首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Undifferentiated stem cells may support a greater development of cloned embryos compared with differentiated cell types due to their ease of reprogramming during the nuclear transfer (NT) process. Hence, stem cells may be more suitable as nuclear donor cells for NT procedures than are somatic cells. Embryonic germ (EG) cells are undifferentiated stem cells that are isolated from cultured primordial germ cells (PGC) and can differentiate into several cell types. In this study, the in vitro development of NT embryos using porcine EG cells and their derivative neural precursor (NP) cells was investigated, thus eliminating any variation in genetic differences. The rates of fusion did not differ between NT embryos from EG and NP cells; however, the rate of cleavage in NT embryos derived from EG cells was significantly higher (p < 0.05) than that from NP cells (141/247 [57.1%] vs. 105/228 [46.1%]). Similarly, the rate of blastocyst development was significantly higher (P < 0.05) in NT using EG cells than the rate using NP cells (43/247 [17.4%] vs. 18/228 [7.9%]). The results obtained from the present study in pigs demonstrate a reduced capability for nuclear donor cells to be reprogrammed following the differentiation of porcine EG cells. Undifferentiated EG cells may be more amenable to reprogramming after reconstruction compared with differentiated somatic cells.  相似文献   

2.
This study was performed to produce transgenic pigs expressing the human complement regulatory protein CD59 (hCD59) using the nuclear transfer (NT) of embryonic germ (EG) cells, which are undifferentiated stem cells derived from primordial germ cells. Because EG cells can be cultured indefinitely in an undifferentiated state, they may provide an inexhaustible source of nuclear donor cells for NT to produce transgenic pigs. A total of 1980 NT embryos derived from hCD59-transgenic EG cells were transferred to ten recipients, resulting in the birth of fifteen piglets from three pregnancies. Among these offspring, ten were alive without overt health problems. Based on PCR analysis, all fifteen piglets were confirmed as hCD59 transgenic. The expression of the hCD59 transgene in the ten living piglets was verified by RT-PCR. Western analysis showed the expression of the hCD59 protein in four of the ten RT-PCR-positive piglets. These results demonstrate that hCD59-transgenic pigs could effectively be produced by EG cell NT and that such transgenic pigs may be used as organ donors in pig-to-human xenotransplantation.  相似文献   

3.
We examined whether porcine nuclear transfer (NT) embryos carrying somatic cells have a developmental potential and NT embryos carrying transformed fibroblasts express transgenes in the preimplantation stages. In Experiment 1, different activation methods were applied to NT embryos and the development rates were examined. Relative to A23187 only or A23187/6-DMAP, electrical pulse made a significant increase in both cleavage rate (58.1+/-13.9 or 60.7+/-6.3 vs. 74.9+/-7.5%) and development rate of NT embryos to the blastocyst stage (2.2+/-2.8 or 2.2+/-1.5 vs. 11.0+/-4.1%). In Experiment 2, in vitro developmental competence of NT embryos was investigated. The developmental rate to the blastocyst stage of NT embryos (9.9+/- 2.4% for cumulus cells and 9.8+/-1.6% for fibroblast cells) was significantly lower than that (22.9+/-3.5%) of IVF-derived embryos (P<0.01). NT blastocysts derived from either cumulus (28.9+/-11.4, n = 26) or fibroblast cells (30.2+/-9.9, n = 27) showed smaller mean nuclei numbers than IVF-derived blastocysts (38.6+/-10.4, n = 62) (P<0.05). In Experiment 3, nuclear transfer of porcine fibroblasts expressing the GFP (green fluorescent protein) gene resulted in green blastocysts without losing developmental potential. These results suggest that porcine embryos reconstructed by somatic cell nuclear transfer are capable of developing to preimplantation stage. We conclude that somatic cells expressing exogenous genes can be used as nuclei donors in the production of NT-mediated transgenic pig.  相似文献   

4.
Bone marrow mesenchymal stem cells (MSCs) are adult pluripotent cells that are considered to be an important resource for human cell-based therapies. Understanding the clinical potential of MSCs may require their use in preclinical large-animal models, such as pigs. The objectives of the present study were 1) to establish porcine MSC (pMSC) cultures; 2) to optimize in vitro pMSC culture conditions, 3) to investigate whether pMSCs are amenable to genetic manipulation, and 4) to determine pMSC reprogramming potential using somatic cell nuclear transfer (SCNT). The pMSCs isolated from bone marrow grew, attached to plastic with a fibroblast-like morphology, and expressed the mesenchymal surface marker THY1 but not the hematopoietic marker ITGAM. Furthermore, pMSCs underwent lipogenic, chondrogenic, and osteogenic differentiation when exposed to specific inducing conditions. The pMSCs grew well in a variety of media, and proliferative capacity was enhanced by culture under low oxygen atmosphere. Transient transduction of pMSCs and isogenic skin fibroblasts (SFs) with a human adenovirus carrying the gene for green fluorescent protein (GFP; Ad5-F35eGFP) resulted in more pMSCs expressing GFP compared with SFs. Cell lines with stable genetic modifications and extended expression of transgene were obtained when pMSCs were transfected with a plasmid containing the GFP gene. Infection of pMSC and SF cell lines by an adeno-associated virus resulted in approximately 12% transgenic cells, which formed transgenic clonal lines after propagation as single cells. The pMSCs can be expanded in vitro and used as nuclear donors to produce SCNT embryos. Thus, pMSCs are an attractive cell type for large-animal autologous and allogenic cell therapy models and for SCNT transgenesis.  相似文献   

5.
The production of animals by somatic cell nuclear transfer (SCNT) is inefficient, with approximately 2 % of micromanipulated oocytes going to term and resulting in live births. However, it is the most commonly used method for the generation of cloned transgenic livestock as it facilitates the attainment of transgenic animals once the nuclear donor cells are stably transfected and more importantly as alternatives methods of transgenesis in farm animals have proven even less efficient. Here we describe piggyBac-mediated transposition of a transgene into porcine primary cells and use of these genetically modified cells as nuclear donors for the generation of transgenic pigs by SCNT. Gene transfer by piggyBac transposition serves to provide an alternative approach for the transfection of nuclear donor cells used in SCNT.  相似文献   

6.
The present study examined the effects of genetic manipulation to the donor cell and different types of transgenic donor cells on developmental potential of bovine nuclear transfer (NT) embryos. Four types of bovine somatic cells, including granulosa cells, fetal fibroblasts, fetal oviduct epithelial cells and fetal ovary epithelial cells, were transfected with a plasmid (pCE-EGFP-Ires-Neo-dNdB) containing the enhanced green fluorescent protein (EGFP) and neomycin-resistant (Neor) genes by electroporation. After 14 days selection with 800 μg/mL G418, transgenic cell lines from each type of somatic cells were obtained. Nontransgenic granulosa cells and all 4 types of transgenic somatic cells were used as nuclear donor to produce transgenic embryos by NT. There was no significant difference in development rates to the blastocyst stage for NT embryos from transgenic and nontransgenic granulosa cells (44.6% and 42.8%, respectively), and transfer of NT embryos derived from transgenic and nontransgenic granulosa cells to recipients resulted in similar pregnancy rates on day 90 (19% and 25%, respectively). The development rates to the blastocyst stage of NT embryos were significantly different among different types of transgenic donor cells (P<0.05). Blastocyst rates from fetal oviduct epithelial cell and granulosa cell (49.1% and 44.6%, respectively) were higher than those from fetal fibroblast (32.7%) and fetal ovary epithelial cell (22.5%). These results suggest that (i) genetic manipulation to donor cells has no negative effect on in vitro and early in vivo developmental competence of bovine NT embryos and (ii) granulosa and fetal oviduct epithelial cells can be used to produce transgenic bovine NT embryos more efficiently. In addition, GFP can be used to select transgenic NT embryos as a non-invasive selective marker.  相似文献   

7.
Transgenic technology and applications in swine.   总被引:5,自引:0,他引:5  
The introduction of foreign DNA into the genome of livestock and its stable integration into the germ line has been a major technical advance in agriculture. Production of transgenic livestock provides a method to rapidly introduce "new" genes into cattle, swine, sheep and goats without crossbreeding. It is a more extreme methodology, but in essence, not really different from crossbreeding or genetic selection in its result. Several recent developments will profoundly impact the use of transgenic technology in livestock production. These developments are: 1) the ability to isolate and maintain in vitro embryonic stem (ES) cells from preimplantation embryos, embryonic germ (EG) and somatic cells from fetuses; and somatic cells from adults, and 2) the ability to use these embryonic and somatic cells as nuclei donors in nuclear transfer or "cloning" strategies. Cell based (ES, EG, and somatic cells) strategies have several distinct advantages for use in the production of transgenic livestock that cannot be attained using pronuclear injection of DNA. There are many potential applications of transgenic methodology to develop new and improved strains of livestock. Practical applications of transgenesis in livestock production include enhanced prolificacy and reproductive performance, increased feed utilization and growth rate, improved carcass composition, improved milk production and/or composition and increased disease resistance. Development of transgenic farm animals will allow more flexibility in direct genetic manipulation of livestock.  相似文献   

8.
9.
Puromycin N-acetyl transferase gene (pac), of which the gene product catalyzes antibiotic puromycin (an effective inhibitor of protein synthesis), has been widely used as a dominant selection marker in embryonic stem (ES) cell-mediated transgenesis. The present study is the first to report on the usefulness of puromycin for production of enhanced green fluorescent protein (EGFP) transgenic piglets after somatic cell cloning and embryo transfer. Somatic cells isolated from porcine fetuses at 73 days of gestation were immediately electroporated with a transgene (pCAG-EGFPac) carrying both EGFP cDNA and pac. This procedure aims to avoid aging effects thought to be generated during cell culture. The recombinant cells were selected with puromycin at a low concentration (2 microg/ml), cultured for 7 days, and then screened for EGFP expression before somatic cell cloning. The manipulated embryos were transplanted into the oviducts of 14 foster mother sows. Four of the foster sows became pregnant and nine piglets were delivered. Of the nine piglets, eight died shortly after birth and one grew healthy after weaning. Results indicate that puromycin can be used for the selection of recombinant cells from noncultured cells, and moreover, may confer the production of genetically engineered newborns via nuclear transfer techniques in pigs.  相似文献   

10.
Genetically modified animals have many poten-tial applications in basic research, human medicine and agriculture. Pronuclear DNA microinjection has been almost the only practical means of producing transgenic animals during the last 20 years, but the low efficiency (1%—5%)[1] of this method has actu-ally been the obstacle that hampered its further appli-cation in animal biotechnology. The birth of Dolly[2], the first somatically cloned animal, made it possible to produce transgenic animals b…  相似文献   

11.
Efficient transgenesis in farm animals by lentiviral vectors   总被引:16,自引:0,他引:16       下载免费PDF全文
Microinjection of DNA is now the most widespread method for generating transgenic animals, but transgenesis rates achieved this way in higher mammals are extremely low. To address this longstanding problem, we used lentiviral vectors carrying a ubiquitously active promoter (phosphoglycerate kinase, LV-PGK) to deliver transgenes to porcine embryos. Of the 46 piglets born, 32 (70%) carried the transgene DNA and 30 (94%) of these pigs expressed the transgene (green fluorescent protein, GFP). Direct fluorescence imaging and immunohistochemistry showed that GFP was expressed in all tissues of LV-PGK transgenic pigs, including germ cells. Importantly, the transgene was transmitted through the germ-line. Tissue-specific transgene expression was achieved by infecting porcine embryos with lentiviral vectors containing the human keratin K14 promoter (LV-K14). LV-K14 transgenic animals expressed GFP specifically in basal keratinocytes of the skin. Finally, infection of bovine oocytes after and before in vitro fertilization with LV-PGK resulted in transgene expression in 45% and 92% of the infected embryos, respectively.  相似文献   

12.
The objective of this study was to examine whether the ICSI-mediated gene transfer method using in vitro matured oocytes and frozen sperm head could actually produce transgenic pigs. We also aimed at examining whether transgenic pigs can be cloned from somatic cells of a transgenic pig generated by the ICSI-mediated method. A bicistronic gene constituted of the human albumin (hALB) and enhanced green fluorescent protein (EGFP) genes was introduced into pig oocytes by the ICSI-mediated method. Transfer of 702 embryos produced by the ICSI-mediated method into five gilts resulted in 4 pregnancies. When three of the recipients, which had received total 312 of the embryos were autopsied, 32 including 1 transgenic fetuses were obtained. One of the recipients gave birth to three live piglets including one transgenic pig, showing a strong green fluorescence in the eyeballs, oral mucous membrane and subcutaneous tissues. Fluorescent microscopy revealed uniform GFP expression in all cell lines established from kidney, lung and muscle of the founder transgenic pig obtained. Nuclear transfer of these cells resulted in stable in vitro development of cloned embryos into the blastocyst stage, ranging from 12.9 to 19.8%. When 767 of the nuclear transfer embryos were transferred to 5 recipients, all became pregnant and gave birth to a total of six live transgenic-clones. The transgene copy number and integrity in the founder pig were maintained in the primary culture cells established from the founder as well as in the clones produced from these cells. Our study demonstrates that the ICSI-mediated gene transfer is an efficient and practical method to produce transgenic pigs, using frozen sperm heads and in vitro matured oocytes. It was also shown that combination of ICSI-mediated transgenesis and nuclear transfer is a feasible technology of great potential in transgenic pig production.  相似文献   

13.
The aim of the present study was to determine whether porcine preadipocytes can be efficient donor cells for somatic cell nuclear transfer (SCNT) in pigs. Primary culture of porcine preadipocytes was established by de-differentiating mature fat cells taken from an adult pig. The cell cycle of the preadipocytes could be synchronized by serum starvation for 1 day, with a higher efficiency than control fetal fibroblasts. Incidence of premature chromosome condensation following nuclear transfer (NT) of preadipocytes was as high as that observed after NT with fetal fibroblasts. In vitro developmental rate of the NT embryos reconstructed with preadipocyte was equivalent to that of the fetal fibroblast derived embryos. Transfer of 732 NT embryos with preadipocytes to five recipients gave rise to five cloned piglets. These data demonstrate that preadipocyites collected from an adult pig are promising nuclear donor cells for pig cloning.  相似文献   

14.
Genetically engineered pigs serve as excellent biomedical and agricultural models. To date, the most reliable way to generate genetically engineered pigs is via somatic cell nuclear transfer (SCNT), however, the efficiency of cloning in pigs is low (1–3%). Somatic cells such as fibroblasts frequently used in nuclear transfer utilize the tricarboxylic acid cycle and mitochondrial oxidative phosphorylation for efficient energy production. The metabolism of somatic cells contrasts with cells within the early embryo, which predominately use glycolysis. We hypothesized that fibroblast cells could become blastomere‐like if mitochondrial oxidative phosphorylation was inhibited by hypoxia and that this would result in improved in vitro embryonic development after SCNT. In a previous study, we demonstrated that fibroblasts cultured under hypoxic conditions had changes in gene expression consistent with increased glycolytic/gluconeogenic metabolism. The goal of this pilot study was to determine if subsequent in vitro embryo development is impacted by cloning porcine embryonic fibroblasts cultured in hypoxia. Here we demonstrate that in vitro measures such as early cleavage, blastocyst development, and blastocyst cell number are improved (4.4%, 5.5%, and 17.6 cells, respectively) when donor cells are cultured in hypoxia before nuclear transfer. Survival probability was increased in clones from hypoxic cultured donors compared to controls (8.5 vs. 4.0 ± 0.2). These results suggest that the clones from donor cells cultured in hypoxia are more developmentally competent and this may be due to improved nuclear reprogramming during somatic cell nuclear transfer.  相似文献   

15.
Modelling of human disease in genetically engineered pigs provides unique possibilities in biomedical research and in studies of disease intervention. Establishment of methodologies that allow efficient gene insertion by non-viral gene carriers is an important step towards development of new disease models. In this report, we present transgenic pigs created by Sleeping Beauty DNA transposition in primary porcine fibroblasts in combination with somatic cell nuclear transfer by handmade cloning. Göttingen minipigs expressing green fluorescent protein are produced by transgenesis with DNA transposon vectors carrying the transgene driven by the human ubiquitin C promoter. These animals carry multiple copies (from 8 to 13) of the transgene and show systemic transgene expression. Transgene-expressing pigs carry both transposase-catalyzed insertions and at least one copy of randomly inserted plasmid DNA. Our findings illustrate critical issues related to DNA transposon-directed transgenesis, including coincidental plasmid insertion and relatively low Sleeping Beauty transposition activity in porcine fibroblasts, but also provide a platform for future development of porcine disease models using the Sleeping Beauty gene insertion technology.  相似文献   

16.
In vitro transfection of cultured cells combined with nuclear transfer currently is the most effective procedure to produce transgenic livestock. In the present study, bovine primary fetal fibroblasts were transfected with a green fluorescent protein (GFP)-reporter transgene and used as nuclear donor cells in oocyte reconstructions. Because cell synchronization protocols are less effective after transfection, activated oocytes may be more suitable as hosts for nuclear transfer. To examine the role of host cytoplasm on transgene expression and developmental outcome, GFP-expressing fibroblasts were fused to oocytes reconstructed either before (metaphase) or after (telophase) activation. Expression of GFP was examined during early embryogenesis, in tissues of cloned calves, and again during embryogenesis, after passage through germ line using semen from the transgenic cloned offspring. Regardless of the kind of host cytoplasm used, GFP became detectable at the 8- to 16-cell stage, approximately 80 h after reconstruction, and remained positive at all later stages. After birth, although cloned calves obtained through both procedures expressed GFP in all tissues examined, expression levels varied both between tissues and between cells within the same tissue, indicating a partial shutdown of GFP expression during cellular differentiation. Moreover, nonexpressing fibroblasts derived from transgenic offspring were unable to direct GFP expression after nuclear transfer and development to the blastocyst stage, suggesting an irreversible silencing of transgenes. Nonetheless, GFP was expressed in approximately half the blastocysts obtained with sperm from a transgenic clone, confirming transmission of the transgene through the germ line.  相似文献   

17.
Porcine embryonic fibroblasts (PEF) are important as donor cells for nuclear transfer for generation of genetically modified pigs. In this study, we determined an optimal protocol for transfection of PEF with the Amaxa Nucleofection system, which directly transfers DNA into the nucleus of cells, and compared its efficiency with conventional lipofection and electroporation. Cell survival and transfection efficiency were assessed using dye-exclusion assay and a green fluorescent protein (GFP) reporter construct, respectively. Our optimized nucleofection parameters yielded survival rates above 60%. Under these conditions, FACS analysis demonstrated that 79% of surviving cells exhibited transgene expression 48 h after nucleofection when program U23 was used. This efficiency was higher than that of transfection of PEFs with electroporation (ca. 3-53%) or lipofection (ca. 3-8%). Transfected cells could be expanded as stably transgene-expressing clones over a month. When porcine nuclear transfer (NT) was performed using stable transformant expressing GFP as a donor cell, 5-6% of reconstituted embryos developed to blastocysts, from which 30-50% of embryos exhibited NT-embryo-derived green fluorescence. Under the conditions evaluated, nucleofection exhibited higher efficiency than conventional electroporation and lipofection, and may be a useful alternative for generation of genetically engineered pigs through nuclear transfer.  相似文献   

18.
牛胚胎生殖细胞的分离与培养   总被引:2,自引:0,他引:2  
胚胎生殖细胞 (Embryonicgermcells,EG)是由生殖嵴原始生殖细胞 (Primordialgermcells,PGCs)中分离得到的一种未分化而多潜能的干细胞。牛EG细胞的研究在EG细胞核移植、转基因及建立生物反应器方面具有广阔的应用前景。本研究从 2 9- 70日龄牛胎儿PGCs分离得到EG细胞 ,经过抑制分化培养 ,其中一个细胞系传至 6代。所分离得到的EG细胞具有典型的EG细胞形态 ,AP及PAS染色呈阳性 ,核型正常 ,同时观察到这些细胞在体外进行自发性分化 ,可形成类胚体、成纤维样细胞及神经样细胞  相似文献   

19.
《Theriogenology》2009,71(9):1431-1438
We used nuclear transfer (NT) to develop transgenic female pigs harboring goat beta-casein promoter/human granulocyte-macrophage colony stimulating factor (hGM-CSF). The expression of hGM-CSF was specific to the mammary gland, and the glycosylation-derived size heterogeneity corresponded to that of the native human protein. Although various cell types have been used to generate cloned animals, little is currently known about the potential use of fibroblasts derived from a cloned fetus as donor cells for nuclear transfer. The developmental potential of porcine cloned fetal fibroblasts transfected with hGM-CSF was evaluated in the present study. Cloned fetal fibroblasts were isolated from a recipient following the transplantation of NT embryos. The cells were transfected with both hGM-CSF and the neomycin resistance gene in order to be used as donor cells for NT. Reconstructed embryos were implanted into six sows during estrus; two of the recipient sows delivered seven healthy female piglets with the hGM-CSF gene (confirmed with PCR and fluorescent in situ hybridization) and microsatellite analysis confirmed that the clones were genetically identical to the donor cells. The expression of hGM-CSF was strong in the mammary glands of a transgenic pig that died a few days prior to parturition (110 d after AI). These results demonstrated that somatic cells derived from a cloned fetus can be used to produce recloned and transgenic pigs.  相似文献   

20.
Park KW  Choi KM  Hong SP  Han GS  Yoo JY  Jin DI  Seol JG  Park CS 《Theriogenology》2008,70(9):1431-1438
We used nuclear transfer (NT) to develop transgenic female pigs harboring goat beta-casein promoter/human granulocyte-macrophage colony stimulating factor (hGM-CSF). The expression of hGM-CSF was specific to the mammary gland, and the glycosylation-derived size heterogeneity corresponded to that of the native human protein. Although various cell types have been used to generate cloned animals, little is currently known about the potential use of fibroblasts derived from a cloned fetus as donor cells for nuclear transfer. The developmental potential of porcine cloned fetal fibroblasts transfected with hGM-CSF was evaluated in the present study. Cloned fetal fibroblasts were isolated from a recipient following the transplantation of NT embryos. The cells were transfected with both hGM-CSF and the neomycin resistance gene in order to be used as donor cells for NT. Reconstructed embryos were implanted into six sows during estrus; two of the recipient sows delivered seven healthy female piglets with the hGM-CSF gene (confirmed with PCR and fluorescent in situ hybridization) and microsatellite analysis confirmed that the clones were genetically identical to the donor cells. The expression of hGM-CSF was strong in the mammary glands of a transgenic pig that died a few days prior to parturition (110 d after AI). These results demonstrated that somatic cells derived from a cloned fetus can be used to produce recloned and transgenic pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号