首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously described a monoclonal antibody, MAb DC3:H10, which recognized an epitope preferentially expressed on the surface ofCandida albicans germ tubes. In the present study we examined the MAb-reactive material further. Immunoblot analysis of the material purified partially by Sephadex G-200 and DEAE-Sephacel chromatography reacted with antibodies to theC. albicans C3d receptor (CR2). In an ELISA, MAb DC3:H10 captured antigen that was recognized by both anti-CR2 and anti-mp58 fibrinogen binding mannoprotein polyclonal antibodies. The MAb DC3:H10 failed to compete with either of these antisera in an ELISA. Indirect immunofluo-rescence (IIF) analysis showed differences in surface distribution for the MAb DC3:H10, the CR2, and the mp 58 epitopes. Dual labeling IIF experiments showed MAb DC3:H10 binding to be unaffected by binding of fibrinogen or anti-mp58 antibody. However, the binding patterns of MAb DC3:H10 were modified in the presence of anti-CR2 antibody, suggesting a complex interaction between these cell wall components.  相似文献   

2.
The human monoclonal antibody AE6F4 specifically reacts with human lung cancer tissues but does not with normal tissues. This monoclonal antibody recognizes a cytosolic 31 kDa antigen in the cancer cells. In a previous study, we elucidated that the 31 kDa antigen belonged to a family of proteins collectively designated as 14-3-3 proteins, which were known as protein kinase-dependent activators of tyrosine/trytophan hydroxylases, or protein kinase C inhibitor proteins. Here we report molecular cloning of the 31 kDa antigen from the human lung adenocarcinoma cell line, A549. Sequencing analysis indicates that the cloned cDNA is identical to that of previously reported human placental cytosolic phospholipase A2 (cPLA2), which is also a member of the 14-3-3 protein family. Western analysis demonstrated that a 31 kDa recombinant cPLA2 expressed in monkey COS cells was recognized by the AE6F4 monoclonal antibody. Binding of the monoclonal antibody to the recombinant cPLA2 was abolished when treated with sodium periodate, suggesting that not only are carbohydrate chains associated with the cPLA2, but they also play a crucial role in antigen recognition by the monoclonal antibody.  相似文献   

3.
Avian  M.  Del Negro  P.  Sandrini  L. Rottini 《Hydrobiologia》1991,216(1):615-621
Nematocysts of the scyphozoans Pelagia noctiluca and Rhizostoma pulmo were examined. In R. pulmo 4 types of nematocyst were observed: heterotrichous microbasic euryteles; holotrichous isorhizas; atrichous a-isorhizas; and atrichous -isorhizas. In P. noctiluca 5 types of nematocyst were seen: heterotrichous microbasic euryteles; heterotrichous isorhizas (previously described as atrichous isorhizas); holotrichous O-isorhizas; atrichous a-isorhizas; and an undescribed type, which in its structure and discharge mechanism resembles microbasic p-mastigophores. The results show, in both P. noctiluca and R. pulmo, a greater variety of nematocysts than described in previous studies.  相似文献   

4.
SDS-PAGE of the sweet potato whitefly (Bemisia tabaci) egg extract showed one major band (approximately 190 kDa) and two minor bands (approximately 75 kDa and 67 kDa). A distinct 190 kDa band was also present in male extract. On SDS gels the vitellin band of the greenhouse whitefly (Trialeurodes vaporarium) was larger, about 220 kDa. The native molecular mass of sweet potato whitefly vitellin was estimated to be 375 kDa using 4–20% native pore-limiting gel electrophoresis. Its isoelectric point was estimated to be 7.3 using isoelectric focusing. Two-dimensional gel electrophoresis and densitometry were used to estimate vitellin subunit composition; the data suggest that the sweet potato whitefly vitellin is likely to be a 380 kDa native molecule formed by two 190 kDa subunits. The two minor bands (75 kDa and 67 kDa) may be breakdown products of the native vitellin. This conclusion was supported by a Western blot of an SDS-PAGE gel of partially degraded female and egg extracts, which showed that polyclonal antiserum raised against the 190 kDa polypeptide recognized the 75 kDa and 67 kDa bands. Seven hybridoma cell lines secreting monoclonal antibodies against the 190 kDa band were screened, and one of them (S1A2G9H2) was mass produced. The antibody recognized the 190 kDa band in a Western blot. All the screened monoclonal antibodies were female and egg-specific by ELISA and/or Western blot, suggesting that the 190 kDa band in male extract was not a vitellin. A sensitive ELISA was established that could detect as little as 1/40 of an egg equivalent of vitellin using the monoclonal antibody from S1A2G9H2. Profiles of female sweet potato whitefly reproductive activities (egg laying, amount of vitellin in the female, and total vitellin produced by a female) within 2 days after eclosion were determined. Arch. Insect Biochem. Physiol. 34:223–237, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Pre-clinical and clinical studies of therapeutic antibodies require highly specific reagents to examine their immune responses, bio-distributions, immunogenicity, and pharmacodynamics in patients. Selective antigen-mimicking anti-idiotype antibody facilitates the assessment of therapeutic antibody in the detection, quantitation and characterization of antibody immune responses. Using mouse specific degenerate primer pairs and splenocytic RNA, we generated an idiotype antibody-immunized phage-displayed scFv library in which an anti-idiotype antibody against the therapeutic chimera anti-CD22 antibody SM03 was isolated. The anti-idiotype scFv recognized the idiotype of anti-CD22 antibody and inhibited binding of SM03 to CD22 on Raji cell surface. The anti-idiotype scFv was subsequently classified as Ab2γ type. Moreover, our results also demonstrated firstly that the anti-idiotype scFv could be used for pharmacokinetic measurement of circulating residual antibody in lymphoma patients treated with chimera anti-CD22 monoclonal antibody SM03. Of important, the present approach could be easily adopted to generate anti-idiotype antibodies for therapeutic antibodies targeting membrane proteins, saving the cost and time for producing a soluble antigen.  相似文献   

6.
We reported previously that adenocarcinoma-reactive human monoclonal antibody AE6F4, which had been generated by in vitro immunization method, recognizes both 14-3-3protein and cytokeratin 8 (CK8). In this study, to analyze the cross-reactivity of AE6F4 antibody, epitopes of AE6F4 antibody on 14-3-3 proteins and CK8 were studied by using synthetic linear peptide scanning technology. To determine the locations of B cell epitope, 48 and 95 of decapeptides covering the entire 14-3-3 proteins and CK8, respectively,were synthesized and binding to AE6F4 antibody was examined by ELISA. The AE6F4 antibody was strongly reactive to peptides containing amino acid sequences TLWTSDTQGD in 14-3-3 proteins and INFLRQLYEE in CK8. These results indicate that AE6F4 antibody can recognize the different peptide sequences in 14-3-3 proteins and CK8. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Human epidermal keratinocytes express under various growth conditions a total of at least nine keratins that can be divided into two subfamilies. Subfamily A comprises 40-, 46-, 48-, 50-/50'-, and 56.5-kilodalton (kd) keratins which are relatively acidic (pI less than 5.5) and, with the exception of 46-kd keratin, are recognized by AE1 monoclonal antibody. Subfamily B comprises 52-, 56-, 58-, and 65-67-kd keratins which are relatively basic (pI greater than 6) and are recognized by AE3 monoclonal antibody. Within each keratin subfamily, there is a constant member (50-/50'- and 58-kd keratins of the subfamilies A and B, respectively) that is always expressed. The other seven keratins of both subfamilies are variable members whose expression depends upon the cellular differentiated state, which is in turn modulated by the growth environment. The 56.5-kd keratin (subfamily A) and the 65-67-kd keratins (subfamily B) are coordinately expressed during keratinization. In contrast, the 40-, 46-, and 48-kd keratins (subfamily A) and the 52- and 56-kd keratins (subfamily B) are characteristic of cultured epidermal cells forming nonkeratinized colonies. These results demonstrate that human epidermal keratins can be classified according to their reactivity with monoclonal antikeratin antibodies, isoelectric point, and mode of expression. The classification of keratins into various subgroups may have important implications for the mechanisms of epidermal differentiation, the evolution of keratin heterogeneity, and the use of keratin markers for tumor diagnosis.  相似文献   

8.
A species-specific monoclonal antibody was produced to whole plasma of fifth instar larvae of the corn earworm, Heliothis zea (Boddie) (Lepidoptera:Noctuidae). This antibody did not cross-react with proteins from the plasma of any of the other lepidopteran larvae tested, including other Heliothis spp. The antigen recognized by this antibody was characterized and found to be arylphorin, a prominent larval storage protein. This conclusion was based on the electrophoretic as well as immunological characteristics of the antigen. Polyacrylamide gel electrophoresis indicated that the antigen had an apparent native molecular weight of 460,000, and that it was composed of subunits having apparent molecular weights of 76,000. The isoelectric point of the antigen was 5.9, with some microheterogeneity being seen. Western blotting of arylphorin against the monoclonal antibody clearly identified the antigen as arylphorin. This protein was not found in egg homogenates or early instar larval plasma, but it was present in large quantities in pupal homogenates and, at trace levels, in adult homogenates. The efficient production and selection of hybridomas producing antibodies specific to H. zea arylphorin using unfractionated plasma as immunogen illustrates the fact that monoclonal antibody technology can produce highly specific antibodies using crude antigen preparations. We discuss the tradeoffs one must accept when choosing this strategy over one using purified immunogens.  相似文献   

9.
Foot regeneration in the freshwater hydra Pelmatohydra robusta was examined using a monoclonal antibody AE03 as a marker. This antibody specifically recognizes mucous-producing ectodermal epithelial cells in the basal disk, but not cells in the peduncle region located just above the basal disk in the foot. When the basal disk was removed by amputation at the upper or lower part of the peduncle, AE03-positive (basal disk) cells always appeared at the regenerating tip of the footless polyp approximately 12-16 h later. When a small piece of tissue was cut out from the upper or lower peduncle region, the tissue invariably turned into a smooth spherical or oblong shape within a few hours. AE03 signal appeared in these spheres variably depending on their origin: when tissue pieces were derived from the lower peduncle, the signal appeared in nearly all pieces and often covered the entire surface of the pieces within 24 h. In contrast, the signal appeared in less than 10% of pieces derived from the upper peduncle. Furthermore, the signal seldom covered more than half of the surface of these pieces. When maintained for many days, pieces derived from the upper peduncle often regenerated tentacles, whereas those from the lower peduncle seldom did. These and other observations suggest that epithelial cells in the peduncle can rapidly differentiate into basal disk cells when the basal tissue is removed. However, cells in the upper peduncle are not irreversibly committed to differentiate into basal disk cells because, when cut out as small tissue pieces, they could remain AE03 negative and become tentacle cells. In contrast, the cells in the lower peduncle apparently are irreversibly committed to differentiate into basal disk cells, as they always turned rapidly into AE03-positive cells once they were physically separated from (and freed from the influence of) the basal disk itself, regardless of the separation methods used.  相似文献   

10.
Monoclonal antibodies recognizing two classes of developmentally regulated plant cell surface components – arabinogalactan-proteins (AGPs) and extensins – have been used to immunolabel cells at the root apices of four species with different characteristics of pericycle and vascular tissue development. Root apices of pea (Pisum sativum L.), radish (Raphanus sativus L.), carrot (Daucus carota L.) and onion (Allium cepa L.) were immunolabelled with the anti-AGP monoclonal antibodies JIM4 and JIM13 and anti-extensin monoclonal antibodies JIM11, JIM12, JIM19 and JIM20. All of these antibodies recognized subsets of pericycle cells in at least one, but never all, of these species. The restricted patterns of epitope occurrence also reflected vascular cell development. The differences in patterns of antibody recognition in the four species are discussed in relation to the possible roles of these cell surface molecules in cell differentiation and root patterning events. Received: 11 March 1997 / Accepted: 20 May 1997  相似文献   

11.
Over the course of seven pandemics, Vibrio cholerae serotypes have varied. In 1992 the appearance of a new serotype, O139 Bengal, began the eighth cholera pandemic. Several new O139 antigens have been identified, yet a common V. cholerae antigen has not been described. In this study, a monoclonal antibody specific against an 18.7-kDa outer membrane antigen reacted in dotblot analysis with 292 epidemiologically diverse V. cholerae isolates including O1, non-O1, and O139 serotypes. Serum collected from volunteers experimentally challenged with V. cholerae O139, and rabbit antisera to V. cholerae O1, were reactive with the 18.7-kDa antigen by Western immunoblot. This is the first report that the 18.7-kDa antigen is present in V. cholerae O139. Received: 11 August 1997 / Accepted: 22 September 1997  相似文献   

12.
Ciliates assemble basal bodies in great number at many stages of the life-cycle. In order to understand their assembly mechanisms, we screened a library of monoclonal antibodies directed against pericentriolar material. One of these antibodies, CTR210, was used previously to follow steps of this assembly process: in Paraurostyla, new basal bodies appear along a scaffold of linear structures recognized by this antibody. The very unusual behavior of this antigen deserved confirmation in other species. In the present study, we show by immunofluorescence that, in another phylogenetically very distant species, Euplotes, basal bodies are assembled in the same pathway during division. In addition, this antibody recognizes a filamentous ring located at the division furrow and linking many basal body assemblages. By cell fractionation and cytoskeletal extraction, we obtained fractions enriched in basal bodies and associated material. Such fractions still display a high complexity in protein composition. These fractions were used to characterize the main target of the antibody as a doublet of 45 kDa. These results confirm previous results in terms of functionality of the protein recognized by the antibody, but raise new questions in terms of the assignment of the recognized protein to the HSP70 family as hypothesized previously.  相似文献   

13.
The antigenic structure ofEscherichia coli ribosomal protein S3 has been investigated by use of monoclonal antibodies. Six S3-specific monoclonal antibodies secreted by mouse hybridomas have been identified by immunoblotting of two-dimensional ribosomal protein separation gels. By using a competitive enzyme-linked immunosorbent assay, we have divided these monoclonal antibodies into three mutual inhibition groups, members of which are directed to three distinct regions of the S3 molecule. The independence of these monoclonal antibody-defined regions was confirmed by the failure of pairs of monoclonal antibodies from two inhibition groups to block the binding of biotinylated monoclonal antibodies of the third group. To determine the regions recognized by these monoclonal antibodies, chemically cleaved S3 peptides were fractionated by gel filtration and reverse-phase high-performance liquid chromatography. The fractionated peptides were coated on plates and examined for specific interaction with monoclonal antibody by enzyme immunoassay. In this manner, two epitopes have been mapped at the ends of the S3 molecule: one, in the last 22 residues, is recognized by three monoclonal antibodies; and the second, in the first 21 residues, is defined by two monoclonal antibodies. The third S3 epitope, recognized by a single monoclonal antibody, has been localized in a central segment of about 90 residues by gel electrophoresis and immunoblotting. These epitope-mapped monoclonal antibodies are valuable probes for studying S3 structurein situ.  相似文献   

14.
 During the final two larval instars, a changing pattern of three Ultraspiracle (Usp) proteins (50.5, 52.5, and 57 kDa) was detected in immunoblots of the dorsal abdominal epidermis of the tobacco hornworm, Manduca sexta, by a monoclonal antibody against Drosophila Usp that was shown to detect MsUsp. The 57- and 52.5-kDa bands were present during the intermolt periods and the 50.5- and 52.5-kDa bands during the molting phases. The antibody detected a nuclear antigen present in epidermis, muscle, fat body, and the central nervous system from the time of hatching. In the epidermis Usp was present in all cell nuclei but was especially prominent in the tormogen and trichogen cells immediately after ecdysis in both the penultimate and final instars. This latter immunoreactivity disappeared within 12 h whereas the remainder of the epidermis retained high levels throughout the feeding period. During the molt immunostaining reappeared in the hair cell nuclei. During the wandering stage at the onset of metamorphosis and just before pupal ecdysis, immunoblots showed high levels of Usp, but nuclei showed little or no staining. This discrepancy is likely due to the loss of one Usp isoform from the nucleus and its dispersal in the cytoplasm in preparation for the appearance of the second isoform. Received: 10 June 1997 / Accepted: 22 August 1997  相似文献   

15.
The heat-stable enterotoxins (ST) are a family of cysteine-rich low-molecular weight peptides produced by pathogenic bacteria, and are one of the major causes of watery diarrhea all over the world. These toxins mediate their action by binding to an intestinal cell surface receptor that is a membrane-associated guanylyl cyclase (GCC). This receptor also serves as the receptor for the recently characterised endogenous ligand, guanylin. We have expressed various domains of the receptor in Escherichia coli and used purified proteins for the generation of both polyclonal and monoclonal antibodies. While polyclonal antibodies were able to partially inhibit ST binding to the native receptor present in the T84 human colonic cell line, GCC:B10 monoclonal antibody did not interfere with ligand binding. Western blot analysis, using membranes prepared from human colonic T84 cells, detected two bands of size 160 and 140 kDa, representing alternately glycosylated forms of the receptor. Using the recombinant proteins, we could map the epitope of GCC:B10 monoclonal antibody to the intracellular domain of the receptor. We used the antibody to localize the receptor throughout the rat intestine, and in the porcine and bonnet monkey colon. We could detect receptor expression in the villus and the crypts of the duodenum, jejunum, ileum, and caecum, and in the crypts of the colon. Receptor expression was observed in cells that had earlier been shown to express cGMP-dependent kinase, but not the cystic fibrosis transmembrane regulator, a known downstream target of cGMP/G-kinase, which suggests that GCC/cGMP could regulate additional cellular signal transduction machinery. J. Cell. Biochem. 66:500–511, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
A tegumental surface membrane antigen of Schistosoma mansoni has been identified by use of a monoclonal antibody. The binding of 125I-labeled monoclonal antibody showed that proteins sharing antigenic determinants recognized by this monoclonal antibody were present in cercariae and worms of both sexes, but were absent from schistosome egg extract. The protein molecules expressing these antigenic determinants differed in molecular weight: 120,000 in cercaria and 170,000 in male and female worms. The cercarial glycoprotein immunoprecipitated with the monoclonal antibody was also immunoprecipited by sera of infected humans, as shown by two-dimensional gel electrophoresis and tryptic peptide mapping. The location of the glycoprotein identified by the monoclonal antibody was restricted to the spines of the schistosomular surface, the tubercle-associated spines of the male worm, and the dorsal spines of the female worm. The spine glycoprotein was readily purified by immunoaffinity chromatography. These findings are discussed in relation to parasite development and the relevance of this antibody for serodiagnosis and immunoprophylaxis.  相似文献   

17.
A monoclonal antibody that recognizes antigenic determinants on the nucleus of cultured mammalian cells was isolated. Immunofluorescence studies using this antibody showed that the recognized antigen was present not only on the nucleus but also in cytoplasmic vesicles of interphase cells and in the perichromosomal region of mitotic cells. Premature chromosome condensation analysis showed that the reactive site for this monoclonal antibody could be detected in the perichromosomal region during the G2 and M phases, but not during the G1 and S phases. Finally, immunoblot analysis showed that this monoclonal antibody prepared against the nucleus recognized a protein of approximately 40 kD both in the cytoplasm and in the perichromosomal regions.  相似文献   

18.
 A Xenopus-specific anti-leukocyte monoclonal antibody designated XL-2 was isolated and used to identify leukocytes in tailbud embryos and activin A-treated explants of blastula animal cap. XL-2 bound to a 135-kDa polypeptide in western blots of protein extracts from adult thymocytes, tailbud embryos, tadpoles, and explants. In cell suspensions, it immunostained the cell surface of all types of adult leukocytes including lymphocytes, monocyte/macrophages, thrombocytes, and granulocytes. At embryonic stage 24, immunocytochemistry revealed XL-2-positive leukocytes, the earliest time at which such cells have been recognized. Whole-mount staining of tailbud embryos and tadpoles showed a widely dispersed population of XL-2-reactive leukocytes, many of which had elongated shapes and ameboid pseudopodia. In activin A-treated animal caps, XL-2 recognized a subpopulation of cells within the lumen of the central fluid-filled cavity as well as cells in the interstitium of mesenchymal and mesothelial components of the explant. Together, activin A and human interleukin-11 induced 100% of explants to form lumenal blood cells. Compared to activin A alone, murine stem cell factor plus activin A significantly increased the numbers of XL-2-reactive leukocytes and erythrocytes. These results support the view that activin A induces leukocyte and erythrocyte progenitors during Xenopus embryogenesis. Received: 29 August 1997 / Accepted: 28 October 1997  相似文献   

19.
A plasma membrane glycoprotein common to embryonic chick myoblasts and adult chicken skeletal muscle satellite cells is the antigen recognized by monoclonal antibody C3/1. Although traces of the same antigen are present on some muscle-derived fibroblasts, the density of antigenic sites on myoblasts and satellite cells is so high that these cell types can be identified in tissues by immunocytochemical techniques. The antigen is exposed on the surfaces of myogenic cells growing in tissue culture and can be solubilized with detergent. This and other criteria establish that the antigen is a plasma membrane protein. The antigen, purified by affinity techniques, consists of a single type of polypeptide chain which migrates as a relatively broad band of apparent molecular weight 38,000 Da in SDS-polyacrylamide gel electrophoresis. It has a very small sedimentation constant, suggesting that the solubilized form is either monomeric or dimeric. The concentration of antigenic sites increases during myogenesis in vitro; but during maturation the antigenic sites are lost from muscle fibers. Electron microscopic autoradiographic study of adult muscle labeled with iodinated monoclonal antibody demonstrated unequivocally that the antigenic sites in adult muscle are concentrated in the satellite cells. Although selective for myoblasts, immature myotubes and satellite cells in the myogenic lineage, the monoclonal antibody also binds at rather high levels to peripheral Schwann cells and teloglia, to some nonneuronal cells in cultures derived from embryonic spinal cord, to some glial elements of adult chicken brain, and to several cell types in the early embryo.  相似文献   

20.
Recent data have indicated that specific keratin molecules can provide useful markers for studying different types and stages of epithelial differentiation. To utilize these protein markers, however, it is important to establish the keratin nature of the molecules and identify unambiguously the individual keratin species. In this paper, we show that this can be done relatively easily by one- and two-dimensional gel electrophoresis combined with immunoblotting using three monoclonal antibodies (aIF, AE1, and AE3). The aIF antibody has previously been shown to crossreact with all classes of intermediate-filament proteins. Using one- and two-dimensional immunoblotting, we establish that this antibody recognizes all known epithelial keratins of human and rabbit, although the reaction is relatively strong for the larger, basic keratins and is relatively weak for some of the smaller, acidic keratins. In contrast, AE1 and AE3 monoclonal antibodies have previously been shown to be highly specific for the acidic and basic subfamilies of the keratins, respectively. The combined use of the broadly reacting aIF antibody and the subfamily-specific AE1 and AE3 monoclonal antikeratin antibodies should facilitate the immunological definition, identification, and classification of mammalian epithelial keratins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号