosphoglycerate, L-malate, oxalacetate, fumarate, citrate, succinate, and KCl were 0.073, 0.074, 0.22, 0.39, 0.56, 2.9, and 19 mM, respectively. The bound fumarase showed little enzymatic activity, and its Km and Vmax values were fivefold and 31%, respectively, of those of the free enzyme.  相似文献   

8.
1. The sensitivity of the NAD(+)-specific isocitrate dehydrogenase from baker's yeast towards inhibition by anions decreases with decrease in pH. The patterns of the pH-dependence of the enzymic activity can be explained by this effect. 2. In the presence of a high isocitrate concentration, citrate, unlike AMP, has no antagonizing effect on the inhibition of the enzyme by anions. In the presence of AMP, citrate inhibits the enzyme at high isocitrate concentration and activates at low isocitrate concentration. 3. The effects on the enzymic activity of the previous incubation of the enzyme were studied in relation to the substrate concentration, the chloride concentration and the presence of citrate and AMP.  相似文献   

9.
In the absence of added calcium, inhibition of NAD-specific isocitrate dehydrogenase by ATP occurred without ADP (I0.5 = 1.8 mM) and with 0.2 mM ADP3- (I0.5 = 1.0 mM) at subsaturating substrate concentrations at pH 7.4. Inhibition by ATP was competitive with NAD+ in the presence and absence of ADP and was not reversed by magnesium citrate. No reversal of ATP inhibition by free Ca2+ was observed in the presence of ADP (0.2 mM). However, when ADP was absent, increasing Ca2+ first caused progressive reversal of ATP inhibition followed by activation by ATP. Without ADP, the S0.5 for calcium activation was 80-140 microM at ATP concentrations between 0.6 and 3.0 mM. The S0.5 for ATP activation, in the absence of ADP, was 1.1 and 2.1 microM when free Ca2+ was held constant at 0.1 and 1.0 mM, respectively. As in activation by ADP, ATP decreased the S0.5 for magnesium isocitrate without affecting V. However, in contrast to ADP, the activation by ATP occurred without lowering the Hill coefficient for the substrate. GDP activated the enzyme at relatively high concentrations of Ca2+ but not without added Ca2+.  相似文献   

10.
The effect of different salts on the NAD-specific isocitrate dehydrogenase from Blastocladiella emersonii has been studied. The results show that the salt inhibition depends on the size of the anions and that the ionic strength is of minor importance.The salts inhibit the enzyme in a competitive manner with regard to isocitrate. The isocitrate concentration giving half saturation increased by the same factor whether or not the activator AMP was present. The finding that higher salt concentrations are needed to inhibit the enzyme in the presence of AMP is due to the fact that in this case isocitrate is more tightly bound.Stopped-flow experiments demonstrated that when the enzyme was incubated with isocitrate and metal ions prior to initiation of the reaction by addition of NAD, the salt inhibition needed several seconds to be fully expressed. Moreover, a lag occurred before NADH was formed when the enzyme was mixed with its substrates and cofactor. The data suggest that the hysteretic properties of the enzyme are due to isomerization of the enzyme molecules, and that specific binding sites are involved in the salt inhibition.  相似文献   

11.
Ribose 1,5-bisphosphate (Rib-1,5-P2), a newly discovered activator of rat brain phosphofructokinase, forms rapidly during the initiation of glycolytic flux and disappears within 20 s (Ogushi, S., Lawson, J.W. R., Dobson, G.P., Veech, R.L., and Uyeda, K. (1990) J. Biol. Chem. 265, 10943-10949). Activation of various mammalian phosphofructokinases and plant pyrophosphate-dependent phosphofructokinases by Rib-1,5-P2 was investigated. The order of decreasing potency for activation of rabbit muscle phosphofructokinase was: fructose (Fru) 2,6-P2, Rib-1,5-P2, Fru-1,6-P2, Glc-1,6-P2, phosphoribosylpyrophosphate, ribulose-1,5-P2, sedoheptulose-1,7-P2, and myoinositol-1,4-P2. The K0.5 values for activation by Rib-1,5-P2 of rat brain, rat liver, and rabbit muscle phosphofructokinases and potato and mung bean pyrophosphate-dependent phosphofructokinases were 64 nM, 230 nM, 82 nM, 710 nM, and 80 microM, respectively. The corresponding K0.5 values for Fru-2,6-P2 were 9, 8.6, 10, 7, and 65 nM, respectively. Rib-1,5-P2 was a competitive inhibitor of Fru-2,6-P2, binding to the muscle enzyme with Ki of 26 microM. Citrate increased the K0.5 for Rib-1,5-P2 without affecting the maximum activation, and AMP lowered the K0.5 for Rib-1,5-P2 without affecting the maximum activation. These effects of citrate and AMP were similar to those observed with Fru-2,6-P2 and different from those with Fru-1,6-P2. Rib-1,5-P2 is the second most potent activator of phosphofructokinase thus far discovered. The Rib-1,5-P2-activated conformation of the enzyme seems to be similar to that induced by Fru-2,6-P2, but different from that induced by Fru-1,6-P2.  相似文献   

12.
Yeast NAD(+)-specific isocitrate dehydrogenase (IDH) is an allosterically regulated octameric enzyme composed of two types of homologous subunits designated IDH1 and IDH2. Based on sequence comparisons and structural models, both subunits are predicted to have adenine nucleotide binding sites. This was tested by alanine replacement of residues in putative sites in each subunit. Targets included adjacent aspartate/isoleucine residues implicated as important for determining cofactor specificity in related dehydrogenases and a residue in each IDH subunit in a position occupied by histidine in other cofactor binding sites. The primary kinetic effects of D286A/I287A and of H281A replacements in IDH2 were found to be a dramatic reduction in apparent affinity of the holoenzyme for NAD(+) and a concomitant reduction in V(max). Ligand binding assays also showed that the H281A mutant enzyme fails to bind NAD(+) under conditions that are saturating for the wild-type enzyme. In contrast, the primary effect of corresponding D279A/D280A and of R274A replacements in IDH1 is a reduction in holoenzyme binding of AMP, with concomitant alterations in kinetic and isocitrate binding properties normally associated with activation by this allosteric effector. These results suggest that the nucleotide cofactor binding site is primarily contributed by the IDH2 subunit, whereas the homologous nucleotide binding site in IDH1 has evolved for regulatory binding of AMP. These results are consistent with previous studies demonstrating that the catalytic isocitrate binding sites are comprised of residues primarily contributed by IDH2, whereas sites for regulatory binding of isocitrate are contributed by analogous residues of IDH1. In this study, we also demonstrate that a prerequisite for holoenzyme binding of NAD(+) is binding of isocitrate/Mg(2+) at the IDH2 catalytic site. This is comparable to the dependence of AMP binding upon binding of isocitrate at the IDH1 regulatory site.  相似文献   

13.
Lin AP  McAlister-Henn L 《Biochemistry》2011,50(38):8241-8250
Yeast NAD(+)-specific isocitrate dehydrogenase is an allosterically regulated octameric enzyme composed of four heterodimers of a catalytic IDH2 subunit and a regulatory IDH1 subunit. Despite structural predictions that the enzyme would contain eight isocitrate binding sites, four NAD(+) binding sites, and four AMP binding sites, only half of the sites for each ligand can be measured in binding assays. On the basis of a potential interaction between side chains of Cys-150 residues in IDH2 subunits in each tetramer of the enzyme, ligand binding assays of wild-type (IDH1/IDH2) and IDH1/IDH2(C150S) octameric enzymes were conducted in the presence of dithiothreitol. These assays demonstrated the presence of eight isocitrate and four AMP binding sites for the wild-type enzyme in the presence of dithiothreitol and for the IDH1/IDH2(C150S) enzyme in the absence or presence of this reagent, suggesting that interactions between sulfhydryl side chains of IDH2 Cys-150 residues limit access to these sites. However, only two NAD(+) sites could be measured for either enzyme. A tetrameric form of IDH (an IDH1(G15D)/IDH2 mutant enzyme) demonstrated half-site binding for isocitrate (two sites) in the absence of dithiothreitol and full-site binding (four sites) in the presence of dithiothreitol. Only one NAD(+) site could be measured for the tetramer under both conditions. In the context of the structure of the enzyme, these results suggest that an observed asymmetry between heterotetramers in the holoenzyme contributes to interactions between IDH2 Cys-150 residues and to half-site binding of isocitrate, but that a form of negative cooperativity may limit access to apparently equivalent NAD(+) binding sites.  相似文献   

14.
The binding of the allosteric activator, AMP, and the inhibitor, ATP, to glycogen phosphorylase b has been studied in the crystal at 3 Å resolution. The nucleotides bind to two sites on the enzyme which are identified as site N, the allosteric effector site which is close to the subunit-subunit interface, and site I, a nucleoside inhibitor site which blocks the entrance to the active site crevasse. AMP when bound at the allosteric effector site makes several defined interactions with the enzyme in agreement with the results of solution studies. The contacts involve the N-10 position of the base, the 2′ hydroxyl of the ribose and the phosphate. IMP, analysed at 4 Å resolution, appears to bind in an identical conformation to AMP. At 3 Å resolution no well defined conformational changes are observed on binding AMP, although there are indications of a disturbance of the crystal lattice. It is concluded that the forces which stabilise the crystal lattice prevent the allosteric response of the enzyme in the crystal.  相似文献   

15.
AMP deaminases of rat small intestine   总被引:1,自引:0,他引:1  
Phosphocellulose column chromatography revealed the existence of two forms of AMP deaminase both in whole tissue and in the intestinal epithelium. AMP deaminase I, which eluted from the column as a first activity peak, exhibited hyperbolic, nonregulatory kinetics. The substrate half-saturation constants were determined to be 0.3 and 0.7 mM at pH 6.5 and 7.2, respectively, and did not change in the presence of ATP, GTP and Pi. AMP deaminase II, which eluted from the column as a second activity peak, was strongly activated by ATP and inhibited by GTP and Pi. The S0.5 constants were 3.5 and 7.1 at pH 6.5 and 7.2, respectively. At pH 7.2 ATP (1 mM) S0.5 decreased to 2.5 mM and caused the sigmoidicity to shift to hyperbolic. The ATP half-activation constant was increased 9-fold in the presence of GTP and was not affected by Pi. Mg2+ significantly altered the effects exerted by nucleotides. The S0.5 value was lowered 10-fold in the presence of MgATP and 5-fold in the presence of MgATP, MgGTP and Pi. When MgATP was present, AMP deaminase II from rat small intestine was less susceptible to inhibition by GTP and Pi. A comparison of the kinetic properties of the enzyme, in particular the greater than 100% increase in Vmax observed in the presence of MgCl2 at low (1 mM) substrate concentration, indicates that MgATP is the true physiological activator. GuoPP[NH]P at low concentrations, in contrast to GTP, did not affect the enzyme and even activated it at concentrations above 0.2 mM. We postulate that AMP deaminase II may have a function similar to that of the rat liver enzyme. The significance of the existence of an additional, non-regulatory form of AMP deaminase in rat small intestine is discussed.  相似文献   

16.
The kinetic analysis of the glycogen chain growth reaction catalyzed by glycogen phosphorylase b from rabbit skeletal muscle has been carried out over a wide range of concentrations of AMP under the saturation of the enzyme by glycogen. The applicability of 23 different variants of the kinetic model involving the interaction of AMP and glucose 1-phosphate binding sites in the dimeric enzyme molecule is considered. A kinetic model has been proposed which assumes: (i) the independent binding of one molecule of glucose 1-phosphate in the catalytic site on the one hand, and AMP in both allosteric effector sites and both nucleoside inhibitor sites of the dimeric enzyme molecule bound by glycogen on the other hand; (ii) the binding of AMP in one of the allosteric effector sites results in an increase in the affinity of other allosteric effector site to AMP; (iii) the independent binding of AMP to the nucleoside inhibitor sites of the dimeric enzyme molecule; (iv) the exclusive binding of the second molecule of glucose 1-phosphate in the catalytic site of glycogen phosphorylase b containing two molecules of AMP occupying both allosteric effector sites; and (v) the catalytic act occurs exclusively in the complex of the enzyme with glycogen, two molecules of AMP occupying both allosteric effector sites, and two molecules of glucose 1-phosphate occupying both catalytic sites.  相似文献   

17.
When fasted rats were refed for 4 days with a carbohydrate and protein diet, a carbohydrate diet (without protein) or a protein diet (without carbohydrate), the effects of dietary nutrients on the fatty acid synthesis from injected tritiated water, the substrate and effector levels of lipogenic enzymes and the enzyme activities were compared in the livers. In the carbohydrate diet group, although acetyl-CoA carboxylase was much induced and citrate was much increased, the activity of acetyl-CoA carboxylase extracted with phosphatase inhibitor and activated with 0.5 mM citrate was low in comparison to the carbohydrate and protein diet group. The physiological activity of acetyl-CoA carboxylase seems to be low. In the protein diet group, the concentrations of glucose 6-phosphate, acetyl-CoA and malonyl-CoA were markedly higher than in the carbohydrate and protein group, whereas the concentrations of oxaloacetate and citrate were lower. The levels of hepatic cAMP and plasma glucagon were high. The activities of acetyl-CoA carboxylase and also fatty acid synthetase were low in the protein group. By feeding fat, the citrate level was not decreased as much as the lipogenic enzyme inductions. Comparing the substrate and effector levels with the Km and Ka values, the activities of acetyl-CoA carboxylase and fatty acid synthetase could be limited by the levels. The fatty acid synthesis from tritiated water corresponded more closely to the acetyl-CoA carboxylase activity (activated 0.5 mM citrate) than to other lipogenic enzyme activities. On the other hand, neither the activities of glucose-6-phosphate dehydrogenase and malic enzyme (even though markedly lowered by diet) nor the levels of their substrates appeared to limit fatty acid synthesis of any of the dietary groups. Thus, it is suggested that under the dietary nutrient manipulation, acetyl-CoA carboxylase activity would be the first candidate of the rate-limiting factor for fatty acid synthesis with the regulations of the enzyme quantity, the substrate and effector levels and the enzyme modification.  相似文献   

18.
The pyruvate kinase (PK) from a moderate thermophile, Geobacillus stearothermophilus, is an allosteric enzyme activated by AMP and ribose 5-phosphate but not fructose 1, 6-bisphosphate (FBP), which is a common activator of PKs. It has an extra C-terminal sequence (ECTS), which contains a highly conserved phosphoenolpyruvate (PEP) binding motif, but its function and structure remain unclear. To elucidate the structural characteristics of the effector-binding site and the ECTS, the crystal structure of the C9S/C268S mutant of the enzyme was determined at 2.4 A resolution. The crystal belonged to space group P6(2)22, with unit cell parameters a, b = 145.97 A, c = 118.03 A. The enzyme was a homotetramer and its overall domain structure was similar to the previously solved structures except that the ECTS formed a new domain (C' domain). The structure of the C' domain closely resembled that of the PEP binding domain of maize pyruvate phosphate dikinase. A sulphate ion was found in a pocket in the effector-binding C domain. This site corresponds to the 6-phosphate group-binding site in yeast PK bound FBP and seems to be the effector-binding site. Through comparison of the structure of the putative effector-binding site to that of the FBP binding site of the yeast enzyme, the structural basis of the effector specificity of the G. stearothermophilus PK is discussed.  相似文献   

19.
Comparison of AMP and NADH binding to glycogen phosphorylase b   总被引:3,自引:0,他引:3  
The binding sites for the allosteric activator, AMP, to glycogen phosphorylase b are described in detail utilizing the more precise knowledge of the native structure obtained from crystallographic restrained least-squares refinement than has hitherto been available. Localized conformational changes are seen at the allosteric effector site that include shifts of between 1 and 2 A for residues Tyr75 and Arg309 and very small shifts for the region of residues 42 to 44 from the symmetry-related subunit. Kinetic studies demonstrate that NADH inhibits the AMP activation of glycogen phosphorylase b. Crystallographic binding studies at 3.5 A resolution show that NADH binds to the same sites on the enzyme as AMP, i.e. the allosteric effector site N, which is close to the subunit-subunit interface, and the nucleoside inhibitor site I, which is some 12 A from the catalytic site. The conformations of NADH at the two sites are different but both conformations are "folded" so that the nicotinamide ring is close (approx. 6 A) to the adenine ring. These conformations are compared with those suggested from solution studies and with the extended conformations observed in the single crystal structure of NAD+ and for NAD bound to dehydrogenases. Possible mechanisms for NADH inhibition of phosphorylase activation are discussed.  相似文献   

20.
1. The effects of ATP, inorganic phosphate and citrate on the relationship between fructose 6-phosphate concentration and initial velocity of reaction has been investigated with a partially purified preparation of rat-heart phosphofructokinase. 2. At low concentrations of ATP (<80mum) rate curves for fructose 6-phosphate approximated to Michaelis-Menten kinetics. At higher ATP concentrations rate curves were sigmoid, the K(m) for fructose 6-phosphate increased and the reaction appeared to be first-order with respect to fructose 6-phosphate at concentrations above its K(m) and of a higher order at concentrations below its K(m). Inorganic phosphate lowered the K(m) for fructose 6-phosphate and the concentration at which the apparent kinetic order decreased. 3. At 40mum-ATP, citrate was an activator at low concentration (<100mum) and an inhibitor at higher concentrations. At 0.5mm-ATP, citrate was inhibitory at all concentrations tested. 4. A new method for phosphofructokinase assay using [U-(14)C]fructose 6-phosphate is described which allows measurements to be made of the velocity of the forward reaction at known concentrations of the products of the reaction. With this method confirmatory evidence has been obtained that concentrations of ATP, AMP, phosphate and citrate may regulate phosphofructokinase in the perfused rat heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号