首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure and solvent interactions of malate dehydrogenase from Halobacterium marismortui in multimolar KCl solvents are found to be similar to those in multimolar NACl solvents reported previously (G. Zaccai, E. Wachtel and H. Eisenberg, J. Mol. Biol. 190 (1986) 97). KCl rather than NaCl is predominant in physiological medium. At salt concentrations up to about 3.0 M, the protein (a dimer of M 87000 g/mol) can be considered to occupy an invariant volume in which it is associated with about 4100 molecules of water and about 520 molecules of salt. At very low resolution, the enzyme particle appears to have a compact protein core and protruding protein parts in interaction with the water and salt components, structural features that are not observed in non-halophilic mitochondrial malate dehydrogenase. The above conclusions were drawn from the analysis of neutron scattering and ultracentrifugation data, and the complementarity of these approaches is discussed extensively.  相似文献   

2.
The activity, stability and structure in solution of polypeptide elongation factor hEF-Tu from Halobacterium marismortui have been investigated. The protein is stable in aqueous solutions only at high concentrations of NaCl, KCl or ammonium sulphate, whereas it is more active in exchanging GDP at lower salt concentrations. It is more active and stable at lower pH values than is non-halophilic EF-Tu. The structure in solution of the protein was determined by complementary density, ultracentrifugation, dynamic light-scattering and neutron-scattering measurements. The protein has large hydration interactions, similar to those of other halophilic proteins: 0.4 (+/- 0.1) g of water and 0.20 (+/- 0.05) g of KCl associated with 1 g of protein, with a water/KCl mass ratio always remaining close to 2. The kinetics of inactivation at low salt concentrations showed a stabilizing effect of NaCl when compared to KCl. At low salt concentration, inactivation, protein unfolding and aggregation were strongly correlated. The results suggest that the stabilization model proposed for halophilic malate dehydrogenase by Zaccai et al., involving extensive protein interactions with hydrated salt ions, is also valid for hEF-Tu.  相似文献   

3.
Stabilization of halophilic malate dehydrogenase   总被引:4,自引:0,他引:4  
Malate dehydrogenase from the extreme halophile, Halobacterium marismortui, is stable only in highly concentrated solutions of certain salts. Previous work has established that its physiological environment is saturated in KCl; it remains soluble is saturated NaCl or KCl solutions; also it unfolds in solutions containing less than 2.5 M-NaCl or -KCl, salt concentrations which are still relatively high. New data show that the structure of this enzyme can be stabilized in a range of high concentrations of Mg2+ or other "salting-in" ions, also with exceptional protein-solvent interactions. "Salting-in" ions, contrary to stabilizing protein structure, usually favour unfolding. These, and most other results concerning the structure, stability and solvent interactions of the protein cannot be understood in terms of the usual effects of salts on protein structure. In this paper, a novel stabilization model is proposed for halophilic malate dehydrogenase that can account for all observations so far. The model results from experiments on the protein in salt solutions chosen for their different effects on protein stability (potassium phosphate, a strongly "salting-out" agent, and MgCl2, which is "salting-in"), and previously published data from NaCl and KCl solutions (mildly "salting-out"). Enzymic activity and stability measurements were combined with neutron scattering, ultracentrifugation and quasi-elastic light-scattering experiments. The analysis showed that the structure of the protein in solution as well as the dominant stabilization mechanisms were different in different salt solutions in which this enzyme is active. Thus, in molar concentrations of phosphate ions, stabilization and hydration are similar to those of non-halophilic soluble proteins, in which the hydrophobic effect dominates. In high concentrations of KCl, NaCl or MgCl2, on the other hand, solution particles are formed in which the protein dimer interacts with large numbers of salt and water molecules (the mass of solvent molecules involved depends on the nature of the salt but it is approximately equivalent to the protein mass). It is proposed that, under these conditions, the hydrophobicity of the protein core is too weak to stabilize the folded structure and the main stabilization mechanism is the formation of co-operative hydrate bonds between the protein and hydrated salt ions. Model predictions are in agreement with all experimental results, such as the different numbers of solvent molecules found in the solution particles formed with different salts, the loss of the exceptional solvent interactions concomitant with unfolding at non-physiological salt concentrations, and the different temperature denaturation curves observed for different salt solutions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
5.
The MutS DNA mismatch protein recognizes heteroduplex DNAs containing mispaired or unpaired bases. We have examined the oligomerization of a MutS protein from Thermus aquaticus that binds to heteroduplex DNAs at elevated temperatures. Analytical gel filtration, cross-linking of MutS protein with disuccinimidyl suberate, light scattering, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry establish that the Taq protein is largely a dimer in free solution. Analytical equilibrium sedimentation showed that the oligomerization of Taq MutS involves a dimer-tetramer equilibrium in which dimer predominates at concentrations below 10 microM. The DeltaG(0)(2-4) for the dimer to tetramer transition is approximately -6.9 +/- 0.1 kcal/mol of tetramer. Analytical gel filtration of native complexes and gel mobility shift assays of an maltose-binding protein-MutS fusion protein bound to a short, 37-base pair heteroduplex DNA reveal that the protein binds to DNA as a dimer with no change in oligomerization upon DNA binding.  相似文献   

6.
Volume changes among the unfolded (U), native (N), and molten globule (MG) conformations of horse heart ferricytochrome c have been measured. U to N (pH 2 to pH 7) was determined in the absence of added salt to be -136 +/- 5 mL/mol protein. U to MG (pH 2, no added salt to pH 2, 0.5 M KCl) yielded + 100 +/- 6 mL/mol. MG to N was broken into two steps, N to NClx at pH 7 by addition of buffered KCl to buffered protein lacking added salt (NClx = N interacting with an unknown number, X, of chloride ions), and MG to NClx by jumping MG at pH 2 in 0.5 M KCl to pH7 at the same salt concentration. The delta V of N to NClx was -30.9 +/- 1.4 mL/mol protein, whereas MG to NClx entailed a delta V of -235 +/- 6 mL/mol. Within experimental error, the results add up to zero for a complete thermodynamic cycle. We believe this to be the first volumetric cycle to have been measured for the conformational transitions of a protein. The results are discussed in terms of hydration contributions from deprotonation of the protein, other hydration effects, and the formation and/or enlargement of packing defects in the protein's tertiary structure during the steps of folding.  相似文献   

7.
A protein isolated and purified from the outer membrane of the acidophilic, chemolithotrophic bacterium, Thiobacillus ferrooxidans with an oligomeric molecular weight of 90,000 Da (p90) was incorporated into phosphatidylethanolamine planar lipid bilayers. The protein formed slightly anionic channels in KCl solutions, with a conductance of 25 pS in 100 mM KCl. The current-voltage relationship was linear between +/- 60 mV, and the conductance was a saturating function of the salt concentration. These channels fluctuated from a single open to closed state at low potentials, but present flickering activity at higher potentials.  相似文献   

8.
An antiestrogen binding protein which binds [3H]tamoxifen (1-[4-(2-dimethylaminoethoxy)-phenyl]1,2-diphenylbut-1(Z)-ene) with high affinity (Kd = 1.1 X 10(-9) M) is present in high salt (0.6 M KCl) extracts of washed breast cancer tissue pellets. Its concentration in high salt extract is higher than its concentration in cytosol. The characteristics of the antiestrogen binding protein from cytosol and salt extract of breast cancer tissue are indistinguishable. It specifically binds triphenylethylene and other nonsteroidal antiestrogens and displays little or no binding affinity for estrogens, progesterone, dihydrotestosterone and cortisol. The antiestrogen binding protein is of unusually large size as judged by gel filtration on agarose 0.5 m and sedimentation analysis on 5-20% sucrose density gradients. Differential centrifugation studies indicate that it is not principally microsomal in origin. This protein is more thermostable than the estrogen receptor from which it can also be distinguished by ion exchange chromatography. The antiestrogen binding protein was eluted from DEAE-Sephacel by 0.05 M KCl indicating that it is less negatively charged than the estrogen receptor which was eluted by 0.1 M KCl. Lipoprotein fractionation of breast cancer cytosol using potassium bromide density gradients did not reveal specific antiestrogen binding activity associated with any recognized class of lipoprotein. Specific [3H]tamoxifen binding sites were pelleted in potassium bromide gradients consistent with the apparent large size of this protein. The physical characteristics of the antiestrogen binding protein in normal human tissue (myometrium) and neoplastic tissue (breast cancer) are remarkably similar, possibly reflecting a highly conserved structure.  相似文献   

9.
Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.  相似文献   

10.
BACKGROUND AND AIMS: Salinity can affect germination of seeds either by creating osmotic potentials that prevent water uptake or by toxic effects of specific ions. Most studies have only used monosaline solutions, although these limit the extent to which one can interpret the results or relate them to field conditions. The aim of this work was to evaluate the germination of Prosopis strombulifera seeds under increasing salinity by using the most abundant salts in central Argentina in monosaline or bisaline iso-osmotic solutions, or in solutions of mannitol and polyethylene glycol. METHODS: Seeds were allowed to germinate under controlled conditions in a germination chamber at 30 +/- 1 degrees C and at 80 % r.h. Salinizing agents were KCl, NaCl, Na(2)SO(4), K(2)SO(4), NaCl + Na(2)SO(4) and KCl + K(2)SO(4) and osmotic agents were polyethylene glycol 6000 and mannitol. Treatments for all osmotica consisted of 0.0, -0.4, -0.8, -1.2, -1.5, -1.9 and -2.2 MPa solutions. KEY RESULTS: The percentage of germination decreased as salinity increased. SO(4)(2-) in monosaline solutions, with osmotic potentials -1.2 MPa and lower, was more inhibitory than Cl(-) at iso-osmotic concentrations. This SO(4)(2-) toxicity was alleviated in salt mixtures and was more noticeable in higher concentrations. K(+) was more inhibitory than Na(+) independently of the accompanying anion. CONCLUSIONS: Different responses to different compositions of iso-osmotic salt solutions and to both osmotic agents indicate specific ionic effects. This study demonstrates that the germination of P. strombulifera is strongly influenced by the nature of the ions in the salt solutions and their interactions. Comparative studies of Cl(-) and SO(4)(2-) effects and the interaction between SO(4)(2-) and Cl(-) in salt mixtures indicate that extrapolation of results obtained with monosaline solutions in the laboratory to field conditions can be speculative.  相似文献   

11.
The pH- and electrolyte-dependent charging of collagen I fibrils was analyzed by streaming potential/streaming current experiments using the Microslit Electrokinetic Setup. Differential scanning calorimetry and circular dichroism spectroscopy were applied in similar electrolyte solutions to characterize the influence of electrostatic interactions on the conformational stability of the protein. The acid base behavior of collagen I was found to be strongly influenced by the ionic strength in KCl as well as in CaCl(2) solutions. An increase of the ionic strength with KCl from 10(-4) M to 10(-2) M shifts the isoelectric point (IEP) of the protein from pH 7.5 to 5.3. However, a similar increase of the ionic strength in CaCl(2) solutions shifts the IEP from 7.5 to above pH 9. Enhanced thermal stability with increasing ionic strength was observed by differential scanning calorimetry in both electrolyte systems. In line with this, circular dichroism spectroscopy results show an increase of the helicity with increasing ionic strength. Better screening of charged residues and the formation of salt bridges are assumed to cause the stabilization of collagen I with increasing ionic strength in both electrolyte systems. Preferential adsorption of hydroxide ions onto intrinsically uncharged sites in KCl solutions and calcium binding to negatively charged carboxylic acid moieties in CaCl(2) solutions are concluded to shift the IEP and influence the conformational stability of the protein.  相似文献   

12.
G A Thomas  W L Peticolas 《Biochemistry》1984,23(14):3202-3207
The four self-complementary tetradeoxynucleotides which contain only cytosine and guanine are 5'-d-(CpGpCpG)-3', 5'-d(CpCpGpG)-3', 5'-d(GpCpGpC)-3', and 5'-d(GpGpCpC)-3'. The Raman spectra of aqueous solutions (about 0.05 M in monomer) of these tetranucleotides at pH 7 and 2 degrees C show clearly that these self-complementary tetranucleotides form double-stranded duplex structures of the canonical B type when the NaCl concentration is 0.5 M NaCl. If the temperature is raised to 50 degrees C, the Raman spectra show that in each case the double-helical B form melts in a non-cooperative way to a disordered single-chain form. On the other hand, if the salt concentration is raised to saturation, the Raman spectrum of only one of these four tetranucleotide solutions at 2 degrees C is changed in any substantial way. The Raman spectrum of the tetranucleotide 5'-d(CpGpCpG)-3' at 2.2 degrees C and at 4 M or higher salt concentration strongly resembles that of double-helical Z-form poly(dC-dG) taken under similar conditions. We conclude that the tetramer 5'-d(CpGpCpG)-3' is the only self-complementary double-helical tetranucleotide containing only cytosine and guanine in which the B-Z transition can be induced by increasing the salt concentration. This tetramer has several types of stacking interactions which differ markedly from stacking interactions in the other tetramers and may account for the enhanced stabilization of its Z conformation.  相似文献   

13.
A quantitative characterization of the thermodynamic effects due to interactions of salt ions and urea in aqueous solution is needed for rigorous analyses of the effects of changing urea concentration on biopolymer processes in solutions that also contain salt. Therefore, we investigate preferential interactions in aqueous solutions containing KCl and urea by using vapor pressure osmometry (VPO) to measure osmolality as a function of the molality of urea (component 3) over the range 0.09相似文献   

14.
A method to estimate protein in detergent-solubilized homogenates of lipid-rich biological samples (e.g., adipose tissue, myelin-enriched fractions of sheep brain) is described. The method is also suitable for samples in which protein is present as a protein-detergent complex. The method involves homogenization of tissue in the presence of a suitable detergent and KCl. Protein is then estimated in an aliquot of this homogenate by Lowry's method in the presence of excess sodium dodecyl sulfate, the solutions being clarified by extraction with ethyl acetate. Protein solubilization by Triton X-100 from adipose tissue was biphasic, extracting two to three times more protein under optimum conditions [1.7 +/- 0.1% (v/v) Triton X-100 and 0.75 M KCl], compared with homogenization without salt and detergent. Unlike adipose tissue, protein solubilization from myelin-enriched fractions of sheep brain peaked at 1% (v/v) Triton X-100, resulting in the extraction of approximately three times more protein than homogenization in the absence of detergent and salt.  相似文献   

15.
SecB is a cytosolic tetrameric chaperone in Escherichia coli, which maintains polypeptides, destined for export in a translocation competent state. The thermodynamics of unfolding of SecB was studied as a function of protein concentration, by using high sensitivity-differential scanning calorimetry and spectroscopic methods. The thermal unfolding of tetrameric SecB is reversible and can be well described as a two-state transition in which the folded tetramer is converted directly to unfolded monomers. Increasing the pH decreases the stability of the tetramer significantly, the T(m) changing from 341.3 K at pH 6.5 to 332.6 K at pH 9.5. The value of DeltaC(p) obtained from measurements of DeltaH(m) as a function of T(m) was 10.7 +/- 0.7 kcal mol(-1) K(-1). The value of DeltaC(p) is among the highest measured for a multimeric protein. At 298 K, pH 7.4, the DeltaG degrees (u) for the SecB tetramer is 27.9 +/- 2 kcal mol(-1). Denaturant-mediated unfolding of SecB was found to be irreversible. The reactivity of the four solvent-exposed free thiols in tetrameric SecB is salt dependent. The kinetics of reactivity suggests that these four cysteines are in close proximity to each other and that these residues on each monomer are in chemically identical environments. The thermodynamic data suggest that SecB is a stable, well-folded, and tightly packed tetramer and that substrate binding occurs at a surface site rather than at an interior cavity.  相似文献   

16.
G Zaccai  S Y Xian 《Biochemistry》1988,27(4):1316-1320
Yeast tRNA(Phe) was studied in different salt-containing solvents by UV absorbance and small-angle neutron scattering (SANS). This extends results obtained previously in NaCl and KCl solutions [Li, Z.-Q., Giegé, R., Jacrot, B., Oberthür, R., Thierry, J. C., & Zaccai, G. (1983) Biochemistry 22, 4380-4388]. As expected, at low concentrations of all salts studied, the tRNA molecule is unfolded. The importance of specific counterion interactions and the flexibility of the macromolecule are emphasized by the observation that it cannot take up its folded structure in N(CH3)4Cl solvents, even when that salt concentration is increased to 1 M, in the absence of Mg ions. In CsCl solvents, on the other hand, the folded conformation is obtained in salt concentrations above about 0.2 M, similar to NaCl or KCl. By a comparison of SANS results in CsCl H2O and CsCl 2H2O solvents with the data from NaCl and KCl solvents, thermodynamic and structural parameters were derived for the solvated macromolecule. All the data are accounted for, quantitatively, by a model for the particle in NaCl, KCl, or CsCl solution made up of tRNA76-, closely associated with 76 positive hydrated counterions, surrounded by an aqueous solvent layer that excludes salt (and, therefore, of density different from that of bulk solvent). The mass of water in that layer depends on salt concentration, and the values found are consistent with those predicted by the Donnan effect.  相似文献   

17.
The anisotropy of the fluorescence of dansyl (5-dimethylaminonaphthalene-1- sulphonyl) groups covalently attached to human platelet factor 4 was used to detect the macromolecular compounds formed when the factor was mixed with heparin. At low heparin/protein ratios a very-high-molecular-weight compound (1) was formed that dissociated to give a smaller compound (2) when excess heparin was added. 2. A large complex was also detected as a precipitate that formed at high protein concentrations in chloride buffer. It contained 15.7% (w/w) polysaccharide, equivalent to four or five heparin tetrasaccharide units per protein tetramer. In this complex, more than one molecule of protein binds to each heparin molecule of molecular weight greater than about 6 X 10(3).3. The stability of these complexes varied with pH, salt concentration and the chain length of the heparin. The limit complexes found in excess of the larger heparins consisted of only one heparin molecule per protein tetramer, and the failure to observe complexes with four heparin molecules/protein tetramer is discussed.  相似文献   

18.
The presence of a macromolecule which binds androgen with a high affinity and a low capacity was demonstrated in the cytosol of the lacrimal glands of male and female rats. Evidence was found that this macromolecule was a protein by treatment with protease, trypsin or heat. A specific 8-8.5 S peak was obtained in both sexes by glycerol gradient centrifugation in low salt condition, whereas a specific 5.2 S peak was found in high salt condition. This protein could bind to DNA-cellulose after treatment of androgen-cytosol complexes by warming (25 degrees C 15 min) or exposure under high salt (0.4 M KCl). These results suggested that this protein was an androgen receptor.  相似文献   

19.
The cytoplasmic C-terminal domain (CTD) of KcsA, a bacterial homotetrameric potassium channel, is an amphiphilic domain that forms a helical bundle with four-fold symmetry mediated by hydrophobic and electrostatic interactions. Previously we have established that a CTD-derived 34-residue peptide associates into a tetramer in a pH-dependent manner (Kamnesky et al., JMB 2012;418:237-247). Here we further investigate the molecular determinants of tetramer formation in the CTD by characterizing the kinetics of monomer-tetramer equilibrium for 10 alanine mutants using NMR, sedimentation equilibrium (SE) and molecular dynamics simulation. NMR and SE concur in finding single-residue contributions to tetramer stability to be in the 0.5 to 3.5 kcal/mol range. Hydrophobic interactions between residues lining the tetramer core generally contributed more to formation of tetramer than electrostatic interactions between residues R147, D149 and E152. In particular, alanine replacement of residue R147, a key contributor to inter-subunit salt bridges, resulted in only a minor effect on tetramer dissociation. Mutations outside of the inter-subunit interface also influenced tetramer stability by affecting the tetramerization on-rate, possibly by changing the inherent helical propensity of the peptide. These findings are interpreted in the context of established paradigms of protein-protein interactions and protein folding, and lay the groundwork for further studies of the CTD in full-length KcsA channels.  相似文献   

20.
Restrictocin, a member of the alpha-sarcin family of site-specific endoribonucleases, uses electrostatic interactions to bind to the ribosome and to RNA oligonucleotides, including the minimal specific substrate, the sarcin/ricin loop (SRL) of 23S-28S rRNA. Restrictocin binds to the SRL by forming a ground-state E:S complex that is stabilized predominantly by Coulomb interactions and depends on neither the sequence nor structure of the RNA, suggesting a nonspecific complex. The 22 cationic residues of restrictocin are dispersed throughout this protein surface, complicating a priori identification of a Coulomb interacting surface. Structural studies have identified an enzyme-substrate interface, which is expected to overlap with the electrostatic E:S interface. Here, we identified restrictocin residues that contribute to binding in the E:S complex by determining the salt dependence [partial differential log(k 2/ K 1/2)/ partial differential log[KCl]] of cleavage of the minimal SRL substrate for eight point mutants within the protein designed to disrupt contacts in the crystallographically defined interface. Relative to the wild-type salt dependence of -4.1, a subset of the mutants clustering near the active site shows significant changes in salt dependence, with differences of magnitude being >or=0.4. This same subset was identified using calculated salt dependencies for each mutant derived from solutions to the nonlinear Poisson-Boltzmann equation. Our findings support a mechanism in which specific residues on the active site face of restrictocin (primarily K110, K111, and K113) contribute to formation of the E:S complex, thereby positioning the SRL substrate for site-specific cleavage. The same restrictocin residues are expected to facilitate targeting of the SRL on the surface of the ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号