首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We examined the effect of norepinephrine injections on non-shivering thermogenesis (NST), rewarming rate, and metabolic cost during torpor arousal in warm- and cool-acclimated Chilean mouse-opposums, Thylamys elegans. Warm- and cool-acclimated animals did not display NST in response to NE injections. Values of VO2 (resting, after saline and NE injections) were not significantly different within treatments. Rewarming rates of warm-acclimated animals did not differ significantly from those in cool-acclimated animals. In contrast, the metabolic cost of torpor arousal was significantly affected by acclimation temperature. Warm-acclimated animals required more energy for arousal than cool-acclimated animals. Our study suggests that the main thermoregulatory mechanism during torpor arousal in this Chilean marsupial is shivering thermogenesis, and that its amount can be changed by thermal acclimation.  相似文献   

3.
Small mammals actively decrease metabolism during daily torpor and hibernation to save energy. Increasing evidence suggests depression of mitochondrial respiration during daily torpor of the Djungarian hamster but tissue-specificity and relation to torpor depth is unknown. We first confirmed a previous study by Brown and colleagues reporting on the depressed substrate oxidation in isolated liver mitochondria of the Djungarian hamster (Phodopus sungorus) during daily torpor. Next, we show that mitochondrial respiration is not depressed in kidneys, skeletal muscle and heart. In liver mitochondria, we found that state 3 and state 4 respirations correlate with body temperature, suggesting inhibition related to torpor depth and to metabolic rate. We conclude that molecular events leading to depression of mitochondrial respiration during daily torpor are specific to liver and linked to a decrease in body temperature. Different tissue-specificity of mitochondrial depression may assist to compare and identify the molecular nature of mitochondrial alterations during torpor.  相似文献   

4.
The predatory bug Macrolophus caliginosus, which is widely used in greenhouse crops, is limited in its application by its high price. An important factor in the cost is the high price of Ephestia kuehniella eggs, the prey used in their mass rearing. In order to reduce their price, alternatives to moth eggs are currently being investigated. The brine shrimp Artemia sp. is produced in large quantities in saline lakes and is fed as live food source to the larvae of a variety of marine and freshwater organisms. In this study, we tested Artemia sp. as prey for rearing M. caliginosus from two strains. We evaluated developmental and reproduction parameters of the predator when fed nauplii, enriched nauplii with a fatty acid, dry cysts and hydrated cysts, and were compared with those obtained when the predator was fed with E. kuehniella eggs. Nauplii had a significant reduction in survivorship, a delay in development of nymphs and a low reproduction of adults. Nauplii enriched with docosahexaenoic acid (DHA, 22:6n − 3), a common practice for larviculture of some marine fish species, resulted toxic to M. caliginosus nymphs and survival was quite low. On the contrary, either dry or hydrated cysts from the two strains tested of the brine shrimp produced the same nymphal survivorship, nymphal development time and weight and fecundity of adults as those obtained with E. kuehniella eggs. Demographic parameters of the eighth generation of the predator reared with cysts of the two strains, either dry or hydrated, were as good as those of moth eggs. We concluded that Artemia sp. cysts were a good substitution prey for the mass rearing of M. caliginosus.  相似文献   

5.
Physiological mechanisms causing reduction of metabolic rate during torpor in heterothermic endotherms are controversial. The original view that metabolic rate is reduced below the basal metabolic rate because the lowered body temperature reduces tissue metabolism has been challenged by a recent hypothesis which claims that metabolic rate during torpor is actively downregulated and is a function of the differential between body temperature and ambient temperature, rather than body temperature per se. In the present study, both the steady-state metabolic rate and body temperature of torpid stripe-faced dunnarts, Sminthopsis macroura (Dasyuridae: Marsupialia), showed two clearly different phases in response to change of air temperature. At air temperatures between 14 and 30°C, metabolic rate and body temperature decreased with air temperature, and metabolic rate showed an exponential relationship with body temperature (r 2=0.74). The Q 10 for metabolic rate was between 2 and 3 over the body temperature range of 16 to 32°C. The difference between body temperature and air temperature over this temperature range did not change significantly, and the metabolic rate was not related to the difference between body temperature and air temperature (P=0.35). However, the apparent conductance decreased with air temperature. At air temperatures below 14°C, metabolic rate increased linearly with the decrease of air temperature (r 2=0.58) and body temperature was maintained above 16°C, largely independent of air temperature. Over this air temperature range, metabolic rate was positively correlated with the difference between body temperature and air temperature (r 2=0.61). Nevertheless, the Q 10 for metabolic rate between normothermic and torpid thermoregulating animals at the same air temperature was also in the range of 2–3. These results suggest that over the air temperature range in which body temperature of S. macroura was not metabolically defended, metabolic rate during daily torpor was largely a function of body temperature. At air temperatures below 14°C, at which the torpid animals showed an increase of metabolic rate to regulate body temperature, the negative relationship between metabolic rate and air temperature was a function of the differential between body temperature and air temperature as during normothermia. However, even in thermoregulating animals, the reduction of metabolic rate from normothermia to torpor at a given air temperature can also be explained by temperature effects.Abbreviations BM body mass - BMR basal metabolic rate - C apparent conductance - MR metabolic rate - RMR resting metabolic rate - RQ respiratory quotient - T a air temperature - T b body temperature - T lc lower critical temperature - T tc critical air temperature during torpor - TMR metabolic rate during torpor - TNZ thermoneutral zone - T difference between body temperature and air temperature - VO2 rate of oxygen consumption  相似文献   

6.
Since little information is available on torpor in bats of the suborder Megachiroptera, we investigated whether the small (18 g) blossom-bat Syconycteris australis displays torpor in the laboratory. Bats entered daily torpor when food and water were withheld for one night and the air temperature (Ta) was below about 26°. Torpor began shortly after lights went on in the morning and lasted for a maximum of 12 hours. During torpor at Ta18°, metabolic rates fell to a minimum of about 15% of that in resting individuals at the same Ta, and to about 40% of the basal metabolic rate. The body temperature (Tb) during torpor was metabolically defended at or above about Tb 18°. Individuals that did not enter torpor in the morning reduced their Tb from about 34.5°, observed in resting individuals that had been fed during the previous night, to values between 30.2 and 32.8°, and the resting metabolic rate fell by about 25%. The ability to undergo short periods of torpor may explain why the distribution range of S. australis extends much further south than that of other small Australian megachiropteran bats.  相似文献   

7.
We examined the effect of norepinephrine injections on non-shivering thermogenesis (NST), rewarming rate, and metabolic cost during torpor arousal in warm- and cool-acclimated Chilean mouse-opposums, Thylamys elegans. Warm- and cool-acclimated animals did not display NST in response to NE injections. Values of VO2 (resting, after saline and NE injections) were not significantly different within treatments. Rewarming rates of warm-acclimated animals did not differ significantly from those in cool-acclimated animals. In contrast, the metabolic cost of torpor arousal was significantly affected by acclimation temperature. Warm-acclimated animals required more energy for arousal than cool-acclimated animals. Our study suggests that the main thermoregulatory mechanism during torpor arousal in this Chilean marsupial is shivering thermogenesis, and that its amount can be changed by thermal acclimation.  相似文献   

8.
Recently it was proposed that the low metabolic rate during torpor may be better explained by the reduction of thermal conductance than the drop of body temperature or metabolic inhibition. We tested this hypothesis by simultaneously measuring body temperature and metabolic rate as a function of ambient temperature in both torpid and normothermic stripe-faced dunnarts, Sminthopsis macroura (Marsupialia; approx. 25 g body mass), exposed to either air or He–O2 (21% oxygen in helium) atmospheres. He–O2 exposure increases the thermal conductance of homeothermic mammals by about twofold in comparison to an air atmosphere without apparent side-effects. Normothermic S. macroura exposed to He–O2 increased resting metabolic rate by about twofold in comparison to that in air because of the twofold increase in apparent thermal conductance. Torpid S. macroura exposed to He–O2 at ambient temperatures above the set-point for body temperature showed a completely different metabolic response. In contrast to normothermic individuals, torpid individuals significantly decreased or maintained a similar metabolic rate as those in air although the apparent thermal conductance in He–O2 was slightly raised. Moreover, the metabolic rate during torpor was only a fraction of that of normothermic individuals although the apparent thermal conductance differed only marginally between normothermia and torpor. Our study shows that a low thermal conductance is not the reason for the low metabolic rates during torpor. It suggests that interrelations between metabolic rate and body temperature of torpid endotherms above the set-point for body temperature differ fundamentally from those of normothermic and homeothermic endotherms.Abbreviations T a ambient temperature - T b body temperature - BMR basal metabolic rate - C apparent thermal conductance - He–O 2 21% oxygen in helium - MR metabolic rate - MSe mean square-error - RMR festing metabolic rate - TMR metabolic rate during torpor - T difference T b-T a - TNZ thermoneutral zone - T set set-point for body temperature - O 2 rate of oxygen consumption  相似文献   

9.
J. Schmid 《Oecologia》2000,123(2):175-183
Patterns and energetic consequences of spontaneous daily torpor were measured in the gray mouse lemur (Microcebus murinus) under natural conditions of ambient temperature and photoperiod in a dry deciduous forest in western Madagascar. Over a period of two consecutive dry seasons, oxygen consumption (VO2) and body temperature (T b) were measured on ten individuals kept in outdoor enclosures. In all animals, spontaneous daily torpor occurred on a daily basis with torpor bouts lasting from 3.6 to 17.6 h, with a mean torpor bout duration of 9.3 h. On average, body temperatures in torpor were 17.3±4.9°C with a recorded minimum value of 7.8°C. Torpor was not restricted to the mouse lemurs’ diurnal resting phase: entries occurred throughout the night and arousals mainly around midday, coinciding with the daily ambient temperature maximum. Arousal from torpor was a two-phase process with a first passive, exogenous heating where the T b of animals increased from the torpor T b minimum to a mean value of 27.1°C before the second, endogenous heat production commenced to further raise T b to normothermic values. Metabolic rate during torpor (28.6±13.2 ml O2 h–1) was significantly reduced by about 76% compared to resting metabolic rate (132.6±50.5 ml O2 h–1). On average, for all M. murinus individuals measured, hypometabolism during daily torpor reduced daily energy expenditure by about 38%. In conclusion, all these energy-conserving mechanisms of the nocturnal mouse lemurs, with passive exogenous heating during arousal from torpor, low minimum torpor T bs, and extended torpor bouts into the activity phase, comprise an important and highly adapted mechanism to minimize energetic costs in response to unfavorable environmental conditions and may play a crucial role for individual fitness. Received: 8 July 1999 / Accepted: 3 December 1999  相似文献   

10.
Hibernation is a natural adaptation that allows certain mammals to survive physiological extremes that are lethal to humans. Near freezing body temperatures, heart rates of 3–10 beats per minute, absence of food consumption, and depressed metabolism are characteristic of hibernation torpor bouts that are periodically interrupted by brief interbout arousals (IBAs). The molecular basis of torpor induction is unknown, however starved mice overexpressing the metabolic hormone fibroblast growth factor 21 (FGF21) promote fat utilization, reduce body temperature, and readily enter torpor–all hallmarks of mammalian hibernation. In this study we cloned FGF21 from the naturally hibernating thirteen-lined ground squirrel (Ictidomys tridecemlineatus) and found that levels of FGF21 mRNA in liver and FGF21 protein in serum are elevated during hibernation torpor bouts and significantly elevated during IBAs compared to summer active animals. The effects of artificially elevating circulating FGF21 concentrations 50 to 100-fold via adenoviral-mediated overexpression were examined at three different times of the year. This is the first time that a transgenic approach has been used in a natural hibernator to examine mechanistic aspects of hibernation. Surgically implanted transmitters measured various metrics of the hibernation phenotype over a 7-day period including changes in motor activity, heart rate and core body temperature. In April fed-state animals, FGF21 overexpression decreased blood insulin and free fatty acid concentrations, effects similar to those seen in obese mice. However, elevated FGF21 concentrations did not cause torpor in these fed-state animals nor did they cause torpor or affect metabolic parameters in fasted-state animals in March/April, August or October. We conclude that FGF21 is strongly regulated during torpor and IBA but that its overexpression is not sufficient to cause torpor in naturally hibernating ground squirrels.  相似文献   

11.
The physiological signal for torpor initiation appears to be related to fuel availability. Studies on metabolic fuel inhibition in placental heterotherms show that glucose deprivation via the inhibitor 2-deoxy-D-glucose (2DG) initiates a torpor-like state, whereas fatty acid deprivation via mercaptoacetate (MA) does not. As previous studies using inhibitors were limited to quantifying body temperature in placentals, we investigated whether inhibition of glucose or fatty acids for cellular oxidation induces torpor in the marsupial hibernator Cercartetus nanus, and how the response of metabolic rate is related to body temperature. Glucoprivation initiated a torpor-like state in C. nanus, but animals had much higher minimum body temperatures and metabolic rates than those of torpid food-deprived animals and arousal rates were slower. Moreover, 2DG-treated animals were thermoregulating at ambient temperatures of 20 and 12 °C, whereas food-deprived torpid animals were thermo-conforming. We suggest that glucoprivation reduces the hypothalamic body temperature set point, but only by about 8 °C rather than the approximately 28 °C during natural torpor. Reduced fatty acid availability via MA also induced a torpor-like state in some C. nanus, with physiological variables that did not differ from those of torpid food-deprived animals. We conclude that reduced glucose availability forms only part of the physiological trigger for torpor initiation in C. nanus. Reduced fatty acid availability, unlike for placental heterotherms, may be an important cue for torpor initiation in C. nanus, perhaps because marsupials lack functional brown adipose tissue.Abbreviations BAT brown adipose tissue - BMR basal metabolic rate - 2DG 2-deoxy-D-glucose - FD food deprived - GLM general linear models - MA mercaptoacetate - MR metabolic rate - RQ respiratory quotient - Ta ambient temperature - Tb body temperature - Tset body temperature set pointCommunicated by I.D. Hume  相似文献   

12.
The biochemical mechanisms by which hibernators cool as they enter torpor are not fully understood. In order to examine whether rates of substrate oxidation vary as a function of hibernation, liver mitochondria were isolated from telemetered ground squirrels (Spermophilus lateralis) in five phases of their annual hibernation cycle: summer active, and torpid, interbout aroused, entrance, and arousing hibernators. Rates of state 3 and state 4 respiration were measured in vitro at 25 degrees C. Relative to mitochondria from summer-active animals, rates of state 3 respiration were significantly depressed in mitochondria from torpid animals yet fully restored during interbout arousals. These findings indicate that a depression of ADP-dependent respiration in liver mitochondria occurs during torpor and is reversed during the interbout arousals to euthermia. Because this inhibition was determined to be temporally independent of entrance and arousal, it is unlikely that active suppression of state 3 respiration causes entrance into torpor by facilitating metabolic depression. In contrast to the observed depression of state 3 respiration in torpid animals, state 4 respiration did not differ significantly among any of the five groups, suggesting that alterations in proton leak are not contributing appreciably to downregulation of respiration in hibernation.  相似文献   

13.
Seasonality of torpor and thermoregulation in three dasyurid marsupials   总被引:3,自引:3,他引:0  
Summary Seasonal variation in the pattern of torpor and temperature regulation was investigated in the closely related arid zone dasyurid marsupialsSminthopsis crassicaudata (17 g),S. macroura (24 g), andDasyuroides byrnei (120 g). The tendency to enter torpor was greater, torpor commenced earlier, torpor duration was longer, and body temperatures (T b) were lower inSminthopsis spp. than inD. byrnei. The minimum mass-specific rate of oxygen consumption ( ) of torpid animals was similar among the three species despite the differences in minimumT b. The mass-specific oxygen consumption of normothermic animals was reduced during winter when compared with the summer values in all species, but there was no seasonal variation in normothermicT b in any species. The tendency to enter torpor was incrased during winter. TorpidSminthopsis spp. had lower values ofT b and during winter than during summer;D. byrnei did not show seasonal changes in these variables. These results suggest that seasonal changes in the pattern of thermoregulation and torpor in small dasyurids may be more distinct than in larger species.Abbreviations RMR resting metabolic rate - BMR basal metabolic rate  相似文献   

14.
The golden spiny mouse (Acomys russatus) is an omnivorous desert rodent that does not store food, but can store large amounts of body fat. Thus, it provides a good animal model to study physiological and behavioural adaptations to changes in food availability. The aim of this study was to investigate the time course of metabolic and behavioural responses to prolonged food restriction. Spiny mice were kept at an ambient temperature of 27°C and for 3 weeks their food was reduced individually to 30% of their previous ad libitum food intake. When fed ad libitum, their average metabolic rate was 82.77±3.72 ml O2 h–1 during the photophase and 111.19±4.30 ml O2 h–1 during the scotophase. During food restriction they displayed episodes of daily torpor when the minimal metabolic rate gradually decreased to 16.07±1.07 ml O2 h–1, i.e. a metabolic rate depression of approximately 83%. During the hypometabolic bouts the minimum average body temperature Tb, decreased gradually from 32.6±0.1°C to 29.0±0.4°C, with increasing duration of consecutive bouts. In parallel, the animals increased their activity during the remaining daytime. Torpor as well as hyperactivity was suppressed immediately by refeeding. Thus golden spiny mice used two simultaneous strategies to adapt to shortened food supply, namely energysaving torpor during their resting period and an increase in locomotor activity pattern during their activity period.  相似文献   

15.
Neotropical nectar-feeding bats (Glossophaginae) are highly specialized in the exploitation of floral nectar and have one of the highest mass-specific metabolic rates among mammals. Nevertheless, they are distributed throughout the tropics and subtropics over a wide elevational range, and thus encounter many extreme and energetically challenging environmental conditions. Depressing their otherwise high metabolic rate, e.g., in situations of food restriction, might be an important adaptive physiological strategy in these dietary specialists. We investigated the thermoregulatory behavior of captive 10-g nectar feeding bats (Glossophaga soricina; Chiroptera, Phyllostomidae) under variable ambient temperatures (T a) and feeding regimes and predicted that bats would use torpor as an energy-conserving behavior under energetic constraints. All tested animals entered torpor in response to energetic restrictions and the depth of torpor was dependent on the body condition of the animals and hence on their degree of physiological constraints. Periods of torpor with body temperatures (T b) below 34°C were precisely adjusted to the photoperiod. The median length of diurnal torpor was 11.43 h. The lowest T b measured was 21°C at a T a of 19°C. Estimated energy savings due to torpor were considerable, with reductions in metabolic rate to as low as 5% of the metabolic rate of normothermic bats at the same T a. However, contrary to temperate zone bats that also employ diurnal torpor, G. soricina regulated their T b to the highest possible levels given the present energetic supplies. To summarize, G. soricina is a precise thermoregulator, which strategically employs thermoregulatory behavior in order to decrease its energy expenditure when under energetic restrictions. This adaptation may play a crucial role in the distribution and the assembly of communities of nectar-feeding bats and may point to a general capacity for torpor in tropical bats.  相似文献   

16.
During daily torpor in the dwarf Siberian hamster, Phodopus sungorus, metabolic rate is reduced by 65% compared with the basal rate, but the mechanisms involved are contentious. We examined liver mitochondrial respiration to determine the possible role of active regulated changes and passive thermal effects in the reduction of metabolic rate. When assayed at 37 degrees C, state 3 (phosphorylating) respiration, but not state 4 (nonphosphorylating) respiration, was significantly lower during torpor compared with normothermia, suggesting that active regulated changes occur during daily torpor. Using top-down elasticity analysis, we determined that these active changes in torpor included a reduced substrate oxidation capacity and an increased proton conductance of the inner mitochondrial membrane. At 15 degrees C, mitochondrial respiration was at least 75% lower than at 37 degrees C, but there was no difference between normothermia and torpor. This implies that the active regulated changes are likely more important for reducing respiration at high temperatures (i.e., during entrance) and/or have effects other than reducing respiration at low temperatures. The decrease in respiration from 37 degrees C to 15 degrees C resulted predominantly from a considerable reduction of substrate oxidation capacity in both torpid and normothermic animals. Temperature-dependent changes in proton leak and phosphorylation kinetics depended on metabolic state; proton leakiness increased in torpid animals but decreased in normothermic animals, whereas phosphorylation activity decreased in torpid animals but increased in normothermic animals. Overall, we have shown that both active and passive changes to oxidative phosphorylation occur during daily torpor in this species, contributing to reduced metabolic rate.  相似文献   

17.
Previous studies have suggested that Australian long-eared bats (Nyctophilus) differ from northern-hemisphere bats with respect to their thermal physiology and patterns of torpor. To determine whether this is a general trait of Australian bats, we characterised the temporal organisation of torpor and quantified metabolic rates and body temperatures of normothermic and torpid Australian bats (Nyctophilus geoffroyi, 7 g and N. gouldi, 10 g) over a range of air temperatures and in different seasons. The basal metabolic rate of normothermic bats was 1.36 ± 0.17 ml g−1 h−1 (N. geoffroyi) and 1.22 ± 0.13 ml g−1 h−1 (N. gouldi), about 65% of that predicted by allometric equations, and the corresponding body temperature was about 36 °C. Below an air temperature of about 25 °C bats usually remained normothermic for only brief periods and typically entered torpor. Arousal from torpor usually occurred shortly after the beginning of the dark phase and torpor re-entry occurred almost always during the dark phase after normothermic periods of only 111 ± 48 min (N. geoffroyi) and 115 ± 66 min (N. gouldi). At air temperatures below 10 °C, bats remained torpid for more than 1 day. Bats that were measured overnight had steady-state torpor metabolic rates representing only 2.7% (N. geoffroyi) and 4.2% (N. gouldi) of the basal metabolic rate, and their body temperatures fell to minima of 1.4 and 2.3 °C, respectively. In contrast, bats measured entirely during the day, as in previous studies, had torpor metabolic rates that were up to ten times higher than those measured overnight. The steady-state torpor metabolic rate of thermoconforming torpid bats showed an exponential relationship with body temperature (r 2 = 0.94), suggesting that temperature effects are important for reduction of metabolic rate below basal levels. However, the 75% reduction of metabolic rate between basal metabolic rate and torpor metabolic rate at a body temperature of 29.3 °C suggests that metabolic inhibition also plays an important role. Torpor metabolic rate showed little or no seasonal change. Our study suggests that Australian Nyctophilus bats have a low basal metabolic rate and that their patterns of torpor are similar to those measured in bats from the northern hemisphere. The low basal metabolic rate and the high proclivity of these bats for using torpor suggest that they are constrained by limited energy availability and that heterothermy plays a key role in their natural biology. Accepted: 22 November 1999  相似文献   

18.
Physiological responses to dehydration in amphibians are reasonably well documented, although little work has addressed this problem in hibernating animals. We investigated osmotic and metabolic responses to experimental manipulation of hydration state in the wood frog (Rana sylvatica), a terrestrial hibernator that encounters low environmental water potential during autumn and winter. In winter-conditioned frogs, plasma osmolality varied inversely with body water content (range 69–79%, fresh mass) primarily due to increases in sodium and chloride concentrations, as well as accumulation of glucose and urea. Decreased hydration was accompanied by a marked reduction in the resting rate of oxygen consumption, which was inversely correlated with plasma osmolality and urea concentration. In a separate experiment, resting rates of oxygen consumption in fully hydrated frogs receiving injections of saline or saline containing urea did not differ initially; however, upon dehydration, metabolic rates decreased sooner in the urea-loaded frogs than in control frogs. Our findings suggest an important role for urea, acting in concert with dehydration, in the metabolic regulation and energy conservation of hibernating R. sylvatica.  相似文献   

19.
The high expenditure of energy required for endogenous rewarming is one of the widely perceived disadvantages of torpor. However, recent evidence demonstrates that passive rewarming either by the increase of ambient temperature or by basking in the sun appears to be common in heterothermic birds and mammals. As it is presently unknown how radiant heat affects energy expenditure during rewarming from torpor and little is known about how it affects normothermic thermoregulation, we quantified the effects of radiant heat on body temperature and metabolic rate of the small (body mass 25 g) marsupial Sminthopsis macroura in the laboratory. Normothermic resting individuals exposed to radiant heat were able to maintain metabolic rates near basal levels (at 0.91 ml O(2) g(-1) h(-1)) and a constant body temperature down to an ambient temperature of 12 degrees C. In contrast, metabolic rates of individuals without access to radiant heat were 4.5-times higher at an ambient temperature of 12 degrees C and body temperature fell with ambient temperature. During radiant heat-assisted passive rewarming from torpor, animals did not employ shivering but appeared to maximise uptake of radiant heat. Their metabolic rate increased only 3.2-times with a 15- degrees C rise of body temperature (Q(10)=2.2), as predicted by Q(10) effects. In contrast, during active rewarming shivering was intensive and metabolic rates showed an 11.6-times increase. Although body temperature showed a similar absolute change between the beginning and the end of the rewarming process, the overall energetic cost during active rewarming was 6.3-times greater than that during passive, radiant heat-assisted rewarming. Our study demonstrates that energetic models assuming active rewarming from torpor at low ambient temperatures can substantially over-estimate energetic costs. The low energy expenditure during passive arousal provides an alternative explanation as to why daily torpor is common in sunny regions and suggests that the prevalence of torpor in low latitudes may have been under-estimated in the past.  相似文献   

20.
In order to recover without any apparent damage, tardigrades have evolved effective adaptations to preserve the integrity of cells and tissues in the anhydrobiotic state. Despite those adaptations and the fact that the process of biological ageing comes to a stop during anhydrobiosis, the time animals can persist in this state is limited; after exceedingly long anhydrobiotic periods tardigrades fail to recover. Using the single cell gel electrophoresis (comet assay) technique to study the effect of anhydrobiosis on the integrity of deoxyribonucleic acid, we showed that the DNA in storage cells of the tardigrade Milnesium tardigradum was well protected during transition from the active into the anhydrobiotic state. Specimens of M. tardigradum that had been desiccated for two days had only accumulated minor DNA damage (2.09 ± 1.98% DNA in tail, compared to 0.44 ± 0.74% DNA in tail for the negative control with active, hydrated animals). Yet the longer the anhydrobiotic phase lasted, the more damage was inflicted on the DNA. After six weeks in anhydrobiosis, 13.63 ± 6.41% of DNA was found in the comet tail. After ten months, 23.66 ± 7.56% of DNA was detected in the comet tail. The cause for this deterioration is unknown, but oxidative processes mediated by reactive oxygen species are a possible explanation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号