首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently showed that RNase III can process a small stable RNA, precursor 10Sa RNA, that accumulates in an rne (RNase E) strain at non-permissive temperatures. Precursor 10Sa (p10Sa) RNA is processed to 10Sa RNA in two steps, the first step is catalyzed by RNase III in the presence of Mn2+ but not Mg2+. It was shown that RNase III cosediments with membrane preparation from wild type as well as RNase III overexpressing cells. However, the possibility of membrane preparation contamination with ribosomes could not be ruled out. Here we show that RNase III, E and P are not associated with ribosomes. E. coli cells were opened either by alumina grinding or by sonication and fractionated into cytosolic and pellet fractions. The characterization of membrane preparations was done by assaying NADH oxidase, a bona fide membrane enzyme. Ribosomes prepared by alumina grinding were found to be contaminated with small fragments of membrane which contained RNase III activity. RNase III and NADH oxidase activities were present in the ribosomal preparations which could be solubilized by reagents that dissolve the inner membrane. Isopycnic sucrose gradient centrifugation of the membrane and ribosomal preparations also confirmed that RNase III fractionated with the inner membrane. Similarly RNase P activity was found in the corresponding fractions when isopycnic centrifugation of membrane and ribosome preparations was carried out. RNase E activity was also found to be present mostly in the post-ribosomal supernatant. These findings show that RNase III, E and P are not ribosomal enzymes.  相似文献   

2.
RNase E, an RNA processing enzyme from Escherichia coli.   总被引:18,自引:0,他引:18  
An activity, RNase E, was purified about 100-fold from Escherichia coli cells, it can process p5 rRNA from a 9 S RNA molecule which accumulates in a mutant of E. coli defective in the maturation of 5 S rRNA. The enzyme requires Na+, K+, or NH4+, and Mg2+ or Mn2+. The molecular weight of the enzyme is about 70,000 and its pH optimum is 7.6 to 8.0. Its temperature optimum is around 30 degrees C, and it can be irreversibly inactivated at 50 degrees C. It has a very high degree of specificity but the reaction can be inhibited by nonspecific RNAs. We interpret its mode of action in producing p5 RNA as being accomplished in two steps, 9 S RNA is first processed to 7 S and 4 S, and subsequently 7 S is further processed to p5.  相似文献   

3.
4.
A temperature-sensitive mutant strain of Escherichia coli defective in two RNA processing enzymes, RNase III and RNase E (rnc. rne), fails to produce normal levels of 23 S and 5 S rRNA at the non-permissive temperature. Instead, a molecule larger than 23 S is produced. This molecule, designated 25 S rRNA, can be processed in vitro to produce p5 rRNA. These findings further our understanding of the overall processing events of ribosomal RNA which take place in the bacterial cell.  相似文献   

5.
Structural study of ribosomal 23 S RNA from Escherichia coli.   总被引:7,自引:0,他引:7  
  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Escherichia coli 23S ribosomal RNA truncated at its 5'' terminus.   总被引:3,自引:1,他引:2       下载免费PDF全文
In a strain of E. coli deficient in RNase III (ABL1), 23S rRNA has been shown to be present in incompletely processed form with extra nucleotides at both the 5' and 3' ends (King et al., 1984, Proc. Natl. Acad. Sci. U.S. 81, 185-188). RNA molecules with four different termini at the 5' end are observed in vivo, and are all found in polysomes. The shortest of these ("C3") is four nucleotides shorter than the accepted mature terminus. In growing cells of both wild-type and mutant strains up to 10% of the 23S rRNA chains contain the 5' C3 terminus. In stationary phase cells, the proportion of C3 termini remains the same in the wild-type cells; but C3 becomes the dominant terminus in the mutant. Species C3 is also one of the 5' termini of 23S rRNA generated in vitro from larger precursors by the action of purified RNase III. We therefore suggest that some form of RNase III may still exist in the mutant; and since no cleavage is detectable at any other RNase III-specific site, the remaining enzyme would have a particular affinity for the C3 cleavage site, especially in stationary phase cells. We raise the question whether the C3 terminus has a special role in cellular metabolism.  相似文献   

17.
E. coli 50S ribosomal subunits were reacted with monoperphthalic acid under conditions in which non-base paired adenines are modified to their 1-N-oxides. 5S RNA was isolated from such chemically reacted subunits and the two modified adenines were identified as A73 and A99. The modified 5S RNA, when used in reconstitution of 50S subunits, yielded particles with reduced biological activity (50%). The results are discussed with respect to a recently proposed three-dimensional structure for 5S RNA, the interaction of the RNA with proteins E-L5, E-L18 and E-L25 and previously proposed interactions of 5S RNA with tRNA, 16S and 23S ribosomal RNAs.  相似文献   

18.
Summary E. coli [32P]-labelled 5S RNA was complexed with E. coli and B. stearothermophilus 50S ribosomal proteins. Limited T1 RNase digestion of each complex yielded three major fragments which were analysed for their sequences and rebinding of proteins. The primary binding sites for the E. coli binding proteins were determined to be sequences 18 to 57 for E-L5, 58 to 100 for E-L18 and 101 to 116 for E-L25. Rebinding experiments of purified E. coli proteins to the 5S RNA fragments led to the conclusion that E-L5 and E-L25 have secondary binding sites in the section 58 to 100, the primary binding site for E-L18. Since B. stearothermophilus proteins B-L5 and BL22 were found to interact with sequences 18 to 57 and 58 to 100 it was established that the thermophile proteins recognize and interact with RNA sequences similar to those of E. coli. Comparison of the E. coli 5S RNA sequence with those of other prokaryotic 5S RNAs reveals that the ribosomal proteins interact with the most conserved sections of the RNA.Paper number 12 on structure and function of 5S RNA.Preceding paper: Wrede, P. and Erdmann, V.A. Proc. Natl. Acad. Sci. USA 74, 2706–2709 (1977)  相似文献   

19.
Experiments were conducted to investigate structural features of the aminoacyl stem region of precursor histidine tRNA critical for the proper cleavage by the catalytic RNA component of RNase P that is responsible for 5' maturation. Histidine tRNA was chosen for study because tRNAHis has an 8 base pair instead of the typical 7-base pair aminoacyl stem. The importance of the 3' proximal CCA sequence in the 5'-processing reaction was also investigated. Our results show that the tRNAHis precursor patterned after the natural Bacillus subtilis gene is cleaved by catalytic RNAs from B. subtilis or Escherichia coli, leaving an extra G residue at the 5'-end of the aminoacyl stem. Replacing the 3' proximal CCA sequence in the substrate still allowed the catalytic RNA to cleave at the proper position, but it increased the Km of the reaction. Changing the sequence of the 3' leader region to increase the length of the aminoacyl stem did not alter the cleavage site but reduced the reaction rate. However, replacing the G residue at the expected 5' mature end by an A changed the processing site, resulting in the creation of a 7-base pair aminoacyl stem. The Km of this reaction was not substantially altered. These experiments indicate that the extra 5' G residue in B. subtilis tRNAHis is left on by RNase P processing because of the precursor's structure at the aminoacyl stem and that the cleavage site can be altered by a single base change. We have also shown that the catalytic RNA alone from either B. subtilis or E. coli is capable of cleaving a precursor tRNA in which the 3' proximal CCA sequence is replaced by other nucleotides.  相似文献   

20.
Cleavage by RNase E is believed to be the rate-limiting step in the degradation of many RNAs. These cleavages are modulated by 5' end-phosphorylation, folding and translation of the mRNA in question. Here, we present data suggesting that these cleavages are also regulated by environmental conditions. We report that rpsO mRNA, 15 minutes after a shift to 44 degrees C, is stabilized in cells grown in minimal medium. This stabilization is correlated with a reduction in the efficiency of the RNase E cleavage which initiates its decay. We also observe the appearance of RNA fragments previously detected following RNase E inactivation and a defect in the adaptation of RNase E concentration. These observations, coupled to the fact that RNase E overproduction slightly reduces the accumulation of the rpsO mRNA, suggest that this stabilization is caused in part by a limitation in RNase E concentration. An increase in the steady-state level of rpsT mRNA is also observed following a shift to 44 degrees C in minimal medium; however, processing of the 9 S rRNA precursor is not affected under these conditions. We thus propose that RNase E concentration changes in the cell in response to environmental conditions and that these changes can selectively affect the processing and the stability of individual mRNAs. Our data also indicate that the efficiency of cleavage of the rpsO mRNA by RNase E is modified by other factor(s) which remain to be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号