首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dark-adapted pure bovine rod outer segments (ROS) (A280/A500--2.1) can be phosphorylated in the presence of [gamma-32P]ATP and [gamma-32P]GTP. The constant levels of phosphorylation, reached within 10--15 min, are 100 +/- 30 pmol 32P/nmol of rhodopsin for [gamma-32P]ATP and 2--4 pmol 32P/nmol of rhodopsin for [gamma-32P]GTP. These processes are not controlled by 10(-4)--10(-8) cAMP, cGMP or Ca2+, but are inhibited at higher concentrations of these agents. In the presence of histone the constant level of phosphorylation is increased up to 200 +/- 30 pmol 32P/nmol of rhodopsin for [gamma-32P]ATP, but is not changed when [gamma-32P]GTP is used. 10(-5) M cAMP is found to activate the phosphorylation in the presence of histone and [gamma-32P]ATP by 5--6 times. All this evidences that ROS contains cAMP-dependent protein kinase, which utilizes ATP, but not GTP. Moreover, ROS contains cyclic nucleotides- and Ca2+-independent protein kinase. These protein kinases are the ROS endogenous enzymes. This is shown in experiments on separation of pure ROS in a sucrose density gradient.  相似文献   

2.
The phosphorylation of mevalonic acid by cell-free extracts from chick liver in the early steps of development was studied. A clear difference in the pH-activity profiles for phosphomevalonate and pyrophosphomevalonate formation has been observed. the amount of phosphomevalonate formed is quite similar at pH 7.5–9.5 whereas the pyrophosphomevalonate shows a clear maximum at pH 9.5. The pattern of mevalonate phosphorylation during the neonatal development shows no significant difference between 1–6 days after hatching, but a significant increase in the amount of phosphomevalonate formed at day 7 after hatching.  相似文献   

3.
Pyridoxal [32P] phosphate was prepared using [gamma-32P] ATP, pyridoxal, and pyridoxine kinase purified from Escherichia coli B. The pyridoxal [32P] phosphate obtained had a specific activity of at least 1 Ci/mmol. This reagent was used to label intact influenza virus, red blood cells, and both normal and transformed chick embryo fibroblasts. The cell or virus to be labeled was incubated with pyridoxal [32P] phosphate. The Schiff base formed between pyridoxal [32P] phosphate and protein amino groups was reduced with NaBH4. The distribution of pyridoxal [32P] phosphate in cell membrane or virus envelope proteins was visualized by autoradiography of the proteins separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The labeling of the proteins of both influenza and chick cells appeared to be limited exclusively to those on the external surface of the virus or plasma membrane. With intact red blood cells the major portion of the probe was bound by external proteins, but a small amount of label was found associated with the internal proteins spectrin and hemoglobin.  相似文献   

4.
An improved procedure for the synthesis of phosphomevalonate using excess free ATP4-, and phenyl agarose to remove contaminating nucleotides, is described. A high-voltage electrophoresis assay, which separates phosphomevalonate from mevalonate 5-diphosphate at pH 3.5, was developed for the assay of phosphomevalonate kinase (ATP:5-phosphomevalonate phosphotransferase, EC 2.7.4.2). High-voltage electrophoresis, at pH 5, could also be used for the separation of mevalonate 5-diphosphate from isopentenyl diphosphate. An alternative method for the purification of phosphomevalonate kinase from pig liver was also developed. The high-voltage electrophoresis assay was used to reassess the metal ion and nucleotide specificity of the pig liver phosphomevalonate kinase. ATP could be partially replaced by ITP and GTP and poorly by CTP and UTP. Apparent activation of the enzyme by free ATP4- was observed as found for mevalonate kinase (C.S. Lee and W.J. O'Sullivan (1983) Biochim. Biophys. Acta 747, 215-224).  相似文献   

5.
The hydrolysis of glycerophospholipids in very low density lipoprotein by enzyme(s) released into circulation after the injection of heparin to rats was studied. [32P]Lysolecithin was formed rapidly from [32P]lecithin when very low density lipoprotein, labeled biosynthetically with 32P, was incubated with postheparin plasma. The [32P]lysolecithin was associated with the plasma protein fraction of density greater than 1.21 g/ml, whereas [32P]lecithin exchanged between very low and high density lipoproteins. Inhibition of the plasma lecithin: cholesterol acyl transferase activity did not change the excess [32P]lysolecithin formation in postheparin plasma, and only a negligible amount of radioactivity was associated with blood cells when the incubation was repeated in whole blood. Analysis of the results has demonstrated that phospholipids are removed from VLDL by two pathways: hydrolysis of glycerophospholipids by the heparin-releasable phospholipase activity (greater than50%) and transfer to high density lipoproteins (less than50%). The tissue origin of the postheparin phospholipase was studied in plasma obtained from intact rats and supradiaphragmatic rats using specific inhibitors of the extrahepatic lipase system (protamine sulfate and 0.5 M NaCl). The phospholipase activity could be ascribed to both the hepatic and extrahepatic lipase systems. It is concluded that hydrolysis of glycerophospholipids is the major mechanism responsible for the removal of phospholipids from very low density lipoprotein during the degradation of the lipoprotein. It is suggested that phospholipid hydrolysis occurs concomitantly with triglyceride hydrolysis, predominantly in extrahepatic tissues.  相似文献   

6.
Tyrosine protein kinase activities have been demonstrated in transformed and normal cell systems. So far, few data on the quantity of protein-bound phosphotyrosine in intact cells have been published. A knowledge of the stoichiometric increase in phosphotyrosine in cells after hormonal induction could be of interest when evaluating the importance of the tyrosine protein kinase activities found. By the addition of a known amount of unlabeled phosphotyrosine to the precipitated protein of 32P-phosphate-labeled cells it was possible after alkaline hydrolysis to spectrophotometrically follow the phosphotyrosine during consecutive chromatographies of the material. From the specific radioactivity of the purified phosphotyrosine the initial concentration of [32P]phosphotyrosine could be calculated. The method proved to be useful for the determination of [32P]phosphotyrosine is small amounts of cells. The minimum detectable amount of [32P]phosphotyrosine was about 1 pmol, and as an example, only 2.5 X 10(6) fibroblasts were needed. By this method it was shown that platelet-derived growth factor increased protein-bound [32P]phosphotyrosine from 600 to 3,200 pmol/g of fibroblasts, while insulin only increased the [32P]phosphotyrosine from 110 to 120 pmol/g of hepatocytes.  相似文献   

7.
A procedure in which three sequential enzymes of cholesterol biosynthesis, mevalonate kinase (ATP: (R)-mevalonate 5-phosphotransferase, EC 2.7.1.36), phosphomevalonate kinase (ATP: (R)-5-phosphomevalonate phosphotransferase, EC 2.7.4.2) and mevalonate-5-diphosphate decarboxylase (ATP: (R)-5-diphosphomevalonate carboxy-lyase (dehydrating), EC 4.1.1.33), from pig liver, could be purified in the one operation is described. Mevalonate kinase and phosphomevalonate kinase were utilized for the enzymic synthesis of mevalonate 5-diphosphate (both 1-14C-labelled and unlabelled), the substrate for mevalonate-5-diphosphate decarboxylase, using excess free ATP4-. A radioactive assay for the enzyme, based on the release of 14CO2 from [1-14C]mevalonate-5-diphosphate, was developed. The assay allowed reassessment of the metal and nucleotide specificity of the decarboxylase. ATP could be partially replaced by GTP and ITP, but no activity was observed with CTP, UTP or TTP. Apparent activation of the enzyme by ATP4- was observed as found for mevalonate kinase (C.S. Lee and W.J. O'Sullivan (1983) Biochim. Biophys. Acta 747, 215-224) and phosphomevalonate kinase (C.S. Lee and W.J. O'Sullivan (1985) Biochim. Biophys. Acta 839, 83-89). The presence of 1 mM excess free ATP4-, above that complexed as the substrate MgATP2-, decreased the Km for MgATP2- from 0.45 mM to 0.15 mM. MgADP- was shown to act as a competitive inhibitor with respect to MgATP2-.  相似文献   

8.
As a first step in determining the molecular mechanism of membrane fusion stimulated by GTP in rough endoplasmic reticulum (RER), we have looked for GTP-binding proteins. Rough microsomes from rat liver were treated for the release of ribosomes, and the membrane proteins were separated by SDS/polyacrylamide-gel electrophoresis. The polypeptides were then blotted on to nitrocellulose sheets and incubated with [alpha-32P]GTP [Bhullar & Haslam (1987) Biochem. J. 245, 617-620]. A doublet of polypeptides (23 and 24 kDa) was detected in the presence of 2 microM-MgCl2. Binding of [alpha-32P]GTP was blocked by 1-5 mM-EDTA, 10-10,000 nM-GTP or 10 microM-GDP. Either guanosine 5'-[gamma-thio]triphosphate or guanosine 5'-[beta gamma-imido]triphosphate at 100 nM completely inhibited binding, but ATP, CTP or UTP at 10 mciroM did not. Pretreatment of microsomes by mild trypsin treatment (0.5-10 micrograms of trypsin/ml, concentrations known not to affect microsomal permeability) led to inhibition of [alpha-32P]GTP binding, suggesting a cytosolic membrane orientation for the GTP-binding proteins. Two-dimensional gel-electrophoretic analysis revealed the 23 and 24 kDa [alpha-32P]GTP-binding proteins to have similar acid isoelectric points. [alpha-32P]GTP binding occurred to similar proteins of rough microsomes from rat liver, rat prostate and dog pancreas, as well as to a 23 kDa protein of rough microsomes from frog liver, but occurred to distinctly different proteins in a rat liver plasma-membrane-enriched fraction. Thus [alpha-32P]GTP binding has been demonstrated to two low-molecular-mass (approx. 21 kDa) proteins in the rough endoplasmic reticulum of several varied cell types.  相似文献   

9.
Purified spinach chloroplasts incorporate [1-14C]isopentenyl diphosphate into prenyl lipids in high yields. The immediate biosynthetic precursors of isopentenyl diphosphate (hydroxymethylglutaryl-CoA, mevalonate, mevalonate-5-phosphate, mevalonate-5-diphosphate), on the other hand, are not accepted as substrates and the corresponding enzymes hydroxymethylglutaryl-CoA reductase, mevalonate kinase, phosphomevalonate kinase, and diphosphomevalonate decarboxylase are not present in the organelles. These enzymes can only be detected in a membrane-bound form at the endoplasmic reticulum (hydroxymethylglutaryl-CoA reductase) and as soluble activities in the cytoplasm. The concept is developed that isopentenyl diphosphate is formed in the cytoplasm as a 'central intermediate' and is distributed then to other cellular compartments (endoplasmic reticulum, plastids, mitochondria) for further biosynthetic utilization.  相似文献   

10.
Abstract: DNA ligase activities were measured in neuron-rich and glial nuclear preparations and liver nuclei isolated from adult guinea pigs. The enzymatic properties of cerebral and liver nuclear DNA ligases were studied with isolated nuclei and nuclear extracts. ATP (Km= 46–48 μM) and bivalent cation (Mg2+ or Mn2+) were required for the maximal activities in cerebral and liver nuclei. β-Mercaptoethanol did not affect the activities, but N-ethylmaleimide and p-chloromercuribenzoate completely inhibited the activities. Deoxyadenosine-5′-triphosphate partially inhibited the activities in both cerebral and liver nuclei. An interdependent effect of Na+ and Mg2+ on the enzyme activities was observed. A high concentration (200 mM) of Na+ activated both enzymes and shifted to the acid side the optimal pH for both enzymes. DNA ligase was more easily extracted with lower concentrations of NaCl from liver nuclei than from cerebral nuclei, but the extraction curves from both nuclear species reached a plateau level (92% of total activities of nuclear enzymes) at 200 mM-NaCl. Apparent Km for the substrate [32P]phosphoryl DNA was determined according to a modification of the Michaelis-Menten equation, which was applied for the case where an unknown amount of substrate nicks in chromatin DNA coexisted with the nicks in exogenous substrate DNA. Neuronal and glial nuclear enzymes had similar Km values (about 20 μg of [32P]phosphoryl DNA/ml), but the liver nuclear enzyme had a higher Km value (54 μg of [32P]phosphoryl DNA/ml). The modified Michaelis-Menten equation provided the amounts of nicks available as substrate in chromatin DNA of isolated nuclei. Neuronal and glial nuclei contained 1.5 and 0.29 pmol of nicks/μg of nuclear DNA, respectively, in contrast to an intermediate amount of nicks in liver nuclei (0.63 pmol/μg of nuclear DNA). DNA ligase activity in neuronal nuclei [312 units (fmol of 5′-phosphomonoester converted into a phosphatase-resistant form per min at 37°C) per μg of nuclear DNA] was 11-fold higher than that in glial nuclei [28.7 units/μg of nuclear DNA]. Liver nuclei contained an intermediate activity [54.7 units/μg of nuclear DNA].  相似文献   

11.
Pyridoxal [32P] phosphate was prepared using [γ-32P]ATP, pyridoxal, and pyridoxine kinase purified from Escherichia coli B. The pyridoxal [32P] phosphate obtained had a specific activity of at least 1 Ci/mmol. This reagent was used to label intact influenza virus, red blood cells, and both normal and transformed chick embryo fibroblasts. The cell or virus to be labeled was incubated with pyridoxal [32P] phosphate. The Schiff base formed between pyridoxal [32P] phosphate and protein amino groups was reduced with NaBH4. The distribution of pyridoxal [32P] phosphate in cell membrane or virus envelope proteins was visualized by autoradiography of the proteins separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis.The labeling of the proteins of both influenza and chick cells appeared to be limited exclusively to those on the external surface of the virus or plasma membrane. With intact red blood cells the major portion of the probe was bound by external proteins, but a small amount of label was found associated with the internal proteins spectrin and hemoglobin.  相似文献   

12.
The formation and accumulation of phospholipid hydroperoxides, especially of phosphatidylcholine hydroperoxide (PCOOH), a primary peroxidation product of phosphatidylcholine (PC), in livers of carbon tetrachloride-intoxicated rats was investigated. PCOOH in liver and blood plasma was measured by a chemiluminescence-high-performance liquid chromatography procedure originally developed by Miyazawa et al. (Anal. Lett. 20, 915, 1987; Free Radical Biol. Med. 7, 209, 1989). Male Sprague-Dawley rats (120 g body wt., 5 weeks of age) were used in the experiments. The amount of PCOOH in the liver of control rats (CCl4-untreated) was 160 +/- 20 pmol/100 mg protein (mean +/- SD) and the PCOOH/PC molar ratio was 1.1 +/- 0.1 X 10(-5). In CCl4 (0.1 ml/100 g body wt.)-dosed rats, the liver PCOOH was 289 +/- 65 pmol/100 mg protein (PCOOH/PC = 2.4 +/- 0.4 X 10(-5], 764 +/- 271 pmol/100 mg protein (PCOOH/PC = 5.2 +/- 1.7 X 10(-5], and 856 +/- 165 pmol/100 mg protien (PCOOH/PC = 6.0 +/- 0.8 X 10(-5] at 6 h, 24 h, and 1 week after the dose, respectively. Under such conditions, the liver phosphatidylethanolamine hydroperoxide (PEOOH) level was not altered and the concentration was less than 100 pmol/100 mg protein even after the dose. The increments of liver PCOOH were suppressed 56% by the oral supplementation of DL-alpha-tocopherol (5 mg/100 g body wt./day) for a week before CCl4 administration. A relatively larger amount of PEOOH was found after stimulation of PC hydroperoxidation in the liver of rats with a large amount of CCl4 (0.25 ml/100 g body wt.) rather than with the small amount of CCl4 (0.1 ml/100 g body wt.).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Enzymatic measurement of sphingosine 1-phosphate.   总被引:19,自引:0,他引:19  
Sphingosine 1-phosphate (SPP) is a sphingolipid metabolite which has novel dual actions acting as both an intracellular second messenger and a ligand for a family of G protein-coupled receptors. This paper describes a rapid enzymatic method to quantify mass levels of SPP in serum, mammalian tissues, and cultured cells. The assay utilizes an alkaline lipid extraction to selectively separate SPP from other phospholipids and sphingolipids, including sphingosine. Extracted SPP is efficiently converted to sphingosine by alkaline phosphatase treatment. Sphingosine thus formed is then quantitatively phosphorylated to [(32)P]SPP using recombinant sphingosine kinase and [gamma-(32)P]ATP. With this procedure we were able to obtain reproducible measurements of SPP over a broad range from 0.25 pmol to 2.5 nmol. In various rat tissues, levels of SPP varied between 0. 5 and 6 pmol/mg wet wt. The lowest levels were found in heart and testes, while brain contained the highest levels. The method was adapted easily to measure minute amounts of SPP present in various cultured cell types. The amount of SPP in cell extracts was proportional to the cell number and varied between 0.04 and 2 pmol/10(6) cells. Concurrent measurements of sphingosine levels revealed that its concentration was significantly higher than SPP in most cells and tissues. Furthermore, with this assay we were able to measure increases in intracellular SPP levels in rat pheochromocytoma PC12 cells after treatment with exogenous sphingosine or with nerve growth factor which stimulates sphingosine kinase activity.  相似文献   

14.
Products of the isoprenoid metabolism were identified upon incubations of extracts from Plasmodium falciparum infected red blood cells with [14C] mevalonate. Uninfected erythrocytes and wild type yeast Saccharomyces cerevisiae extracts were used as controls. In parasitized red blood cells as well as in yeast extracts, mevalonate was converted into the biosynthetic isoprenoid precursors of sterol pathway until farnesyl pyrophosphate. In contrast, no mevalonate conversion was observed in uninfected erythrocyte extracts. The isoprenoid metabolism appeared stage-dependent as shown by the increase of radiolabelled farnesyl pyrophosphate amount at the beginning of the schizogonic phase (30-36 hours).  相似文献   

15.
Plasma membranes from rat liver were found to contain at least two types of specific binding sites for cyclic [3H] adenosine 3', 5'-monophosphate (c[3H]AMP) with apparent dissociation constants of 0.51 +/- 0.14 and 2.9 +/- 0.6 nM (O degrees), respectively. The levels of these binding sites in liver plasma membranes were about 0.60 +/- 0.20 and 1.3 +/- 0.5 pmole/mg protein. The highest affinity binders for c[3H]AMP were found to be reduced in amount in plasma membranes of ascites hepatomas to 1/3 to 1/4 as compared with liver membranes in the cases of AH-130 and AH-7974 and to an almost undetectable level in the case of AH-130F(N). No difference in the endogenous phosphorylation of plasma membranes by (gamma-32P])ATP was, however, detected among liver and hepatoma plasma membranes. Addition of cAMP or cGMP at various concentrations did not affect the endogenous phosphorylation of plasma membranes of these cells.  相似文献   

16.
Two molecular forms of the (Na+,K+)-ATPase catalytic subunit have been identified in rat adipocyte plasma membranes using immunological techniques. The similarity between these two forms and those in brain (Sweadner, K. J. (1979) J. Biol. Chem. 254, 6060-6067) led us to use the same nomenclature: alpha and alpha(+). The K0.5 values of each form for ouabain (determined by inhibition of phosphorylation of the enzyme from [gamma-32P]ATP) were 3 X 10(-7)M for alpha(+) and 1 X 10(-5)M for alpha. These numbers correlate well with the K0.5 values for the two ouabain-inhibitable components of 86Rb+/K+ pumping in intact cells (1 X 10(-7) M and 4 X 10(-5)M). Quantitation of the Na+ pumps in plasma membranes demonstrated a total of 11.5 +/- 0.2 pmol/mg of membrane protein, of which 8.5 +/- 0.3 pmol/mg, or 75%, was alpha(+). Insulin stimulation of 86Rb+/K+ uptake in rat adipocytes was abolished by ouabain at a concentration sufficient to inhibit only alpha(+)(2-5 X 10(-6)M). Immunological techniques and ouabain inhibition of catalytic labeling of the enzyme from [gamma-32P]ATP demonstrated that alpha(+) was present in skeletal muscle membranes as well as in adipocyte membranes, but was absent from liver membranes. Since insulin stimulates increased Na+ pump activity in adipose and muscle tissue but not in liver, there is a correlation between hormonal regulation of (Na+,K+)-ATPase and the presence of alpha(+). We propose that alpha(+) is the hormonally-sensitive version of the enzyme.  相似文献   

17.
The in vitro rate of incorporation of [2-14C]-acetate and [2-14C]-mevalonate into cholesterol of liver, ileum and caecum was determined in guinea pigs. In control animals, contrary to the situation observed when acetate was used as precursor, the rate of conversion of mevalonate to cholesterol was higher in liver than in intestine. In this latter tissue, the cholesterogenesis varied depending on the portion tested. The distribution of radiolabel derived from mevalonate between esterified and unesterified cholesterol differed among the various tissues. In cholesterol-fed guinea pigs, the plasma, liver, intestine and aorta cholesterol contents increased significantly. In addition, a negative feedback control existed for hepatic cholesterol synthesis for mevalonate and acetate. This control was absent in intestinal tissues.  相似文献   

18.
The shunt pathway of mevalonate metabolism (Edmond, J., and Popják, G. (1974) J. Biol. Chem. 249, 66-71) has been studied in isolated livers from fed rats perfused with physiological concentrations of variously labeled [14C]mevalonates. The measured rates of 14CO2 production were converted to rates of mitochondrial acetyl-CoA production from mevalonate by methods which take into account underestimations of metabolic rates derived from 14CO2 production. Our data confirm that the shunt pathway leads to mitochondrial acetyl-CoA. The apparent negligible rate of mevalonate shunting in liver, previously reported by others, stems from the very low contribution (congruent to 0.1%) of plasma mevalonate to total mevalonate metabolism in the liver. This contribution was assessed from the relative incorporations of 3H2O and [5-14C]mevalonate into sterols. In livers from fed rats, the shunt diverts about 5% of the production of mevalonate. The total rate of mevalonate shunting in the liver is about 200 times greater than in two kidneys. The liver is therefore the main site of mevalonate shunting in the rat.  相似文献   

19.
Hepatocyte membranes from both lean and obese Zucker rats exhibited adenylate cyclase activity that could be stimulated by glucagon, forskolin, NaF and elevated concentrations of p[NH]ppG. In membranes from lean animals, functional Gi was detected by the ability of low concentrations of p[NH]ppG to inhibit forskolin-activated adenylate cyclase. This activity was abolished by treatment of hepatocytes with either pertussis toxin or the phorbol ester TPA, prior to making membranes for assay of adenylate cyclase activity. In hepatocyte membranes from obese animals no functional Gi activity was detected. Quantitative immunoblotting, using an antibody able to detect the alpha subunit of Gi, showed that hepatocyte plasma membranes from both lean and obese Zucker rats had similar amounts of Gi-alpha subunit. This was 6.2 pmol/mg plasma membrane for lean and 6.5 pmol/mg plasma membrane for obese animals. Using thiol pre-activated pertussis toxin and [32P]-NAD+, similar degrees of labelling of the 40 kDa alpha subunit of Gi were found using plasma membranes of both lean and obese Zucker rats. We suggest that liver plasma membranes from obese Zucker rats express an inactive Gi alpha subunit. Thus lesions in liver Gi functioning are seen in insulin-resistant obese rats and in alloxan- and streptozotocin-induced diabetic rats which also show resistance as regards the acute actions of insulin. Liver plasma membranes of obese animals also showed an impairment in the coupling of glucagon receptors to Gs-controlled adenylate cyclase, with the Kd values for activation by glucagon being 17.3 and 126 nM for lean and obese animals respectively. Membranes from obese animals also showed a reduced ability for high concentration of p[NH]ppG to activate adenylate cyclase. The use of [32P]-NAD+ and thiol-preactivated cholera toxin to label the 43 kDa and 52 kDa forms of the alpha-subunit of Gs showed that a reduced labelling occurred using liver plasma membranes from obese animals. It is suggested that abnormalities in the levels of expression of primarily the 52 kDa form of alpha-Gs may give rise to the abnormal coupling between glucagon receptors and adenylate cyclase in liver membranes from obese (fa/fa) Zucker rats.  相似文献   

20.
The diastereomers of adenosine 5'-O-(1-thiotriphosphate) (ATP alpha S), adenosine 5'-O-(2-thiotriphosphate) (ATP beta S), and adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) could act as substrates for phosphomevalonate kinase in the presence of Mg2+ and Cd2+ as activating divalent metal cations. The Sp diastereomer of ATP alpha S was the preferred substrate regardless of the metal ion used, consistent with the metal ion not binding to the alpha-phosphate. With ATP beta S, the Sp diastereomer was the preferred substrate with Mg2+, and the Rp diastereomer was the preferred substrate with Cd2+. The reversal of specificity establishes that the metal is chelated through the beta-phosphate in the active site of the phosphomevalonate kinase reaction. A comparison of the Vmax values as a function of substitution of oxygen by sulfur showed the order for Mg2+ to be: ATP greater than ATP alpha S(Sp) greater than ATP alpha S(Rp) greater than ATP beta S(Sp) greater than ATP gamma S greater than ATP beta S(Rp). With Cd2+ as the activating metal ion, the order was: ATP greater than ATP alpha S(Sp) greater than ATP alpha S(Rp) greater than ATP beta S(Rp) greater than ATP gamma S greater than ATP beta S(Sp). It is concluded that the chelate structure of metal ATP substrate in the phosphomevalonate kinase reaction is the delta, beta, gamma-bidentate complex. 31P NMR measurements and radioassay with [2-14C] phosphomevalonate were used to measure the equilibrium of the reaction catalyzed by phosphomevalonate kinase with ATP and phosphorothioate analogues of ATP as the phosphoryl group donor. The order as a phosphate donor as determined by both methods in the phosphomevalonate kinase reaction is ATP beta S greater than ATP alpha S greater than ATP greater than ATP gamma S. Except for ATP gamma S, the equilibrium is shifted in the direction of formation of ADP alpha S and ADP beta S relative to ADP formation. Thus, ATP beta S rather than ATP would be effective for the synthesis of diphosphomevalonate. The phosphomevalonate kinase reaction could also be used to synthesize mevalonate 5-(2-thiodiphosphate) using ATP gamma S as the phosphoryl group donor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号