首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of new fluorescent-labeled gangliosides bearing the residues of acids labeled by 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene(BODIPY) in the polar or/and apolar moiety were synthesized. These are ganglioside GM1 labeled with the residue of 4,4-difluoro-4-bora-3a,4a-diaza-5,7-dimethyl-s-indacenyl-3-propanoic (BODIPY-FL-propanoic) and -indacenyl-5-pentanoic (BODIPY-FL-pentanoic) acid in the oligosaccharide moiety of the molecule, and ganglioside GD1a labeled with two residues of BODIPY-FL-pentanoic acid in the oligosaccharide moiety and also with the residue of BODIPY-FL-pentanoic acid and the residue of 4,4-difluoro-4-bora-3a,4a-diaza-5-octyl-s-indacenyl-5-pentanoic acid in the ceramide part of the molecule. Some spectral characteristics and the behavior in the model membrane systems of the synthesized probes were studied. In their emission spectra, the BODIPY-labeled gangliosides included into phosphatidylcholine liposomes at high concentrations (>1 mol %) exhibit a long-wavelength maximum (at 630 nm) in addition to the usual maximum (at 510–515 nm).  相似文献   

2.
A series of new fluorescent-labeled gangliosides bearing the residues of acids labeled by 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) in the polar or/and apolar moiety were synthesized. These are ganglioside GM1 labeled with the residue of 4,4-difluoro-4-bora-3a,4a-diaza-5,7-dimethyl-s-indacenyl-3-propanoic BODIPY-FL-propanoic) and -indacenyl-5-pentanoic (BODIPY-FL-pentanoic) acid in the oligosaccharide moiety of the molecule, and ganglioside GD1a labeled with two residues of BODIPY-FL-pentanoic acid in the oligosaccharide moiety and also with the residue of BODIPY-FL-pentanoic acid and the residue of 4,4-difluoro-4-bora-3a,4a-diaza-5-octyl-s-indacenyl-5-pentanoic acid in the ceramide part of the molecule. Some spectral characteristics and the behavior in the model membrane systems of the synthesized probes were studied. In their emission spectra, the BODIPY-labeled gangliosides included into phosphatidylcholine liposomes at high concentrations (> 1 mol %) exhibit a long-wavelength maximum (at approximately 630 nm) in addition to the usual maximum (at 510-515 nm).  相似文献   

3.
A series of fluorescently labeled fatty acids of various chain lengths with 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene-8-yl (Me4-BODIPY-8) residue in the ω-position were synthesized. These acids were used to prepare new fluorescently labeled phosphatidylcholines, sphingomyelin, and galactosyl ceramide. The symmetry of the Me4-BODIPY-8-fluorophore suggests that, in most bilayer membrane systems, this fluorophore would be embedded into the bilayer.  相似文献   

4.
4,4-Difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoyl derivatives of serotonin, dopamine, choline, and N,N-dimethylaminoethanol, with the fluorescence maximum at 512 nm (exc 470 nm), and 4,4-difluoro-5,7-diphenyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoyl derivatives of choline and N,N-dimethylaminoethanol, with the fluorescence maximum at 554 nm (exc 470 nm), were synthesized. These compounds yield protonated molecular ions of 100% intensity upon mass spectrometry with electrospray ionization at atmospheric pressure. The fragmentation of molecular ions under the conditions of secondary ion mass spectrometry mainly proceeds through the elimination of hydrogen fluoride from the fluorescent core of the molecules. Experiments on sea urchin Lytechinus variegatus embryos and larvae showed that these compounds easily penetrate into the cells and are accumulated in the cytoplasm. They do not differ in their biological activity from similar derivatives of arachidonic acid described previously and are agonists of serotonin or acetylcholine or antagonists of nicotinic acetylcholine receptors.  相似文献   

5.
The conjugate of the fluorescent dye 4,4,-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indasten-8-propionic acid (BODIPY) with N 2,N 4,N 6-trimethylmelamine was obtained. This compound was shown to generate covalent crosslinks between DNA strands in vitro in the presence of formaldehyde.  相似文献   

6.
A fluorescent analogue of the lipophilic prodrug of antitumor agent methotrexate has been synthesized. The conjugate consists of a residue of rac-1-[13-(Me4-BODIPY-8)tridecanoyl]-2-oleoylglycerol connected to methotrexate by an ester bond via β-Ala-N-carbonylmethylene linker (Me4-BODIPY-8 stands for 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene-8-yl). The probe is designed for incorporation in the membrane of the liposomal vehicle to study a mechanism of interaction with tumor cells and intracellular traffic.  相似文献   

7.
New fluorescent lipid probes, cardiolipin derivatives AV12-CL and B7-CL, bearing the residues of 12-(9-anthryl)-11E-dodecenoic and 7-(4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacen-8-yl)heptanoic acid, respectively, have been synthesized by acylation of 1-lysocardiolipin, which had been obtained from bovine heart cardiolipin by enzymatic hydrolysis with bacterial lipase. The resulting probes are intended for the study of protein-anionic phospholipid interactions.  相似文献   

8.
A series of lipid probes, phosphatidylcholines labeled with Me4-BODIPY-8 (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacen-8-yl) fluorophore attached to the end of acyl residue at different distances from the polar head, were used as depth-dependent probes for the apolar zone of the model membrane systems, large unilamellar vesicles (LUV). Data on the anisotropy of probe fluorescence demonstrated a different mobility profiles for the fluorophore microenvironment in LUVs of different composition at various temperatures, which indicates a high sensitivity of these probes as tools for studying membrane systems. An interesting anomaly was observed for LUVs from dimiristoylphosphatidylcholine (DMPC) or from a DMPC-cholesterol mixture: the anisotropy of the fluorophore located near the bilayer center is larger than that of the fluorophore located further from the center; i.e., the mobility of the microenvironment is lower in the first case. This anomaly is supposed to result from the penetration of unlabeled long chain of the probes to the opposite bilayer leaflet. Such a possibility should be taken into account when constructing the fluorescent probes and interpreting the results.  相似文献   

9.
The synthesis of a series of new fluorescently labeled sphingolipids containing a 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene-8-yl (Me4-BODIPY-8) group at the ω-position of a fatty acyl residue is described. The obtained probes were used in studies of biological and model membrane systems.  相似文献   

10.
A hallmark of the common Alzheimer's disease (AD) is the pathological conversion of its amphiphatic amyloid-β (Aβ) peptide into neurotoxic aggregates. In AD patients, these aggregates are often found to be tightly associated with neuronal GM1 ganglioside lipids, suggesting an involvement of GM1 not only in aggregate formation but also in neurotoxic events. Significant interactions were found between micelles made of newly synthesized fluorescent GM1 gangliosides labeled in the polar headgroup or the hydrophobic chain and Aβ(1-40) peptide labeled with a BODIPY-FL-C1 fluorophore at positions 12 and 26, respectively. From an analysis of energy transfer between the different fluorescence labels and their location in the molecules, we were able to place the Aβ peptide inside GM1 micelles, close to the hydrophobic-hydrophilic interface. Large unilamellar vesicles composed of a raftlike GM1/bSM/cholesterol lipid composition doped with labeled GM1 at various positions also interact with labeled Aβ peptide tagged to amino acids 2 or 26. A faster energy transfer was observed from the Aβ peptide to bilayers doped with 581/591-BODIPY-C11-GM1 in the nonpolar part of the lipid compared with 581/591-BODIPY-C5-GM1 residing in the polar headgroup. These data are compatible with a clustering process of GM1 molecules, an effect that not only increases the Aβ peptide affinity, but also causes a pronounced Aβ peptide penetration deeper into the lipid membrane; all these factors are potentially involved in Aβ peptide aggregate formation due to an altered ganglioside metabolism found in AD patients.  相似文献   

11.
It was recently shown that the structure of the fluorophore attached to the acyl chain of phosphatidylcholine analogs determines their mechanism of transport across the plasma membrane of yeast cells (Elvington et al., J. Biol Chem. 280:40957, 2005). In order to gain further insight into the physical properties of these fluorescent phosphatidylcholine (PC) analogs, the rate and mechanism of their intervesicular transport was determined. The rate of spontaneous exchange was measured for PC analogs containing either NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl), Bodipy FL (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene), Bodipy 530 (4,4-difluoro-5,7-diphenyl-4-bora-3a,4a-diaza-s-indacene), or Bodipy 581 (4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene) attached to a five or six carbon acyl chain in the sn-2 position. The rate of transfer between phospholipid vesicles was measured by monitoring the increase in fluorescence as the analogs transferred from donor vesicles containing self-quenching concentrations to unlabeled acceptor vesicles. Kinetic analysis indicated that the transfer of each analog occurred by diffusion through the water phase as opposed to transfer during vesicle collisions. The vesicle-to-monomer dissociation rate constants differed by over four orders of magnitude: NBD-PC (kdis = 0.115 s− 1; t1/2 = 6.03 s); Bodipy FL-PC (kdis = 5.2 × 10− 4; t1/2 = 22.2 min); Bodipy 530-PC (kdis = 1.52 × 10− 5; t1/2 = 12.6 h); and Bodipy 581-PC (kdis = 5.9 × 10− 6; t1/2 = 32.6 h). The large differences in spontaneous rates of transfer through the water measured for these four fluorescent PC analogs reflect their hydrophobicity and may account for their recognition by different mechanisms of transport across the plasma membrane of yeast.  相似文献   

12.
As inexpensive and readily available fluorophores for 3′ and 5′ end labeling of RNA molecules, symmetrical BODIPY (boron dipyrromethene: 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) derivatives having a primary amino group were designed, and their facile synthetic route was established. Novel BODIPY derivatives exhibited photophysical properties comparable to commercially available BODIPY FL EDA (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionyl ethylenediamine). To confirm utility of new derivatives, specific labeling of the 3′ and 5′ ends of in vitro transcribed RNAs was carried out. Furthermore, the 3′ end of the 5′ fragment of the bimolecular Tetrahymena ribozyme was labeled, and its catalytic activity was investigated.  相似文献   

13.
Gangliosides were isolated from human brain myelin, oligodendroglia, and neurons. Quantitative analysis revealed the following ganglioside contents: myelin, 2.0; neurons, 1.3; and oligodendroglia, 0.35 μg ganglioside sialic acid per mg protein. Myclin had a relatively simple ganglioside pattern with GM4 and GM1 as the predominant ganglioside species. The ganglioside pattern of oligodendroglia was quite complex and it resembled that of whole white matter rather than that of myelin. A high concentration of GM4 was found in oligodendroglial fractions in addition to GM1, GD1a, GD1b, and GT1b. The usually- minor brain gangliosides GM3, GM2, and GM3 were also enriched in oligodendroglia. The neuronal ganglioside pattern was generally similar to the pattern of whole gray matter. Both neurons and whole gray matter contained very low amounts of GM4. These results indicate that GM4 is specifically localized in myelin and oligodendroglia of the CNS. Evidence is also presented that myelin, but not oligodendroglia, is the major reservoir of human white matter GM1 and GM4.  相似文献   

14.
《Journal of lipid research》2017,58(5):1008-1020
Fluorescent lipids are important tools for live imaging in cell culture and animal models, yet their metabolism has not been well-characterized. Here we describe a novel combined HPLC and LC-MS/MS method developed to characterize both total lipid profiles and the products of fluorescently labeled lipids. Using this approach, we found that lipids labeled with the fluorescent tags, 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY FL), 4,4-difluoro-5-(2-thienyl)-4-bora-3a,4a-diaza-s-indacene [BODIPY(558/568)], and dipyrrometheneboron difluoride undecanoic acid (TopFluor) are all metabolized into varying arrays of polar and nonpolar fluorescent lipid products when they are fed to larval zebrafish. Quantitative metabolic labeling experiments performed in this system revealed significant effects of total dietary lipid composition on fluorescent lipid partitioning. We provide evidence that cholesterol metabolism in the intestine is important in determining the metabolic fates of dietary FAs. Using this method, we found that inhibitors of dietary cholesterol absorption and esterification both decreased incorporation of dietary fluorescent FAs into cholesterol esters (CEs), suggesting that CE synthesis in enterocytes is primarily responsive to the availability of dietary cholesterol. These results are the first to comprehensively characterize fluorescent FA metabolism and to demonstrate their utility as metabolic labeling reagents, effectively coupling quantitative biochemistry with live imaging studies.  相似文献   

15.
New fluorophore-labelled GM1 gangliosides have been synthesised and spectroscopically characterised. Spectroscopically different BODIPY groups were covalently linked, specifically to either the polar or the hydrophobic part of the ganglioside molecule. The absorption and fluorescence spectroscopic properties are reported for 564/571-BODIPY- and 581/591-BODIPY-labelled GM1. Each of the different BODIPY groups is highly fluorescent and depolarisation experiments provide molecular information about the spatial distribution in lipid bilayers, as well as order and dynamics. From experiments performed on two spectroscopically different BODIPY:s, specific interactions can be revealed by monitoring the rate/efficiency of donor-acceptor electronic energy transfer. Systems of particular interest for applying these probes are e.g. mixtures of lipids, and peptides/proteins interacting with lipid membranes.  相似文献   

16.
The binding of cholera toxin, tetanus toxin and pertussis toxin to ganglioside containing solid supported membranes has been investigated by quartz crystal microbalance measurements. The bilayers were prepared by fusion of phospholipid-vesicles on a hydrophobic monolayer of octanethiol chemisorbed on one gold electrode placed on the 5 MHz AT-cut quartz crystal. The ability of the gangliosides GM1, GM3, GD1a, GD1b, GT1b and asialo-GM1 to act as suitable receptors for the different toxins was tested by measuring the changes of quartz resonance frequencies. To obtain the binding constants of each ligand-receptor-couple Langmuir-isotherms were successfully fitted to the experimental adsorption isotherms. Cholera toxin shows a high affinity for GM1 (Ka = 1.8 ⋅ 108M–1), a lower one for asialo-GM1 (Ka = 1.0 ⋅ 107 M–1) and no affinity for GM3. The C-fragment of tetanus toxin binds to ganglioside GD1a, GD1b and GT1b containing membranes with similar affinity (Ka∼106 M–1), while no binding was observed with GM3. Pertussis toxin binds to membranes containing the ganglioside GD1a with a binding constant of Ka = 1.6 ⋅ 106 M–1, but only if large amounts (40 mol%) of GD1a are present. The maximum frequency shift caused by the protein adsorption depends strongly on the molecular structure of the receptor. This is clearly demonstrated by an observed maximum frequency decrease of 99 Hz for the adsorption of the C-fragment of tetanus toxin to GD1b. In contrast to this large frequency decrease, which was unexpectedly high with respect to Sauerbrey's equation, implying pure mass loading, a maximum shift of only 28 Hz was detected after adsorption of the C-fragment of tetanus toxin to GD1a. Received: 14 January 1997 / Accepted: 15 April 1997  相似文献   

17.
Gangliosides GM2, GM1 and GD1b were radiolabelled at C-6 of the terminal galactose orN-acetylgalactosamine by the galactose oxidase/[3H]NaBH4 method; gangliosides GM2, GM1, Fuc-GM1 and GD1a were radiolabelled at C-3 of the long chain base by the 2,3-dichloro-5,6-dicyanobenzoquinone/[3H]NaBH4 method.By application of an original HPLC procedure, eight different molecular species were prepared from each labelled ganglioside. Each of these species was characterized by the presence of one of the following long chain bases:erythro C18 sphingosine,threo C18 sphingosine,erythro C18 sphinganine,threo C18 sphinganine,erythro C20 sphingosine,threo C20 sphingosine,erythro C20 sphinganine andthreo C20 sphinganine.From GD1b only the species containing theerythro forms of long chain bases were obtained.The individual molecular species were more than 99% homogeneous and had a radiopurity better than 99%. The molecular species of the same ganglioside, radiolabelled at C-3 of the long chain base, had identical specific radioactivity, namely 1.17, 1.25, 0.85 and 1.28 Ci/mmol for GM2, GM1, Fuc-GM1 and GD1a respectively. The molecular species of the same ganglioside, radiolabelled at C-6 of terminal galactose orN-acetylgalactosamine, had similar specific radioactivity, namely 1.34–1.40, 1.44–1.51, 1.37–1.44 Ci/mmol for GM2, GM1 and GD1b respectively.  相似文献   

18.
The pregnane X receptor (PXR) regulates the metabolism and excretion of xenobiotics and endobiotics by regulating the expression of drug-metabolizing enzymes and transporters. The unique structure of PXR allows the binding of many drugs and drug leads to it, possibly causing undesired drug–drug interactions. Therefore, it is crucial to evaluate whether lead compounds bind to PXR. Fluorescence-based assays are preferred because of their sensitivity and nonradioactive nature. One fluorescent PXR probe is currently commercially available; however, because its chemical structure is not publicly disclosed, it is not optimal for studying ligand–PXR interactions. Here we report the characterization of BODIPY FL–vinblastine, generated by labeling vinblastine with the fluorophore 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY FL), as a high-affinity ligand for human PXR with a Kd value of 673 nM. We provide evidence that BODIPY FL–vinblastine is a unique chemical entity different from either vinblastine or the fluorophore BODIPY FL in its function as a high-affinity human PXR ligand. We describe a BODIPY FL–vinblastine-based human PXR time-resolved fluorescence resonance energy transfer assay, which was used to successfully test a panel of human PXR ligands. The BODIPY FL–vinblastine-based biochemical assay is suitable for high-throughput screening to evaluate whether lead compounds bind to PXR.  相似文献   

19.
20.
Improved resolution of complex brain ganglioside mixtures was achieved by high-performance thin-layer chromatography. The percentage distribution of individual gangliosides was then determined by direct densitometric seanning, employing a transmittance mode, of the resorcinol-positive spots on the plate. As little as 90 pmol (29 ng) of lipid-bound sialic acid could be detected with a good signal-to-noise ratio. A linear detector response was observed up to 3.0 μg of lipid-bound sialic acid. The brain white matter ganglioside patterns of eight animal species, including human, chimpanzee, monkey, chicken, bovine, sheep, and pig, were examined in detail. In addition, human brain gray matter, rat cerebral, rat brain gray matter, and rat cerebellar ganglioside patterns were also studied. Ganglioside GM4 (G7) was found to be one of the major components in primate and chicken brain white matter, but it represented only a minor ganglioside in other species. Other major gangliosides in all brain samples studied were GM1, GD1a, GD1b, and GT1b. GM1 was more abundant in white matter than in gray matter. GT1a, a recently discovered ganglioside species, was found in all species examined, but was most abundant in the rat cerebellum. The latter source also contained high proportions of GT1b and GQ1b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号