首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural characteristics of the macroinvertebrate community can effectively reflect the health status of lake ecosystems and the quality of the lake ecological environment. It is therefore important to identify the limiting factors of macroinvertebrate community structure for the maintenance of lake ecosystem health. In this study, the community composition of macroinvertebrate assemblages and their relationships with environmental variables were investigated in 13 small lakes within Lianhuan Lake in northern China. A self‐organizing map and K‐means clustering analysis grouped the macroinvertebrate communities into five groups, and the indicator species reflected the environmental characteristics of each group. Principal component analysis indicated that the classification of the macroinvertebrate communities was affected by environmental variables. The Kruskal–Wallis test results showed that environmental variables (pH, total phosphorus, nitrate, water temperature, dissolved oxygen, conductivity, permanganate index, and ammonium) had a significant effect on the classification of the macroinvertebrate communities. Redundancy analysis showed that mollusks were significantly negatively correlated with pH and chlorophyll a, while annelids and aquatic insects were significantly positively correlated with chlorophyll a and dissolved oxygen. Spearman correlation analysis showed that the species richness and Shannon''s diversity of macroinvertebrates were significantly negatively correlated with total phosphorus, while the biomass of macroinvertebrates was significantly negatively correlated with pH. High alkalinity and lake eutrophication have a serious impact on the macroinvertebrate community. Human disturbances, such as industrial and agricultural runoff, negatively impact the ecological environment and affect macroinvertebrate community structure. Thus, macroinvertebrate community structure should be improved by enhancing the ecological environment and controlling environmental pollution at a watershed scale.  相似文献   

2.
Synopsis Patterns of ecotopic variation in the population structure of two common and relatedPercina species were examined among seven central Gulf-Coast stream sites by Kendall's concordance tests, revealing four complexes of variables with significant covariation from a total of 18 population and habitat variables. The first complex comprised three interrelated habitat variables, implying that mid-stream surface current varied inversely with both instream cover and substrate heterogeneity. The second complex of five interrelated variables revealed (1) that darter abundance was better correlated with the area of instream cover than with total area, and (2) that site density [number m-2] varied inversely with site area. Along with three other variables, cover density (number per square meter of instream cover) formed a third complex, demonstrating resource complementarity between instream cover and macroinvertebrate abundance. Variables within the fourth complex all increased concomitantly with the key variable of mean darter size, including body-size diversity, biomass, relative abundance of the two darter species and mid-stream depth. Within the study region, local ecological factors largely regulate distributions, abundances and size-structures ofPercina populations, apparently even outweighing the effects of stochastic and historical factors  相似文献   

3.
张勇  刘朔孺  于海燕  刘东晓  王备新 《生态学报》2012,32(14):4309-4317
溪流底栖动物群落结构受不同空间尺度环境因子的共同作用。基于2010年钱塘江中游流域60个样点的大型底栖无脊椎动物和环境变量数据,寻找与研究流域底栖动物群落结构变化密切相关的关键环境变量,解析流域尺度和河段尺度的环境因子对底栖动物群落的相对影响。PCA分析表明该区域的主要环境梯度是流域内的土地利用类型及其引起的溪流物理生境退化程度和水体营养状态。CCA分析发现影响底栖动物群落的流域尺度的关键环境变量是纬度、海拔、样点所在流域大小、森林用地百分比,河段尺度是总氮、总磷、钙浓度、二氧化硅浓度和平均底质得分。偏CCA分析得到两种尺度环境因子对底栖动物变异的总解释量为26.4%,流域尺度和河段尺度变量分别为总解释量的50%和31%;方差分解结果表明研究区域大型底栖无脊椎动物受到两种尺度环境因子的综合影响,且流域尺度环境因子较河段尺度环境因子更为重要,体现了其在溪流生态系统保护、恢复、监测和评价中的重要参考价值。  相似文献   

4.
Resolving land cover hierarchy relationships in urban settings is important for defining the scale and type of management required to enhance stream health. We investigated associations between macroinvertebrate assemblages in urban streams of Hamilton, New Zealand, and environmental variables measured at multiple spatial scales comprising (i) local-scale physicochemical conditions, (ii) impervious area in multiple stream corridor widths (30, 50 and 100 m) along segments (sections of stream between tributary nodes) and for entire upstream networks, and (iii) total impervious area in stream segment sub-catchments and upstream catchments. Imperviousness was higher for stream segment sub-catchments than for entire catchments because of the agricultural headwaters of some urban streams. Imperviousness declined as corridor width declined at both segment and catchment scales reflecting the vegetated cover along most urban stream gullies. Upstream catchment imperviousness was strongly and inversely correlated with dissolved organic carbon concentration, whereas segment and upstream corridor scales were correlated with water temperature and pH. Corridor imperviousness appeared to be a stronger predictor than catchment imperviousness of Ephemeroptera, Plecoptera and Trichoptera taxa richness and the Quantitative Urban Community Index specifically developed to assess impacts of urbanisation. In contrast, imperviousness at all measured scales added only marginal improvement in assemblage-based models over that provided by the local-scale physicochemical variables of reach width, habitat quality, macrophyte cover, pH and dissolved oxygen concentration. These findings infer variable scales of influence affecting macroinvertebrate communities in urban streams and suggest that it may be important to consider local and corridor factors when determining mechanisms of urbanisation impacts and potential management options.  相似文献   

5.
Gray  Lawrence 《Hydrobiologia》2004,518(1-3):33-46
Short-term changes in water quality from 7 summer stormflows and long-term changes in substrates and macroinvertebrate communities resulting from urban runoff from the city of Provo, Utah, were examined from 1999–2002 in the lower Provo River. Stormflows resulted in increased total suspended solids and concentrations of dissolved copper, lead and zinc, and decreased conductivity and dissolved oxygen. The degree of change was generally in proportion to the magnitude of the storm. However, changes were temporary with water quality parameters returning to pre-storm levels within 12 hours. River substrates showed a trend of increased compaction and decreased debris dam area downstream through the urban corridor. Macroinvertebrate communities showed trends of decreased abundance and total species diversity with increasing urbanization. Compared to non-urban reaches, communities in urban reaches had few `sensitive' species and were dominated by tolerant species, particularly snails and leeches. Comparisons with previous studies show that changes in macroinvertebrate community composition in the urban reaches reflected shifts in land use during the past 15–25 years and corresponded to expected threshold levels of impact for amount of impervious surface cover.  相似文献   

6.
Limited stream chemistry and macroinvertebrate data indicate that acidic deposition has adversely affected benthic macroinvertebrate assemblages in numerous headwater streams of the western Adirondack Mountains of New York. No studies, however, have quantified the effects that acidic deposition and acidification may have had on resident fish and macroinvertebrate communities in streams of the region. As part of the Western Adirondack Stream Survey, water chemistry from 200 streams was sampled five times and macroinvertebrate communities were surveyed once from a subset of 36 streams in the Oswegatchie and Black River Basins during 2003–2005 and evaluated to: (a) document the effects that chronic and episodic acidification have on macroinvertebrate communities across the region, (b) define the relations between acidification and the health of affected species assemblages, and (c) assess indicators and thresholds of biological effects. Concentrations of inorganic Al in 66% of the 200 streams periodically reached concentrations toxic to acid-tolerant biota. A new acid biological assessment profile (acidBAP) index for macroinvertebrates, derived from percent mayfly richness and percent acid-tolerant taxa, was strongly correlated (R2 values range from 0.58 to 0.76) with concentrations of inorganic Al, pH, ANC, and base cation surplus (BCS). The BCS and acidBAP index helped remove confounding influences of natural organic acidity and to redefine acidification-effect thresholds and biological-impact categories. AcidBAP scores indicated that macroinvertebrate communities were moderately or severely impacted by acidification in 44–56% of 36 study streams, however, additional data from randomly selected streams is needed to accurately estimate the true percentage of streams in which macroinvertebrate communities are adversely affected in this, or other, regions. As biologically relevant measures of impacts caused by acidification, both BCS and acidBAP may be useful indicators of ecosystem effects and potential recovery at the local and regional scale.  相似文献   

7.
Hierarchy theory provides a conceptual framework for understanding the influence of differently scaled processes on the structure of stream communities. Channel form, instream habitat, and stream communities appear to be hierarchically related, but the strength of the relationships among all components of this hypothesized hierarchy have not been examined. We sampled channel form, instream habitat, fishes, and macroinvertebrates in a channelized stream in Mississippi and Alabama to examine the hypothesis that a hierarchical relationship exists among channel form, instream habitat, and stream communities. Instream habitat, fishes, and macroinvertebrates were sampled in May, July, and September 2000. Measurements of channel form were obtained in July 2000. Mantel tests, multiple regressions, and correlation analyses were used to assess strength of the relationships among channel form, instream habitat, and stream communities. Positive correlations were observed between channel form and instream habitat, and correlations observed between these factors were the greatest observed in our study. Overall, fish and macroinvertebrate communities exhibited stronger relationships with instream habitat than with channel form. Species richness, evenness, and abundance tended to exhibit greater correlations with instream habitat, while species composition had greater correlations with channel form. We concluded that channel form, instream habitat, and stream communities were hierarchically related.  相似文献   

8.
Maul  J.D.  Farris  J.L.  Milam  C.D.  Cooper  C.M.  Testa  S.  Feldman  D.L. 《Hydrobiologia》2004,518(1-3):79-94
Streams in the loess hills of northwest Mississippi have undergone dramatic physical changes since European settlement and both physical and water quality processes may play a role in influencing biotic communities of these stream systems. The objectives of this study were to identify the response of macroinvertebrate taxa to water quality and habitat parameters in streams of northwest Mississippi, examine the efficacy of an a priori classification system of stream channel evolution and condition class using macroinvertebrate communities, and examine short-term (<2 yr) temporal variation of macroinvertebrate communities. Separation of sites based on four condition classifications was not distinct. However, best attainable sites did plot together in an ordination analysis suggesting similarity in macroinvertebrate communities for least disturbed sites. Similarly, for stage of channel evolution, sites characterized by lack of bank failure and sinuous fluvial processes had relatively similar macroinvertebrate communities. Ordination analysis also indicated high temporal variation of macroinvertebrate communities. Reference sites (best attainable and stable sites) had more similar communities between years than unstable and impacted sites. Results of this study: (1) suggest total solids, total phosphorus concentration, percent substrate as sand, ammonia concentration, and conductivity were important variables for structuring stream macroinvertebrate communities in northwest Mississippi, (2) identify potential indicator taxa for assessing such streams based on water quality and physical habitat, (3) provide support for current a priori site classifications at the best attainable (least impacted) category relative to the macroinvertebrate communities, and (4) demonstrate that between-year variation is an important factor when assessing streams of north Mississippi and this variability may be related to the degree of stream degradation.  相似文献   

9.
  • 1 We used 94 sites within the Northern Lakes and Forests ecoregion spanning Minnesota, Wisconsin and Michigan to identify environmental variables at the catchment, reach and riparian scales that influence stream macroinvertebrates. Redundancy analyses (RDA) found significantly influential variables within each scale and compared their relative importance in structuring macroinvertebrate assemblages.
  • 2 Environmental variables included landcover, geology and groundwater delivery estimates at the catchment scale, water chemistry, channel morphology and stream habitat at the reach scale, and landcover influences at three distances perpendicular to the stream at the riparian scale. Macroinvertebrate responses were characterised with 22 assemblage attributes, and the relative abundance and presence/absence of 66 taxa.
  • 3 Each scale defined macroinvertebrates along an erosional to depositional gradient. Wisconsin's macroinvertebrate index of biotic integrity, Ephemeroptera–Plecoptera–Trichoptera taxa and erosional taxa corresponded with forest streams, whereas organic pollution tolerant, Chironomidae and depositional taxa corresponded with wetland streams. Reach scale analyses defined the gradient similarly as dissolved oxygen and wide, shallow channels (erosional) opposed instream macrophytes and pool habitats (depositional). Riparian forests within 30 m of the stream coincided with an erosional assemblage and biotic integrity.
  • 4 Next, we combined all significant environmental variables across scales to compare the relative influence of each spatial scale on macroinvertebrates. Partial RDA procedures described how much of the explained variance was attributable to each spatial scale and each interrelated scale combination.
  • 5 Our results appeared consistent with the concept of hierarchical functioning of scale in which large‐scale variables restrict the potential for macroinvertebrate traits or taxa at smaller spatial scales. Catchment and reach variables were equally influential in defining assemblage attributes, whereas the reach scale was more influential in determining relative abundance and presence/absence.
  • 6 Ultimately, comprehending the relative influence of catchment and reach scale properties in structuring stream biota will assist prioritising the scale at which to rehabilitate, manage and derive policies for stream ecosystem integrity.
  相似文献   

10.
Jani Heino 《Hydrobiologia》2000,418(1):229-242
Littoral zones of small water bodies are spatially heterogeneous habitats, harbouring diverse biotic communities. Despite this apparent heterogeneity, many studies have stressed the importance of water chemistry in determining the structure of littoral macroinvertebrate assemblages. The purpose of this study was to consider the relative importance of several spatial and water chemistry variables in explaining the patterns in the structure of macroinvertebrate assemblages in 21 lentic water bodies in northeastern Finland. Water bodies were selected to represent various habitat conditions ranging from small permanent bog ponds to small forest lakes. According to canonical correspondence analysis (CCA), the most important environmental factors related to assemblage composition were water body area, moss cover, total nitrogen and water hardness. In general, species composition in small bog ponds tended to differ from that in larger lakes with forested shoreline. Total species richness was best explained by a composite variable (PCA) describing physical habitat heterogeneity, species richness being lowest in small bog lakes with simple bottom structure and low amount of aquatic plants. Species numbers in dominant functional feeding groups were related to different environmental factors. Shredder species richness was best explained by a regression model incorporating total nitrogen and the amount of organic matter, both of which were negatively related to the number of shredder species. The number of gatherer species increased with mean substratum particle size. Scraper species richness was negatively affected by the abundance of detritus and positively affected by depth, and a model including both variables explained most of the variation. Variation in the number of predatory species was best explained by a regression model including moss cover and lake area.  相似文献   

11.
The impacts of watershed urbanization on streams have been studied worldwide, but are rare in China. We examined relationships among watershed land uses and stream physicochemical and biological attributes, impacts of urbanization on overall stream conditions, and the response pattern of macroinvertebrate assemblage metrics to the percent of impervious area (PIA) of watersheds in the middle section of the Qiantang River, Zhejiang Province, China. Environmental variables and benthic macroinvertebrates of 60 stream sites with varied levels of watershed urban land use were sampled in April, 2010. Spearman correlation analysis showed watershed urbanization levels significantly correlated with increased stream depth, width, and values of conductivity, total nitrogen, ammonia, phosphate, calcium, magnesium, and chemical oxygen demand for the study streams. There was significant difference in total taxa richness, Empheroptera, Plecoptera, and Trichoptera (EPT) taxa richness, and Diptera taxa richness, percentages of individual abundances of EPT, Chironomidae, shredders, filterers, and scrapers, and Shannon–Wiener diversity index between reference streams and urban impacted streams. In contrast, percentages of individual abundances for collectors, oligochaeta, and tolerant taxa, and biotic index were significantly higher in urban impacted than reference streams. All the above metrics were significantly correlated with PIA. The response patterns of total taxa richness, EPT taxa richness, and Shannon–Wiener diversity index followed a drastic decrease at thresholds of 3.6, 3.7, and 5.5% of PIA, respectively. Our findings indicate that stream benthic macroinvertebrate metrics are effective indicators of impacts of watershed urban development, and the PIA-imperviousness thresholds we identified could potentially be used for setting benchmarks for watershed development planning and for prioritizing high valued stream systems for protection and rehabilitation.  相似文献   

12.

Land-use practices in Mongolia can lead to environmental degradation and consequently affect the structure and function of biological communities. The main aim of this study was to determine land-use effects on freshwater macroinvertebrate communities based on their response to grazing and mining, using a trait-based approach (TBA). The functional structure of macroinvertebrate communities was examined using 86 categories of 16 traits. A total of 13 physical and chemical variables were significantly different among the levels of land-use intensity. Significant declines in functional diversity were observed with increased land-use intensity. The community weighted mean of 19 trait categories for 11 traits varied significantly among different levels of land-use intensity. Traits were significantly explained by environmental variables across a land-use intensity gradient. Water temperature, gravel, nitrate, silt, and cobble were the main predictor variables and explained 28% of the total variance of the trait variation. The functional structure of the macroinvertebrate community was strongly related to environmental conditions. The TBA is an important method in assessing disturbance responses in freshwater communities of steppe and taiga regions, such as in Mongolia and other countries in Central Asia and will be useful in finding best management practices for conserving aquatic ecosystems.

  相似文献   

13.
Ten small streams of high altitude were assigned to the R-M4 intercalibration river type (small/medium Mediterranean mountainous rivers) and examined to determine their benthic macroinvertebrate fauna, their physicochemical and hydromorphological parameters and their water quality, quarterly for two consecutive years. Physicochemical variables were consistent with the mountainous character of the streams and fluctuated within the European Community legislation limits for drinking water. Benthic macroinvertebrate fauna communities were diverse and sensitive to organic pollution, and samples were grouped by time more strongly than place. Site size and catchment area influenced the macroinvertebrate community more than the rest of the measured abiotic variables. The water quality was good or high, but at the smaller streams its interpretation was affected by summer drought. The water quality boundaries of the Hellenic Evaluation System were harmonised with the water quality boundaries of a European benchmark database, according to the methodology followed by the Mediterranean Intercalibration Group. Handling editor: R. H. Norris  相似文献   

14.
Effects of stream erosion control structures on aquatic macroinvertebrates were studied (2000–2009) in a wastewater dominated drainage (Wash) in Las Vegas, Nevada. Mainstem sites with and without structures, wastewater treatment plant outfalls, a reference site above treatment plant inputs, and tributary sites were sampled. Ordination suggested hydrology and channel characteristics (current velocity, stream depth, and width), and water quality (conductivity) were primary factors in organizing macroinvertebrate communities, with some variables altered at structures. Treatment plant inputs changed hydrology (increased flows), water chemistry (conductivity decreased below treatment plants), and temperature. Assemblages differed between site types, with midges and damselflies important at tributary sites and Fallceon mayflies and Smicridea caddisflies common at erosion control structures. Locally unique communities developed at structures which also may have facilitated exotic species invasions. Analyses showed that taxa richness increased over time at these sites and differed significantly from richness at sites without structures. Structures appeared important in retaining organic matter and, among mainstem sites, coarse particulate organic matter was highest, but variable, at structures and at wetlands above the structures. Erosion control structures, coupled with warm effluent, high baseflows, and altered water quality resulted in development of a macroinvertebrate community that did not trend towards reference or tributary sites. In this case, ecological communities at structures used for river restoration were not on a continuum between disturbed and reference sites. Goal setting of community responses at these structures would have required insight beyond the simple use of reference site attributes.  相似文献   

15.
Spatial and temporal dynamics of macroinvertebrate communities have usually been linked to several environmental and anthropic factors. The aim of this study is to elucidate how important are these factors in structuring macroinvertebrate communities from temperate regions. Regarding the macroinvertebrate number of taxa, the Habitat Template Model, the Dynamic Equilibrium Hypothesis and the Intermediate Disturbance Hypothesis will be tested in order to know how important the diversity of instream elements and the hydrological disturbance frequency are in defining the macroinvertebrate taxonomic richness. Thus, the structure and composition of macroinvertebrate communities were analysed in nine sites of the Pas River basin, a temperate Atlantic basin in northern Spain, during winter, spring, summer and autumn 2005, together with water physicochemical and environmental characteristics. Macroinvertebrate abundance increased downstream and during summer, probably favoured by lower hydraulic stress and water organic enrichment. As predicts the Habitat Template Model, the macroinvertebrate number of taxa was related to habitat heterogeneity. However, no clear relationship amongst macroinvertebrate richness and water quality was found. The macroinvertebrate taxonomic richness did not correspond exactly with the Dynamic Equilibrium Hypothesis and the Intermediate Disturbance Hypothesis because it was relatively high in the absence of hydrological disturbances (summer). Thus, disturbance events may play a secondary role in determining the seasonal dynamic of the number of taxa. However, hydrological disturbances can be considered the most important factors explaining the seasonal pattern of macroinvertebrate abundance. On the other hand, spatial patterns of macroinvertebrate community structure and composition were mainly determined by resource availability, hydraulic conditions, habitat heterogeneity and human alterations, whilst hydrological predictability and resource availability might play a major role in determining seasonal dynamics.  相似文献   

16.
Exploring the relative contribution of spatial factors and environmental variables in shaping communities is of widespread interest in biodiversity conservation and environmental management. Stream communities are hierarchically regulated by environmental variables over multiple spatial scales, and the reaction of different organisms to stressors are still equivocal. We sampled both macroinvertebrates and diatom at 80 sites and additional 10 sites for macroinvertebrates, field measured and laboratory analyzed environmental variables, from the tributaries of Qiantang River, Yangtze River Delta China in 2011. We used PCNM (principal coordinates of neighbor matrices) to generate spatial predictors. We applied redundancy analysis and variation partitioning procedures to identify key spatial and environmental factors, and to quantify their relative roles in shaping diatom and macroinvertebrate assemblages. Our results demonstrated the role of spatial and environmental variables differed in shaping benthic diatom and macroinvertebrate. Diatom assemblage variations were better explained by spatial factors, however macroinvertebrate assemblage variations were better explained by environmental variables. In terms of environmental variables, catchment scale variables (e.g., land use estimators, land use diversity) played the primary role in determining the patterns of both diatom and macroinvertebrate assemblages, whereas the influence of reach-scale variables (e.g., pH, substrates, and nutrients) appeared less. However, nutrients were the stronger factors influencing benthic diatom, whereas physical habitat (e.g., substrates) played more important role than water chemistry in structuring macroinvertebrates. Our results provided more evidence to the incorporation of spatial factors interpreting spatial patterns of stream organisms, and highlighted the useful of multiple organisms and environmental variables at different spatial scales in diagnosing mechanism of stream degradation and in building a sound stream conditions monitoring program for Yangtze River Delta.  相似文献   

17.
Eva Pip 《Aquatic Ecology》1987,21(2):159-165
Aquatic macrophyte species richness (SR) was examined at 430 sites in the central Canadian region in relation to water body type, bottom substrate and 8 water chemistry parameters. SR was highest in rivers and lakes, intermediate in creeks, and lowest in ponds. The highest values occurred where granitic bedrock, highly organic substrates or sand predominated. SR was significantly inversely correlated in the study area as a whole with 7 of the water chemistry parameters; of these, total alkalinity was the most important. However, the relative importance of the respective parameters differed for various water body types. The relationship between SR and phosphorus was positive in ponds, but negative for all other water body types. Stepwise sultiple regression analysis identified phosphorus, total alkalinity and dissolved organic matter as important factors in ponds; sulphate, total alkalinity and chloride in lakes, and sulphate and phosphorus in lotic habitats. Log transformations improved the correlations for some variables. However, the water chemistry parameters examined accounted for less than half of the total variability in SR. Apparently SR depends on many different factors, including surface areaand bottom type, whose relative contributions vary with situation.  相似文献   

18.
1. Water withdrawal for irrigated agriculture is one of the leading uses of freshwater resources in the world; however, effects of low flow disturbances on lotic ecosystems are poorly understood. We studied an intensively managed agricultural catchment to determine: (i) how macroinvertebrate assemblages and environmental variables respond to water withdrawals of varying magnitude and duration; (ii) what environmental variables are associated with macroinvertebrate responses and (iii) the resiliency of macroinvertebrate communities to irrigation water withdrawals. 2. We sampled above and below four irrigation diversions that create a gradient of increasing water withdrawal from upstream to downstream (i.e. 0%, 22%, 87%, 90% and 97% water withdrawn) along a 36 km river section. Three reaches were sampled above and below each point of diversion from June to September 2004 and 2005, which represented average and drought water conditions respectively. 3. Irrigation water withdrawals were associated with both direct and indirect changes to the physicochemical environment. Direct effects (e.g. decreased velocity, depth and wetted habitat) were approximately proportional to the amount of water withdrawn, while indirect effects (e.g. increased conductivity and temperature) occurred when water withdrawals exceeded 85% of ambient levels. 4. Changes in macroinvertebrate communities were more strongly related to indirect than direct effects of irrigation water withdrawals. In an average water year, community changes were associated with interacting thresholds of reduced discharge and increased conductivity. During a drought year, community changes were related to the interacting thresholds of reduced discharge and increased temperature. 5. Between years, macroinvertebrate responses differed with the magnitude and duration of low flow conditions. In 2004, high‐intensity, relatively short‐duration water withdrawals (<2 months) and alterations to the physicochemical environment changed the relative abundance of macroinvertebrate communities, while macroinvertebrate indices and proportional abundances of functional feeding groups remained unchanged. In contrast, discharge reductions exceeding 90% of ambient levels and temperatures above 30 °C from July to September 2005 were associated with shifts in community composition from a dominance of collector‐gatherer and filterer Ephemeroptera, Plecoptera and Trichoptera taxa to predatory insects, non‐insect taxa and scraping elmid beetles. 6. On an annual basis macroinvertebrate communities appeared resilient to the impacts of water withdrawals following winter high flows. In contrast, recovery was not observed after discharge and physicochemical variables returned to predisturbance conditions for only one month. 7. Irrigation water withdrawals appear to impact macroinvertebrates through indirect effects that intensify with the magnitude and duration of water withdrawals and annual water availability. Preserving environmental conditions within natural ranges of variability, especially during low water years, appears critical to mitigating adverse biological responses to water withdrawals.  相似文献   

19.
Environmental variables and macroinvertebrate communities are studied in two sites of the Lower Rhône River, the main channel and a lateral, occasionally connected dike field. Environmental variables and faunistic communities allow discrimination the two compartments. The environmental and faunistic differences the two sites change over time. The physical and chemical differences are significantly correlated with water discharge of the main channel. The faunistic ones are significantly correlated with the temperature of the dike field water. The connections between the main channel and the dike field could be very important to maintain a high heterogeneity of the habitat, and for recolonization of the main channel after a perturbation.  相似文献   

20.
The world’s freshwater molluscan fauna is facing unprecedented threats from habitat loss and degradation. Declines in native populations are mostly attributed to the human impact, which results in reduced water quality. The objectives of our survey were to analyse the structure of the mollusc communities in a medium-sized lowland river and to determine the most important environmental variables at different spatial scales, including landscape structure, catchment land use and instream environmental factors that influence their structure. Our survey showed that a medium-sized river, that flows through areas included in the European Ecological Natura 2000 Network Programme of protected sites, provides diverse instream habitats and niches that support 47 mollusc species including Unio crassus, a bivalve of Community interest, whose conservation requires the designation of a special conservation area under the Habitats Directive Natura 2000. This survey showed that mollusc communities are impacted by several environmental variables that act together at multiple scales. The landscape structure within buffer zones, catchment land use and instream environmental variables were all important and influenced the structure of mollusc communities. Therefore, they should all be taken into consideration in the future restoration of the river, future management projects and programmes for the conservation of biodiversity in running waters. The results of this study may be directly applicable for the rehabilitation of river ecosystems and are recommended to stakeholders in their future decision concerning landscape planning, monitoring species and their habitats, conservation plans and management in accordance with the requirements of sustainable development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号