首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We have transferred DNa to Chinese hamster ovary (CHO) cells by DNA-mediated transformation. CHO tk- cells were transformed with the clones gene for herpes simplex virus thymidine kinase (HSV-tk) and were found to have a 50-fold lower frequency of transformation than mouse Ltk- cells at the same DNA dosage. By altering the amount of tk gene and carrier DNA present, frequencies of up to 5 x 10(-5) were obtained. CHO HSV-tk+ transformants were very stable, and in several clones the HSV-tk gene copies integrated in higher-molecular-weight DNA. These cells also exhibited cotransformation for unselected markers. CHO lines were also transformed at a frequency of 10(-4) with the bacterial gene Ecogpt in a SV40-pBR322 vector. CHO tk-cells could be transformed at a frequency of 10(-7) with cellular DNA isolated from CHO tk+ cells. CHO cells offer a well-defined genetic system within which to transfer either cloned or whole cellular DNAs.  相似文献   

4.
Human peripheral blood lymphocytes (PBLs) can have a range of O6-methylguanine-DNA methyltransferase (MGMT) activities. PBLs from some individuals may have almost no MGMT activity. Such individuals have most often been subject to malignancy or to immunodeficiency disease. Long-term lymphoblastoid lines (LCLs) prepared from PBLs of normal subjects by Epstein-Barr virus (EBV) transformation have MGMT activities which are in general somewhat higher than the PBLs from which they derive. Such cultures are therefore generally MGMT-positive. Only in rare cases, and generally from patients with low MGMT activity, are freshly obtained lines with very low activity obtained. There is however a 4-fold range of MGMT activity over which multiple lines derived from the same PBL sample can be found. Long-term cultivation can lead to LCLs with low activity as well as to lines of high activity. On rare occasions an MGMT-positive line may, within a few divisions, give a negative line. Some (but not all) MGMT-negative (or very low) lines have been known to gain (some) activity. Chinese hamster ovary (CHO) cell lines are in general very low in MGMT activity. Lines of higher activity can be selected by treatment with mutagenic crosslinking alkylating agents. Chinese hamster lines with high MGMT activity can be obtained by transfection with human DNA from MGMT-positive cells. Lines with significant activity can also be obtained by transfection of CHO cells with human DNA from MGMT-negative (or very low) cells. Resistance to MNNG treatment can be acquired without the acquisition of significant MGMT activity. Crosses of lines of high and low MGMT activity give equivocal results. Hybrids of low × low activity have no activity. Crosses of positive × positive strains give varied results. It has not been possible to identify MGMT-positive hybrids as including one particular chromosome by this type of experiment. There is no evidence for a general adaptive effect on MGMT synthesis greater than the variation within the cell cycle.  相似文献   

5.
Chinese hamster ovary (CHO) cell lines are widely used for scientific research and biotechnology. A CHO genomic bacterial artificial chromosome (BAC) library was constructed from a mouse dihydrofolate reductase (DHFR) gene‐amplified CHO DR1000L‐4N cell line for genome‐wide analysis of CHO cell lines. The CHO BAC library consisted of 122,281 clones and was expected to cover the entire CHO genome five times. A CHO chromosomal map was constructed by fluorescence in situ hybridization (FISH) imaging using BAC clones as hybridization probes (BAC‐FISH). Thirteen BAC‐FISH marker clones were necessary to identify all the 20 individual chromosomes in a DHFR‐deficient CHO DG44 cell line because of the aneuploidy of the cell line. To determine the genomic structure of the exogenous Dhfr amplicon, a 165‐kb DNA region containing exogenous Dhfr was cloned from the BAC library using high‐density replica (HDR) filters and Southern blot analysis. The nucleotide sequence analysis revealed a novel genomic structure in which the vector sequence containing Dhfr was sandwiched by long inverted sequences of the CHO genome. Biotechnol. Bioeng. 2009; 104: 986–994. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
The Chinese hamster lung (V79) cell was intrinsically 10-times more resistant to peplomycin, a bleomycin-related antitumor antibiotic, than the Chinese hamster ovary (CHO) cell. This may be associated with the 3-times higher levels of recovery of bleomycin hydrolase activity of the V79 cell. The degradation of bleomycin hydrolase molecules in both V79 and CHO cells was examined using a monoclonal antibody specific for the enzyme. Labelling experiments showed that the bleomycin hydrolase in CHO cells was less stable than the comparable enzyme in V79 cells, and that 48 kDa subunits comprising bleomycin hydrolase (a homohexameric enzyme) molecules were degraded into 31 kDa forms in both cell lines. The 105,000 X g pellet (microsomes) fraction obtained after subcellular fractionation of CHO cells contained both 48 kDa subunit and 31 kDa forms of bleomycin hydrolase, while the 105,000 X g supernatant cytosol fraction yielded only 48 kDa subunit forms of the enzyme. Moreover, bleomycin hydrolase activity of both V79 and CHO cells was almost entirely recovered from the cytosol fraction. These results suggest that degradation of the 48 kDa subunit form of bleomycin hydrolase in these two lines of cultured cells into the 31 kDa form occurs on the plasma membrane or the endoplasmic reticulum, with which the resulting large number of bleomycin hydrolase molecules or degraded forms of the enzyme that have lost enzymatic activity are associated.  相似文献   

7.
Analyses of mutation in pSV2gpt-transformed CHO cells   总被引:3,自引:0,他引:3  
We have developed a system to study mutations which affect expression of the E. coli xanthine-guanine phosphoribosyl transferase (XPRT) gene (gpt) in hypoxanthine-guanine phosphoribosyl transferase-deficient (HPRT-) Chinese hamster ovary (CHO) cells that have been transformed by the plasmid pSV2gpt. Several gpt-transformed cell lines have been isolated and characterized with respect to integrated pSV2gpt sequences, expression of the gpt gene, and cytotoxic and mutagenic responses to UV light. While the gpt-transformed CHO and wild-type CHO-K1-BH4 cell lines have similar cytotoxic responses to UV light, the gpt-transformed cell lines respond differently from the parental CHO-K1-BH4 cell line in terms of mutation induction. As with CHO-K1-BH4 HPRT mutants, spontaneous or induced XPRT mutants derived from the gpt+ cell lines can be selected for 6-thioguanine resistance (TGr). Analysis of cell-free extracts from a number of these TGr clones indicates that the mutant phenotype is due to the absence of XPRT activity. One transformant, designated AS52, has previously been described in limited detail. Here we describe additional characteristics of this cell line, as well as several related transformants.  相似文献   

8.
Overlapping recombinant lambda 1059 phages carrying regions of the dhfr locus from the amplified Chinese hamster ovary (CHO) cell clone MK42 have been isolated. In addition, dhfr cDNAs from this cell line have been cloned into plasmid pBR322. Restriction analysis of these recombinant molecules has led to a map of the Chinese hamster dhfr gene. This gene has a minimum size of 26 kb and contains six exons as defined by hybridization to a combination of mouse and CHO cDNA probes. The latter probes reveal 3' exonic sequences that are not present in mouse cDNA. The CHO dhfr gene thus extends about 700 bp further 3' than in the mouse, consistent with the larger size of the hamster mRNA. At least five intervening sequences are present, of approximate sizes: 0.3, 2.5, 8.6, 2.6 and 9.4 kb. Four sequences from highly repeated families are situated in introns within the dhfr gene. The overall structure of this gene is strikingly similar to that of the mouse. Evolutionary conservation of interrupted gene structure among mammals thus extends to genes that code for household enzymes as well as specialized or structural proteins.  相似文献   

9.
Chung JY  Kim TK  Lee GM 《BioTechniques》2000,29(4):768-7O, 762, 74
To facilitate the establishment of recombinant Chinese hamster ovary (rCHO) cell lines with dihydrofolate reductase (dhfr)-mediated gene amplification, a primary selection method based on morphology of parental CHO clones has been developed. Morphology of parental clones that were made by transfecting various plasmids encoding thrombopoietin (TPO) and its analogs and humanized antibodies into dhfr-deficient (dhfr-) CHO cells was not uniform. Morphology of many parental clones exhibiting high-level expression of the introduced gene was similar to that of nontransfected dhfr- CHO cells. On the other hand, most parental clones with low-level expression experienced noticeable morphological changes such as bipolar fibroblast-like morphology. In case of selection of parental clones with TPO expression level higher than 200 ng/mL, morphological selection improved selection efficiency by 3.5-fold compared with random selection. Furthermore, when subjected to methotrexate for gene amplification, parental clones that were selected based on morphology elevated the expression level as much as those that were selected randomly. Taken together, morphological selection of parental clones can facilitate the establishment of rCHO cell lines expressing recombinant proteins.  相似文献   

10.
Although Chinese hamster ovary (CHO) cells, with their unique characteristics, have become a major workhorse for the manufacture of therapeutic recombinant proteins, one of the major challenges in CHO cell line generation (CLG) is how to efficiently identify those rare, high‐producing clones among a large population of low‐ and non‐productive clones. It is not unusual that several hundred individual clones need to be screened for the identification of a commercial clonal cell line with acceptable productivity and growth profile making the cell line appropriate for commercial application. This inefficiency makes the process of CLG both time consuming and laborious. Currently, there are two main CHO expression systems, dihydrofolate reductase (DHFR)‐based methotrexate (MTX) selection and glutamine synthetase (GS)‐based methionine sulfoximine (MSX) selection, that have been in wide industrial use. Since selection of recombinant cell lines in the GS‐CHO system is based on the balance between the expression of the GS gene introduced by the expression plasmid and the addition of the GS inhibitor, L‐MSX, the expression of GS from the endogenous GS gene in parental CHOK1SV cells will likely interfere with the selection process. To study endogenous GS expression's potential impact on selection efficiency, GS‐knockout CHOK1SV cell lines were generated using the zinc finger nuclease (ZFN) technology designed to specifically target the endogenous CHO GS gene. The high efficiency (~2%) of bi‐allelic modification on the CHO GS gene supports the unique advantages of the ZFN technology, especially in CHO cells. GS enzyme function disruption was confirmed by the observation of glutamine‐dependent growth of all GS‐knockout cell lines. Full evaluation of the GS‐knockout cell lines in a standard industrial cell culture process was performed. Bulk culture productivity improved two‐ to three‐fold through the use of GS‐knockout cells as parent cells. The selection stringency was significantly increased, as indicated by the large reduction of non‐producing and low‐producing cells after 25 µM L‐MSX selection, and resulted in a six‐fold efficiency improvement in identifying similar numbers of high‐productive cell lines for a given recombinant monoclonal antibody. The potential impact of GS‐knockout cells on recombinant protein quality is also discussed. Biotechnol. Bioeng. 2012; 109:1007–1015. © 2011 Wiley Periodicals, Inc.  相似文献   

11.
Here we report the use of random activation of gene expression (RAGE) to create genome-wide protein expression libraries. RAGE libraries containing only 5 x 10(6) individual clones were found to express every gene tested, including genes that are normally silent in the parent cell line. Furthermore, endogenous genes were activated at similar frequencies and expressed at similar levels within RAGE libraries created from multiple human cell lines, demonstrating that RAGE libraries are inherently normalized. Pools of RAGE clones were used to isolate 19,547 human gene clusters, approximately 53% of which were novel when tested against public databases of expressed sequence tag (EST) and complementary DNA (cDNA). Isolation of individual clones confirmed that the activated endogenous genes can be expressed at high levels to produce biologically active proteins. The properties of RAGE libraries and RAGE expression clones are well suited for a number of biotechnological applications including gene discovery, protein characterization, drug development, and protein manufacturing.  相似文献   

12.
13.
DNA-mediated gene transfer (DMGT) was performed in DNA repair-proficient and UV-hypersensitive, repair-deficient Chinese hamster ovary (CHO) cell lines using the UV-irradiated thymidine kinase gene from herpes simplex virus (HSV-TK). Transformation frequencies in repair-deficient CHO cell lines declined relative to repair-proficient cells with increasing UV damage in transfected DNA; approximately 3-fold higher UV fluence was required to inactivate 50% of irradiated HSV-TK plasmid molecules in repair-proficient cells. In cotransfection experiments performed with pairs of HSV-TK plasmids containing linker insertion mutations in TK coding sequences, moderate UV damage in plasmid DNA enhanced the yield of TK+ transformants resulting from homologous recombination between HSV-TK sequences up to 4-fold. These results suggest that UV damage in DNA can stimulate transformation of mammalian cells dependent on intermolecular DNA homology.  相似文献   

14.
15.
We studied the repair of psoralen adducts in the pol I-transcribed ribosomal RNA (rRNA) genes of excision repair competent Chinese hamster ovary (CHO) cell lines, their UV sensitive mutant derivatives, and their UV resistant transformants, which express a human excision repair gene. In the parental cell line CHO-AA8, both monoadducts and interstrand crosslinks are removed efficiently from the rRNA genes, whereas neither adduct is removed in the UV sensitive derivative UV5; removal of both adducts is restored in the UV resistant transformant CHO-5T4 carrying the human excision repair gene ERCC-2. In contrast, removal of psoralen adducts from the rRNA genes is not detected in another parental CHO cell line CHO-9, neither in its UV sensitive derivative 43-3B, nor in its UV resistant transformant 83-G5 carrying the human excision repair gene ERCC-1. In contrast to such intergenomic heterogeneity of repair, persistence of psoralen monoadducts during replication of the rRNA genes occurs equally well in all CHO cell lines tested. From these data, we conclude that: 1) the repair efficiency of DNA damage in the rRNA genes varies between established parental CHO cell lines; 2) the repair pathways of intrastrand adducts and interstrand crosslinks in mammalian cells share, at least, one gene product, i.e., the excision repair gene ERCC-2; 3) replicational bypass of psoralen monoadducts at the CHO rRNA locus occurs similarly on both DNA strands.  相似文献   

16.
Chinese hamster ovary (CHO) cells have frequently been used in biotechnology for many years as a mammalian host cell platform for cloning and expressing genes of interest. A detailed physical chromosomal map of the CHO DG44 cell line was constructed by fluorescence in situ hybridization (FISH) imaging using randomly selected 303 BAC clones as hybridization probes (BAC-FISH). The two longest chromosomes were completely paired chromosomes; other chromosomes were partly deleted or rearranged. The end sequences of 624 BAC clones, including 287 mapped BAC clones, were analyzed and 1,119 informative BAC end sequences were obtained. Among 303 mapped BAC clones, 185 clones were used for BAC-FISH analysis of CHO K1 chromosomes and 94 clones for primary Chinese hamster lung cells. Based on this constructed physical map and end sequences, the chromosome rearrangements between CHO DG44, CHO K1, and primary Chinese hamster cells were investigated. Among 20 CHO chromosomes, eight were conserved without large rearrangement in CHO DG44, CHO K1, and primary Chinese hamster cells. This result suggested that these chromosomes were stable and essential in CHO cells and supposedly conserved in other CHO cell lines.  相似文献   

17.
18.
Previous studies suggest that secretion of cloned proteins synthesized by recombinant Chinese hamster ovary (CHO) cells can be adenosine triphosphate (ATP) limited. Other research indicates that the presence of cloned Vitreoscilla hemoglobin (VHb) enhances ATP production in oxygen-limited Escherichia coli. To evaluate the influence of VHb expression on recombinant CHO cell productivity, the vhb gene has been fused to the mouse mammary tumor virus (MMTV) promoter and cloned in a CHO cell line previously engineered to express human tissue plasminogen activator (tPA). Western blot analysis confirms dexamethasone-inducible VHb expression in all of the clones tested. Batch cultivation experiments with one VHb-expressing clone and the parental CHO-tPA expressing cells. The VHb-expressing clone exhibits specific tPA production 40 to 100% greater than the parental CHO-tPA culture. (c) 1994 John Wiley & Sons, Inc.  相似文献   

19.
Altered steroid responsiveness leads to various pathological conditions and is a particular problem for the treatment of cancers arising in steroid-sensitive cells. To develop cellular model systems for the analysis of the molecular mechanisms mediating altered steroid responses, we have analyzed the inducibility of a steroid-responsive promoter in different cell lines. In vitro constructs containing the mouse mammary tumor virus promoter fused to the herpes simplex virus thymidine kinase gene or the bacterial neo gene were transfected into four different cell lines [Rat-2, CHO chinese hamster ovary cells, F9, and T47D). Thymidine kinase+ clones and neo-resistant clones were selected in the presence of dexamethasone (dex) and/or other steroid hormones. We find that the mouse mammary tumor virus promoter activity is completely dependent on the presence of dex in Rat-2 cells but is constitutively active in CHO cells and is inactive in F9 teratocarcinoma cells in the presence and absence of dex. In the human breast cancer cell line T47D, we observe no response to dex but do observe an inducibility by progesterone. Examination of glucocorticoid receptors in these cell lines showed that Rat-2, CHO, and F9 cells contain sufficient receptors to allow a hormonal response, whereas in T47D cells several glucocorticoid binding activities appear to be present. Our results indicate that the presence of receptor in cells is not always sufficient to allow hormonal activation and that, in some cell lines, like CHO, other factors are present that can substitute for an activated steroid hormone receptor complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号