首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aggregation of algae, mainly of diatoms, is an important process in marine pelagic systems, often terminating phytoplankton blooms and leading to the sinking of particulate organic matter in the form of marine snow. This process has been studied extensively, but the specific role of heterotrophic bacteria has largely been neglected, mainly because field studies and most experimental work were performed under non-axenic conditions. We tested the hypothesis that algae-bacteria interactions are instrumental in aggregate dynamics and organic matter flux. A series of aggregation experiments has been carried out in rolling tanks with two marine diatoms typical of temperate regions (Skeletonema costatum and Thalassiosira rotula) in an axenic treatment and one inoculated with marine bacteria. Exponentially growing S. costatum and T. rotula exhibited distinctly different aggregation behavior. This was reflected by their strikingly different release of dissolved organic matter (DOM), transparent exopolymer particles (TEP) and protein-containing particles (CSP), as well as their bacterial biodegradability and recalcitrance. Cells of S. costatum aggregated only little and their bacterial colonization remained low. Dissolved organic matter, TEP and CSP released by this alga were largely consumed by free-living bacteria. In contrast, T. rotula aggregated rapidly and DOM, TEP and CSP released resisted bacterial consumption. Experiments conducted with T. rotula cultures in the stationary growth phase, however, showed rapid bacterial colonization and decomposition of algal cells. Our study highlights the importance of heterotrophic bacteria to control the development and aggregation of phytoplankton in marine systems.  相似文献   

2.
Aggregation of algae, mainly diatoms, is an important process in marine systems leading to the settling of particulate organic carbon predominantly in the form of marine snow. Exudation products of phytoplankton form transparent exopolymer particles (TEP), which acts as the glue for particle aggregation. Heterotrophic bacteria interacting with phytoplankton may influence TEP formation and phytoplankton aggregation. This bacterial impact has not been explored in detail. We hypothesized that bacteria attaching to Thalassiosira weissflogii might interact in a yet-to-be determined manner, which could impact TEP formation and aggregate abundance. The role of individual T. weissflogii-attaching and free-living new bacterial isolates for TEP production and diatom aggregation was investigated in vitro. T. weissflogii did not aggregate in axenic culture, and striking differences in aggregation dynamics and TEP abundance were observed when diatom cultures were inoculated with either diatom-attaching or free-living bacteria. The data indicated that free-living bacteria might not influence aggregation whereas bacteria attaching to diatom cells may increase aggregate formation. Interestingly, photosynthetically inactivated T. weissflogii cells did not aggregate regardless of the presence of bacteria. Comparison of aggregate formation, TEP production, aggregate sinking velocity and solid hydrated density revealed remarkable differences. Both, photosynthetically active T. weissflogii and specific diatom-attaching bacteria were required for aggregation. It was concluded that interactions between heterotrophic bacteria and diatoms increased aggregate formation and particle sinking and thus may enhance the efficiency of the biological pump.  相似文献   

3.
Exopolymer particles are found throughout the ocean and play a significant biogeochemical role in carbon cycling. Transparent exopolymer particles (TEP) are composed of acid polysaccharides, and Coomassie staining particles (CSP) are proteins. TEPs have been extensively studied in the ocean, while CSP have been largely overlooked. The objective of this research was to determine the role of stress and cell permeability in the formation of TEP and CSP. The diatom Thalassiosira weissflogii and cyanobacterium Synechococcus elongatus were grown in batch cultures and exposed to hydrogen peroxide (0, 10, and 100 μM) as an environmental stressor. There was no correlation between TEP and CSP concentrations, indicating that they are different populations of particles rather than different chemical components of the same particles. CSP concentrations were not affected by hydrogen peroxide concentration and did not correlate with indicators of stress and cell death. In contrast, TEP concentrations in both taxa were correlated with a decrease in the effective quantum yield of photosystem II, increased activity of caspase‐like enzymes, and an increase in the proportion of the population with permeable cell membranes, indicating that TEP production was associated with the process of cell death. These data show that different environmental factors and physiological processes affected the production of TEP and CSP by phytoplankton. TEP and CSP are separate populations of exopolymer particles with potentially different biogeochemical roles in the ocean.  相似文献   

4.
藻际环境中胞外聚合物的研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
微藻向细胞周围释放营养物质而形成了独特的藻际微环境,吸引了大量细菌的定殖。藻际环境中藻菌关系错综复杂,其间充斥着多样的物质交换与信息交流。以胞外聚合物(extracellularpolymeric substances,EPS)为代表的有机质在其中起着纽带作用。微藻和细菌都可以产生EPS,其过程受多种因素的调节。EPS在藻际环境中具有重要的生态功能,包括参与生物被膜(biofilm)的形成,影响藻菌共生关系的建立以及调节藻际微生物群落组成等。此外,EPS中的一大类别透明胞外聚合物颗粒(transparent exopolymer particles,TEP)还介导了海洋溶解有机碳向颗粒有机碳的转化,参与了海洋碳循环过程。本文以EPS的产生、组成以及对碳转化的影响为重点,综述了其在藻际生态位(Niche)中的生态功能,以期为深入理解藻际环境中的有机质特征和藻菌共生关系提供理论依据。  相似文献   

5.
The composition, distribution and extracellular enzyme activities of bacteria attached to small (2-50 microm in size) transparent exopolymer and Coomassie-stained proteinaceous particles (TEP and CSP) were examined in two lakes of different trophic status located in the Massif Central of France. TEP concentrations (10(4)-10(6) particle per L) were significantly higher in the more productive lake and were significantly related to chlorophyll a concentrations. The majority of TEP and CSP were colonized by bacteria that constituted 2.6% and 7.4% of the total 4',6-diamidino-2-phenylindole-stained bacteria in lakes Pavin and Aydat, respectively. In both lakes, the composition of particle-associated bacteria was different from that of free-living bacteria, the Betaproteobacteria and Bacteroidetes (i.e. former Cytophaga-Flavobacteria group) being the dominant groups on particles. We also found that 2-5 microm TEP were more colonized than 2-5 microm CSP in the two lakes, and that TEP colonization was higher in the less productive lake. Measurements of Leucine aminopeptidase and alpha-glucosidase activities in fractionated lake water (0.2-1.2, 1.2-5 and >5 microm fractions) indicated that proteolytic activity was always higher and that particle-associated bacteria have higher enzymatic activities than free-living bacteria. The glycolytic activities in the 1.2-5 and >5 microm fractions were related to the abundance of TEP. We conclude that small freshwater detrital organic particles constitute microhabitats with high bacterial activities in pelagic environments and, undoubtedly, present significant ecological implications for the prokaryotic community structure and function in aquatic ecosystems.  相似文献   

6.
Transparent exopolymer particles (TEP) play an important role in the ocean carbon cycle as they are sticky and affect particle aggregation and the biological carbon pump. We investigated the effect of growth rate on TEP production in nitrogen limited semi‐continuous cultures of the diatom Thalassiosira weissflogii (Grunow) G. Fryxell & Hasle. Steady‐state diatom concentrations and other indicators of biomass (chl a, and total carbohydrate) were inversely related to growth rate, while individual cell volume increased with growth rate. There was no change in total TEP area with growth rate; however, individual TEP were larger at high growth rates and the number of individual TEP particles was lower. TEP concentration per cell was higher at higher growth rates. SYTOX Green staining showed that <5% of the diatom population had permeable cell membranes, with the proportion increasing at low growth rates. However, TEP production rates were greater at high growth rates, refuting our hypothesis that TEP formation is dependent on dying cells with compromised cell membranes in a diatom population. Measurements of particle size distribution in the cultures using laser scattering showed that they were most aggregated at high growth rates. These results indicate a coupling between TEP production and growth rate in diatoms under N limitation, with fast growing T. weissflogii producing more TEP and aggregates.  相似文献   

7.
The viral mediated transformation of phytoplankton organic carbon to dissolved forms (“viral shunt”) has been suggested as a major source of dissolved organic carbon (DOC) in marine systems. Despite the potential implications of viral activity on the global carbon fluxes, studies investigating changes in the DOC composition from viral lysis is still lacking. Micromonas pusilla is an ecologically relevant picoeukaryotic phytoplankter, widely distributed in both coastal and oceanic marine waters. Viruses have been found to play a key role in regulating the population dynamics of this species. In this study we used axenic cultures of exponentially growing M. pusilla to determine the impact of viral lysis on the DOC concentration and composition, as estimated from lysate-derived production of transparent exopolymer particles (TEP) and two fractions of fluorescent dissolved organic matter (DOM): aromatic amino acids (excitation/emission; 280/320 nm; F(280/320)) and marine humic-like fluorescent DOM (320/410 nm; F(320/410)). DOC concentration increased 4.5 times faster and reached 2.6 times higher end concentration in the viral infected compared with the non-infected cultures. The production of F(280/320) and F(320/410) were 4.1 and 2.8 times higher in the infected cultures, and the elevated ratio between F(280/320) and F(320/410) in lysates suggested a higher contribution of labile (protein) components in viral produced DOM than in algal exudates. The TEP production was 1.8 times faster and reached a 1.5 times higher level in the viral infected M. pusilla culture compared with the non- infected cultures. The measured increase in both DOC and TEP concentrations suggests that viral lysis has multiple and opposite implications for the production and export processes in the pelagic ocean: (1) by releasing host biomass as DOC it decreases the organic matter sedimentation and promotes respiration and nutrient retention in the photic zone, whereas (2) the observed enhanced TEP production could stimulate particle aggregation and thus carbon export out of the photic zone.  相似文献   

8.
Gel-like transparent exopolymer particles (TEP) formed frompolysaccharides exuded copiously by natural phytoplankton andbacteria occur ubiquitously in sea water, but the utilizationof these particles as a food source by zooplankton is poorlyknown. The common marine calanoid copepod Calanus pacificusconsumed TEP and produced abundant fecal pellets when TEP wereoffered both alone and in the presence of diatom cells. TEPconsumption increased with TEP concentration and the presenceof TEP did not inhibit ingestion of cells. However, becauseof their low carbon content, TEP contributed only 15% to totalcarbon consumption in the presence of phytoplankton food. Whilecopepods consumed pure TEP in this study, sticky TEP in naturecontain abundant inclusions of bacteria and microorganisms toosmall for copepods to capture individually. Thus, consumptionof TEP may be most significant as a mechanism by which carbonmay be shunted from the microbial loop to higher trophic levels.  相似文献   

9.
土地利用对石漠化地区土壤团聚体有机碳分布及保护的影响   总被引:14,自引:0,他引:14  
对贵州省关岭县石漠化地区不同土地利用方式下的土壤团聚体的稳定性、有机碳分布以及大团聚体有机碳矿化进行了研究,探讨了大团聚体对有机碳的保护作用,以期为选择合理的石漠化治理措施提供科学依据。选取了当地主要的4种土地利用方式,分别为水田(水旱轮作)、旱地、花椒林和火龙果林;其中花椒林和火龙果林位于石漠化治理区内。采用湿筛法分离出各级土壤团聚体并结合室内恒温培养法测定原状和破碎大团聚体中有机碳的矿化动态变化,其中大团聚体保护性碳含量为破碎与原状大团聚体有机碳在42 d内累积矿化量的差值。结果表明:土地利用方式对土壤团聚体稳定性具有显著影响。水田土壤团聚体稳定性要明显优于旱地、花椒林和火龙果林,且后3种土地利用方式间也存在显著差异。土壤有机碳也受到土地利用方式的影响,水田和旱地土壤有机碳含量要明显高于火龙果林和花椒林。各粒级团聚体有机碳含量在土地利用方式间具有较大差异,2 5 mm、0.25 2 mm和<0.25 mm团聚体中有机碳含量按水田、火龙果林、旱地和花椒林依次下降,5 8 mm团聚体中有机碳含量则以花椒林最高,其次是水田和火龙果林,旱地最低。但是就各粒径团聚体的有机碳库而言,<0.25 mm团聚体是土壤有机碳的主要载体。花椒林、旱地、火龙果和水田的大团聚体保护性碳含量分别为83.37、78.86、73.81\,61.04 mg/kg,其差异表明花椒林土壤大团聚体对有机碳的保护作用最强,其次是旱地和火龙果林,水田最弱。因此,在该地区种植花椒林和火龙果林可以改善其土壤质量,其可能机理是通过增加土壤中大团聚体含量,同时增强大团聚体对有机碳的保护作用。  相似文献   

10.
Extracellular polysaccharide production by marine diatoms is a significant route by which photosynthetically produced organic carbon enters the trophic web and may influence the physical environment in the sea. This study highlights the capacity of atomic force microscopy (AFM) for investigating diatom extracellular polysaccharides with a subnanometer resolution. Here we address a ubiquitous marine diatom Cylindrotheca closterium, isolated from the northern Adriatic Sea, and its extracellular polymeric substance (EPS) at a single cell level. We applied a simple procedure for AFM imaging of diatom cells on mica under ambient conditions (in air) to achieve visualization of their EPS with molecular resolution. The EPS represents a web of polysaccharide fibrils with two types of cross-linking: fibrils association forming junction zones and fibril-globule interconnections with globules connecting two or more fibrils. The fibril heights were 0.4-2.6 nm while globules height was in the range of 3-12 nm. Polymer networks of native gel samples from the Northern Adriatic and the network formed by polysaccharides extracted from the C. closterium culture share the same features regarding the fibril heights, pore openings and the mode of fibril association, proving that the macroscopic gel phase in the Northern Adriatic can be formed directly by the self-assembly of diatom released polysaccharide fibrils.  相似文献   

11.
We investigated if (1) dissolved compounds excreted by Phaeocystis globosa and (2) transparent exopolymer particles (TEP) formed from carbohydrates excreted into the water affect the feeding of nauplii and females of the calanoid copepod Temora longicornis during a P. globosa bloom. Copepod grazing on the diatom Thalassiosira weissflogii in the presence of these possible grazing deterrents was measured during three successive weeks of a mesocosm study, simulating the development of a P. globosa bloom. Our results demonstrate no indication for the presence of feeding deterrents in the dissolved phase, but a strong inhibitory effect of transparent exopolymer particles (TEP) on the consumption of algae by both nauplii and adult copepods. The inhibitory effect of TEP was connected to the accumulation of DOM during the progress of the bloom. We suggest that a reduction in the grazing pressure of zooplankton may increase the survival of the liberated single cells during disruption of colonies and allow seeding populations to persist. Furthermore, P. globosa reduces the trophic efficiency of the food web not only by withdrawal of its colonies from grazing but also by a relaxation of the grazing pressure on co-occurring phytoplankton and by alteration of the food web structure via TEP production.  相似文献   

12.
Toxoplasma gondii is a land-derived parasite that infects humans and marine mammals. Infections are a significant cause of mortality for endangered southern sea otters (Enhydra lutris nereis), but the transmission mechanism is poorly understood. Otter exposure to T. gondii has been linked to the consumption of marine turban snails in kelp (Macrocystis pyrifera) forests. It is unknown how turban snails acquire oocysts, as snails scrape food particles attached to surfaces, whereas T. gondii oocysts enter kelp beds as suspended particles via runoff. We hypothesized that waterborne T. gondii oocysts attach to kelp surfaces when encountering exopolymer substances (EPS) forming the sticky matrix of biofilms on kelp, and thus become available to snails. Results of a dietary composition analysis of field-collected snails and of kelp biofilm indicate that snails graze the dense kelp-biofilm assemblage composed of pennate diatoms and bacteria inserted within the EPS gel-like matrix. To test whether oocysts attach to kelp blades via EPS, we designed a laboratory experiment simulating the kelp forest canopy in tanks spiked with T. gondii surrogate microspheres and controlled for EPS and transparent exopolymer particles (TEP - the particulate form of EPS). On average, 19% and 31% of surrogates were detected attached to kelp surfaces covered with EPS in unfiltered and filtered seawater treatments, respectively. The presence of TEP in the seawater did not increase surrogate attachment. These findings support a novel transport mechanism of T. gondii oocysts: as oocysts enter the kelp forest canopy, a portion adheres to the sticky kelp biofilms. Snails grazing this biofilm encounter oocysts as ‘bycatch’ and thereby deliver the parasite to sea otters that prey upon snails. This novel mechanism can have health implications beyond T. gondii and otters, as a similar route of pathogen transmission may be implicated with other waterborne pathogens to marine wildlife and humans consuming biofilm-feeding invertebrates.  相似文献   

13.
The abundances of phytoplankton associated with scuba-collected,visible macroaggregates (i e. ‘marine Snow’) fromvarious euphotic zone depths of several nearshore and offshoresites sampled in late winter/early spring and summer were determinedby microscopic study. Such phytoplankters have a different potentialfor predator/prey interactions than they would as separate individuals.Mean macroaggregate concentrations of 1.7–7 6 1–1and mean individual macroaggregate sizes of 27–175 mm3were observed at the different sites. Phytoplankters associatedwith the macroaggregates were generally a few percent or lessof the total phytoplankton (range for numbers. 0.2–2.5%.range for carbon, 0.2–7.1%. n = 11). Of the taxonomicgroups, pennate diatoms in general showed high relative associationwith macroaggregates. Compared to the mean abundance of phytoplanktonin an equivalent volume of surrounding water, macroaggregateswere algal-enriched by factors ranging from 6.2–1300 (median,65) for numbers and 6.3–2500 (median. 110) for carbon(n = 11). ATP and chlorophyll a showed degrees of associationwith, and enrichment in. macroaggregates similar to that ofphytoplankton carbon. Before assessing the overall importanceof phytoplanktonic associations with aggregates in terms ofpelagic food web consequences, the abundances and algal compositionof the smaller microaggregates must also be known  相似文献   

14.
Marine snow is a ubiquitous feature of the ocean and an important agent in the transport of energy and nutrients through marine ecosystems. Diatom aggregates, which form during blooms and, to a lesser extent, by the resuspension of benthic biofilms, are a primary source of marine snow. Genera commonly found in diatom aggregates are: Nitzschia, Chaetoceros, Rhizosolenia, Leptocylindricus, Skeletonema and Thalassionema. Most fieldwork has been restricted to a limited number of locations in the Northern Hemisphere. To quantify the global impact of diatom aggregation there is a need to conduct fieldwork in a wider range of areas, particularly in the Southern Hemisphere. Aggregates form when particles collide and stick together. Collisions in the water column are affected by turbulence, differential settlement and animal feeding, whereas diatom stickiness is affected by extracellular polymeric substances (EPS). Laboratory experiments have demonstrated that diatoms produce more EPS under nutrient limitation, although little is known about how limitation by different nutrients affects the quantity and composition of EPS and subsequent stickiness. EPS form three pools in the environment: cell coatings, soluble EPS and transparent exopolymeric particles (TEP). There is a need to investigate the dynamics of conversion between the pools of EPS by both abiotic and biological processes and how these conversions affect aggregate concentration and structure. Processes governing disaggregation have been largely overlooked, although they are as important as aggregation in determining the dynamics of aggregate concentrations in the water column. The biogeochemical significance of diatom aggregates as a means of transporting carbon and other nutrients from the euphotic zone to the seabed is well established. However, the internal biogeochemistry of aggregates is not well understood. Aggregates contain anaerobic microsites and further work is required to establish whether aggregates are significant sinks for nitrogen in the water column through anaerobic denitrification. Several hypotheses have been proposed to explain diatom aggregation in the field, but many of these are flawed because the mechanisms and adaptive explanations proposed require natural selection to operate at the level of populations rather than genes or individuals.  相似文献   

15.
The abundance, size distribution and bacterial colonizationof transparent exopolymeric particles (TEP) were monitored inthe Kattegat (Denmark) at weekly intervals throughout the spring(February-May) encompassing the spring diatom bloom. These recentlydiscovered particles are believed to be formed from colloidalorganic material exuded by phytoplankton and bacteria, and mayhave significant implications for pelagic flux processes. Duringthis study, the number concentration of TEP (>1 µm)ranged from 3 x 103 to 6 x 104 ml–1 and the volume concentrationbetween 0.3 and 9.0 p.p.m.; they were most abundant in the surfacewaters subsequent to the spring phytoplankton bloom. The rangeof TEP (encased) volume concentration was similar to that ofthe phytoplankton, although at times TEP volume concentrationexceeded that of the phytoplankton by two orders of magnitude.The TEP size distribution followed a power law, with the abundanceof particles scaling with particle diameter–(ß+1).The seasonal average estimate of ß (2.3) was not significantlydifferent from three, consistent with TEP being formed by shearcoagulation from smaller particles. However, date-specific estimatesof ß differed significantly from three, probably becauseTEP are fractal. All TEP were colonized by bacteria, and bacteriawere both attached to the surface of and embedded in TEP. Yetthe number of attached bacteria per TEP was related neitherto the surface area nor the volume, but rather scaled with TEPsize raised to an exponent of  相似文献   

16.
Viruses on organic aggregates such as transparent exopolymeric particles (TEP) are not well investigated. The number of TEP-attached viruses was assessed along trophic gradients in the southwestern lagoon of New Caledonia by determining the fraction of viruses removed after magnetic isolation of TEP. In order to isolate TEP magnetically, TEP were formed in the presence of magnetic beads from submicrometer precursors collected along the trophic gradients. The mixed aggregates of TEP-beads-viruses were removed from solution with a magnetic field. The percentage of viruses associated with newly formed TEP averaged 8% (range, 3 to 13%) for most of the stations but was higher (ca. 30%) in one bay characterized by the low renewal rate of its water mass. The number of viruses (N) attached to TEP varied as a function of TEP size (d [in micrometers]) according to the formulas N = 100d(1.60) and N = 230d(1.75), respectively, for TEP occurring in water masses with short (i.e., <40 days) and long (i.e., >40 days) residence times. These two relationships imply that viral abundance decreases with TEP size, and they indicate that water residence time influences viral density and virus-bacterium interactions within aggregates. Our data suggest that the fraction of viruses attached to TEP is highest in areas characterized by a low renewal rate of the water mass and can constitute at times a significant fraction of total virus abundance. Due to the small distance between viruses and hosts on TEP, these particles may be hot spots for viral infection.  相似文献   

17.
The influence of inorganic nutrient concentrations on the ability of bacterioplankton to produce and degrade polysaccharidic transparent exopolymer particles (TEPs) and proteinaceous Coomassie-stained particles (CSPs) was investigated in an 11-day experiment. The dynamics of these particles were followed in prefiltered (1 microm) northern Adriatic seawater enclosures enriched either with 1 microM orthophosphate (main limiting nutrient in this area), 10 microM ammonium or both orthophosphate and ammonium. These enclosures were referenced to a nonenriched control. A high potential for bacterial TEP and CSP production was observed (10(4) - 10(5) L(-1) for particles larger than 4 microm). In conditions of high orthophosphate concentration (either orthophosphate enriched or both orthophosphate and ammonium enriched), lower abundances and surface areas of CSPs were obtained, whereas TEP dynamics were more affected by unbalanced enrichments where only orthophosphate or ammonium was added. The impact of unbalanced nutrient ratios on TEPs was indicated by their higher abundance but low capacity for Alcian blue absorption, implying a change in their structure. Inorganic nutrient availability was thus proven to affect the bacterial potential for producing and degrading bacterially derived TEPs and CSPs.  相似文献   

18.
Abundant marine snow containing diatoms and detritus, but dominatedby large, bioluminescent thecate dinoflagellates and their temporaryvegetative cysts, especially several species of the genus Gonyoulax,was observed at six stations in the Santa Barbara Channel, California,in 1989 and 1994. These aggregates were unusually cohesive andmucus rich, and contained 2–4 times more mass, particulateorganic carbon (POC), particulate organic nitrogen (PON) andchlorophyll a per unit aggregate volume than more common typesof marine snow formed from diatoms, fecal matter, larvaceanhouses or miscellaneous detritus. However, the relationshipbetween aggregate size and the concentration of TEP (transparentexopolymer particles which form the mucus matrix of most marinesnow) was similar to that of other types of aggregates, suggestingthat much of the copious gel-like material within dinoflagellateaggregates was not TEP. While this is the first report of abundantthecate dinoflagellates occurring within large, rapidly sinkingmarine aggregates, the data do not support the conclusion thatmass aggregation and subsequent sedimentation of blooms is partof the life history adaptations of thecate dinoflagellates,as it is for some diatoms. The high abundance of free-livingdinoflagellate cells and temporary cysts, and the similar proportionof dinoflagellates relative to other algal and chemical componentsin both aggregates and the surrounding seawater, indicate thatthe dinoflagellates were not differentially aggregating. Evenso, passive accumulation of dinoflagellates in marine snow throughaggregation processes may result in more rapid transport ofdinoflagellate-generated material to the deep ocean, alter thenature of sinking particulate matter following dinoflagellateblooms, and increase the nutritional value of marine snow asa food source for zooplankton and fish.  相似文献   

19.
The termination of diatom spring blooms in temperate watershas been connected with the formation and subsequent rapid sedimentationof aggregates. According to coagulation theory, the rate ofaggregate formation depends on the probability of particle collisionand on the efficiency with which two particles adhere once theyhave collided (stickiness). During this study, the variationin particle stickiness was determined over the decline of adiatom bloom using the Couette Chamber assay with low shear(G = 0.86 s–1). A mixed diatom population, dominated bySkeletonema costatum, was sampled during the spring bloom inthe Baltic Sea and incubated in the laboratory for 18 days.Measurements of diatom species composition, transparent exopolymerparticles (TEP) and bulk particle abundance, as well as chemicaland biological variables, were conducted in order to revealthe determinants of coagulation efficiency. The investigationshowed that an increase in TEP concentration relative to conventionalparticles at the decline of the bloom significantly enhancedapparent coagulation efficiencies. High proportions of TEP ledto apparent values of stickiness >1, which indicates thatcollision rates can be substantially underestimated when thestickiness parameter  相似文献   

20.
Extracellular polymeric substances (EPS) are known to help microorganisms to survive under extreme conditions in sea ice. High concentrations of EPS are reported in sea ice from both poles; however, production and dynamics of EPS during sea ice formation have been little studied to date. This investigation followed the production and partitioning of existing and newly formed dissolved organic matter (DOM) including dissolved carbohydrates (dCHO), dissolved uronic acids (dUA) and dissolved EPS (dEPS), along with bacterial abundances during early stages of ice formation. Sea ice was formed from North Sea water with (A) ambient DOM (NSW) and (B) with additional algal-derived DOM (ADOM) in a 6d experiment in replicated mesocosms. In ADOM seawater, total bacterial numbers (TBN) increased throughout the experiment, whereas bacterial growth occurred for 5d only in the NSW seawater. TBN progressively decreased within developing sea ice but with a 2-fold greater decline in NSW compared to ADOM ice. There were significant increases in the concentrations of dCHO in ice. Percentage contribution of dEPS was highest (63%) in the colder, uppermost parts in ADOM ice suggesting the development of a cold-adapted community, producing dEPS possibly for cryo-protection and/or protection from high salinity brines. We conclude that in the early stages of ice formation, allochthonous organic matter was incorporated from parent seawater into sea ice and that once ice formation had established, there were significant changes in the concentrations and composition of dissolved organic carbon pool, resulting mainly from the production of autochthonous DOM by the bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号