首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nature of pteroyl polyglutamates in uninfected and T4D bacteriophage-infected Escherichia coli B has been examined. (3)H-p-aminobenzoic acid has been used to label the folate compounds and gel permeation chromatography on glass beads to separate the folate compound by molecular size. It has been found that, although the major folate compound in uninfected bacteria is pteroyl triglutamate, E. coli B cells also contain folate compounds having as many as six glutamate residues. Infection with T4D stimulated the addition of glutamate residues to the lower-molecular-weight host pteroyl compounds, resulting in the conversion of the host compounds into the hexaglutamate form. This viral-induced conversion is chloramphenicol sensitive and appears to be due to a late phage gene product. The phage gene responsible for this conversion has not been identified. In cells infected with a T4D mutant defective in gene 28, there was an apparent production of the large pteroyl polyglutamates equivalent in size to pte(glu)(9-12). These high-molecular-weight forms were converted into pte(glu)(6) by incubation with bacterial extracts made after infection with T4D 28(+). Apparently, the product of T4D gene 28(+) is capable of specifically cleaving the high-molecular-weight polyglutamates to the form necessary for phage tail assembly.  相似文献   

2.
Synthetic pteroyl hexaglutamate (9 x 10(-6) M) stimulated the formation of new T4D particles in vitro in extracts of Escherichia coli B infected with T4D gene 28(-). The stimulation was specific for this form of folic acid since neither pteroyl pentaglutamate nor pteroyl heptaglutamate stimulated phage formation. T4D formation in vitro in E. coli B extracts prepared after infection with 11 other phage mutants known to be involved in phage tail plate formation (5(-), 6(-), 7(-), 8(-), 10(-), 25(-), 26(-), 27(-), 29(-), 51(-), 53(-)) was not stimulated by the addition of pteroyl hexaglutamate. It can be concluded that the T4D gene 28 product is involved in the formation of the phage tail plate pteroyl hexaglutamate.  相似文献   

3.
The protein component of the T-even bacteriophage coat which binds the phage-specific dihydropteroyl polyglutamate has been identified as the phage-induced dihydrofolate reductase. Dihydrofolate reductase activity has been found in highly purified preparations of T-even phage ghosts and phage substructures after partial denaturation. The highest specific enzymatic activity was found in purified tail plate preparations, and it was concluded that this enzyme was a structural component of the phage tail plate. Phage viability was directly correlated with the enzymological properties of the phage tail plate dihydrofolate reductase. All reactions catalyzed by this enzyme which changed the oxidation state of the phage dihydrofolate also inactivated the phage. Properties of two T4D dihydrofolate reductase-negative mutants, wh1 and wh11, have been examined. Various lines of evidence support the view that the product of the wh locus of the phage genome is normally incorporated into the phage tail structure. The effects of various dihydrofolate reductase inhibitors on phage assembly in in vitro complementation experiments with various extracts of conditional lethal T4D mutants have been examined. These inhibitors were found to specifically block complementation when added to extracts which did not contain preformed tail plates. If tail plates were present, inhibitors such as aminopterin, did not affect further phage assembly. This specific inhibition of tail plate formation in vitro confirms the analytical and genetic evidence that this phage-induced "early" enzyme is a component of the phage coat.  相似文献   

4.
Various properties of the bacteriophage structural dihydrofolate reductase (DFR) have been examined to determine its function during phage infection. It has been found that a binding site for reduced nicotinamide adenine dinucleotide phosphate (NADPH), most likely on the DFR present in the phage tail plate, is required for phage viability. Attachment of adenosine diphosphoribose, an analogue of NADPH, to this site prevents phage adsorption and injection. This adenosine diphosphoribose inhibition can be competitively reversed by the addition of NADPH or oxidized nicotinamide adenine dinucleotide phosphate. It is suggested that, during phage infection, the host bacterial cell might leak compounds functionally similar to the pyridine nucleotides. These compounds have been shown to nonenzymatically change the conformation of the phage tail plate DFR which is apparently necessary for successful injection.  相似文献   

5.
The polyamine spermidine has recently been reported to be a substantial component of the RNA phage particle. Its effect on the isolated RNA-A protein complex of the phage MS2 is investigated here. This complex infects intact Escherichia coli cells via F-pili, as does the whole phage. It is shown that the infectivity of the complex on intact E. coli cells was enhanced by incubation with spermidine. Optimal stimulation (20-fold) of the complex infectivity was achieved by incubation with 3 x 10(-4) M spermidine for 20 to 30 min at 37 degrees C. This gave a more compact structure to the complex, as could be seen by its faster sedimentation in sucrose gradients. Although spermidine and Mg2+ are known to partially replace one another in several systems, no enhancement of the infectivity of the complex, but only its considerably faster sedimentation in sucrose gradients, occurred after incubation with 3 x 10(-4) M Mg2+. Only if the Mg2+ concentration was raised by more than one order of magnitude could increased infectivity of the complex be observed. At concentrations of spermidine and Mg2+ that maximally stimulated the infectivity of the complex on intact E. coli cells, no increase in infectivity of phenol-extracted RNA to E. coli spheroplasts was detected. From these in vitro results, the role of the polyamine spermidine in the RNA phage particle for the infecting, RNA-A protein complex molecules in phage infection is discussed.  相似文献   

6.
The assembly of T4D tail plates occurring during in vitro complementation reactions was found to be stimulated by pteroyl hexaglutamate. Neither the pteroyl pentaglutamate nor the pteroyl heptaglutamate substituted for the hexaglutamate. A small stimulation of the rate and amount of T4D tail plate assembly was observed in untreated extracts. A greater stimulation occurred when activated charcoal-treated bacterial extracts were used. Charcoal treatment inhibited complementation only when no preformed tail plates were present in the extracts, and the inhibition was reversed by the addition of 9 x 10(-6)m chemically synthesized pteroyl hexaglutamate. The stimulation is apparently due to a requirement for the pteroyl hexaglutamate for tail plate assembly.  相似文献   

7.
The discovery of a Salmonella‐targeting phage from the waterways of the United Kingdom provided an opportunity to address the mechanism by which Chi‐like bacteriophage (phage) engages with bacterial flagellae. The long tail fibre seen on Chi‐like phages has been proposed to assist the phage particle in docking to a host cell flagellum, but the identity of the protein that generates this fibre was unknown. We present the results from genome sequencing of this phage, YSD1, confirming its close relationship to the original Chi phage and suggesting candidate proteins to form the tail structure. Immunogold labelling in electron micrographs revealed that YSD1_22 forms the main shaft of the tail tube, while YSD1_25 forms the distal part contributing to the tail spike complex. The long curling tail fibre is formed by the protein YSD1_29, and treatment of phage with the antibodies that bind YSD1_29 inhibits phage infection of Salmonella. The host range for YSD1 across Salmonella serovars is broad, but not comprehensive, being limited by antigenic features of the flagellin subunits that make up the Salmonella flagellum, with which YSD1_29 engages to initiate infection.  相似文献   

8.
Infection of Escherichia coli by Shiga toxin-encoding bacteriophages (Stx phages) was the pivotal event in the evolution of the deadly Shiga toxin-encoding E. coli (STEC), of which serotype O157:H7 is the most notorious. The number of different bacterial species and strains reported to produce Shiga toxin is now more than 500, since the first reported STEC infection outbreak in 1982. Clearly, Stx phages are spreading rapidly, but the underlying mechanism for this dissemination has not been explained. Here we show that an essential and highly conserved gene product, YaeT, which has an essential role in the insertion of proteins in the gram-negative bacterial outer membrane, is the surface molecule recognized by the majority (ca. 70%) of Stx phages via conserved tail spike proteins associated with a short-tailed morphology. The yaeT gene was initially identified through complementation, and its role was confirmed in phage binding assays with and without anti-YaeT antiserum. Heterologous cloning of E. coli yaeT to enable Stx phage adsorption to Erwinia carotovora and the phage adsorption patterns of bacterial species possessing natural yaeT variants further supported this conclusion. The use of an essential and highly conserved protein by the majority of Stx phages is a strategy that has enabled and promoted the rapid spread of shigatoxigenic potential throughout multiple E. coli serogroups and related bacterial species. Infection of commensal bacteria in the mammalian gut has been shown to amplify Shiga toxin production in vivo, and the data from this study provide a platform for the development of a therapeutic strategy to limit this YaeT-mediated infection of the commensal flora.  相似文献   

9.
The distal part of the long tail fiber of Escherichia coli bacteriophage T4 consists of a dimer of protein 37. Dimerization requires the catalytic action of protein 38, which is encoded by T4 and is not present in the virion. It had previously been shown that gene tfa of the otherwise entirely unrelated phage lambda can functionally replace gene 38. Open reading frame (ORF) 314, which encodes a protein that exhibits homology to a COOH-terminal area of protein 37, is located immediately upstream of tfa. The gene was cloned and expressed in E. coli. An antiserum against the corresponding polypeptide showed that it was present in phage lambda. The serum also reacted with the long tail fibers of phage T4 near their free ends. An area of the gene encoding a COOH-terminal region of ORF 314 was recombined, together with tfa, into the genome of T4, thus replacing gene 38 and a part of gene 37 that codes for a COOH-terminal part of protein 37. Such T4-lambda hybrids, unlike T4, required the presence of outer membrane protein OmpC for infection of E. coli B. An ompC missense mutant of E. coli K-12, which was still sensitive to T4, was resistant to these hybrids. We conclude that the ORF 314 protein represents a subunit of the side tail fibers of phage lambda which probably recognize the OmpC protein. ORF 314 was designated stf (side tail fiber). The results also offer an explanation for the very unusual fact that, despite identical genomic organizations, T4 and T2 produce totally different proteins 38. An ancestor of T4 from the T2 lineage may have picked up tfa and stf from a lambdoid phase, thus possibly demonstrating horizontal gene transfer between unrelated phage species.  相似文献   

10.
Three types of reagents were used to determine the structural role and location of the polyglutamate portion of the Escherichia coli T4D bacteriophage baseplate dihydropteroyl hexaglutamate. These reagents were examined for their effect in vitro on some of the final steps in phage baseplate morphogenesis. The reagents were (i) a series of oligopeptides composed solely of glutamic acid residues but with various chemical linkages and chain lengths; (ii) a homogeneous preparation of carboxypeptidase G1, an exopeptidase that hydrolyzes carboxyl-terminal glutamates (or aspartates) from simple oligopeptides, including the gamma-glutamyl bonds on folyl polyglutamates as well as the bond between the carboxyl group of the p-aminobenzoyl moiety and the amino group of the first glutamic acid residue of folic acid; and (iii) antisera prepared against a polyglutamate hapten. All three types of reagent markedly inhibited the attachment of the phage long tail fibers to the baseplate. Other steps in baseplate assembly such as the addition of T4D gene 11 or gene 12 products were not affected by any of these reagents. These results indicate that the polyglutamate portion of the folate is located near the attachment site on the bacteriophage baseplate for the long tail fibers.  相似文献   

11.
The stimulating action of sturin and its fractions in the transfection of E. coli spheroplasts with DNA of phage lambda has been shown, and the optimum conditions for the infection of sturin-treated spheroplasts with phage DNa have been established. The biological effect was most pronounced in arginine-enriched low-molecular sturin fraction B. The treatment of spheroplasts with the internal protein of phage T2 did not stimulate transfection. These findings suggest that the specificity of the stimulating action of protamine depends on the peculiarities of its amino acid composition, viz. a high content of arginine which is present in protein molecules in the form of blocks made up of 2-6 amino acid residues.  相似文献   

12.
A dual specificity for phage T5 adsorption to Escherichia coli cells is shown. The tail fiber-containing phages T5(+) and mutant hd-3 adsorbed rapidly to E. coli F (1.2 x 10(-9) ml min(-1)), whereas the adsorption rate of the tail fiber-less mutants hd-1, hd-2, and hd-4 was low (7 x 10(-11) ml min(-1)). The differences in adsorption rates were due to the particular lipopolysaccharide structure of E. coli F. Phage T4-resistant mutants of E. coli F with an altered lipopolysaccharide structure exhibited similar low adsorption for all phage strains with and without tail fibers. The same held true for E. coli K-12 and B which also differ from E. coli F in their lipopolysaccharide structures. Only the tail fiber-containing phages reversibly bound to isolated lipopolysaccharides of E. coli F. Infection by all phage strains strictly depended on the tonA-coded protein in the outer membrane of E. coli. We assume that the reversible preadsorption by the tail fibers to lipopolysaccharide accelerates infection which occurs via the highly specific irreversible binding of the phage tail to the tonA-coded protein receptor. The difference between rapid and slow adsorption was also revealed by the competition between ferrichrome and T5 for binding to their common tonA-coded receptor in tonB strains of E. coli. Whereas binding of T5(+) to E. coli K-12 and of the tail-fiber-less mutant hd-2 to E. coli F and K-12 was inhibited 50% by about 0.01 muM ferrichrome, adsorption of T5 to E. coli F was inhibited only 40% by even 1,000-fold higher ferrichrome concentrations.  相似文献   

13.
Bacteriophage PBS 1 adsorbs initially on the flagella of its host, Bacillus subtilis (stage I). The phage can adsorb to both active and inactive flagella. Flagellar attachment is nonspecific as PBS 1 was shown to attach to the flagella of Bacillus species other than the normal host B. subtilis. The phage particle then quickly moves down the length of the flagellum to its base, the final adsorption site. Flagellar motion is required for flagellar base attachment (stage II). After proper attachment at the flagellar base, the phage tail sheath contracts sending the tail core through the final adsorption site (stage III). The phage DNA is then injected at this site (stage IV). Stage I adsorption does not cause loss of motility in PBS 1 -- resistant bacilli. The loss of motility observed upon infection of sensitive cells by PBS 1 may be associated with either stage II or stage III of adsorption.  相似文献   

14.
The nature of the interaction of bacteriophage T4D and the outer cell wall of its host, Escherichia coli B, has been investigated. Bacteria with altered or modified cell walls have been obtained by two different growth procedures: (i) growth in high osmolarity medium or (ii) growth in broth in the presence of divalent heavy metal ions. When these altered host cells were washed and subsequently added to regular growth medium, they interacted with added phage particles, but successful infection did not occur. Most of the phage particles released from these treated cells were observed to have full heads and an altered tail structure. The altered phage tails had contracted sheaths and unusual pieces of the bacterial cell wall attached to the distal portion of the exposed phage tail tube. Phage released from bacteria grown in the high osmolarity medium had attached cell wall pieces of two major types, these pieces being either 40 or 21 nm in diameter. The smaller-type cell wall pieces (21 nm) were formed by three spheres each measuring 7 nm in diameter. Phage particles released from cells previously exposed to the divalent metal ions had only one 7-nm cell wall sphere attached to the distal end of the tail tube. It was found that these 7-nm spheres (i) are normal components of the cell wall and are morphologically similar to endotoxin, (ii) are held in place on the cell wall by a component of the cell wall called protein b, and (iii) are most likely the site of penetration of the phage tail tube through which the phage DNA enters the host cell.  相似文献   

15.
Artificial control of phage specificity may contribute to practical applications, such as the therapeutic use of phages and the detection of bacteria by their specific phages. To change the specificity of phage infection, gene products (gp) 37 and 38, expressed at the tip of the long tail fiber of T2 phage, were exchanged with those of PP01 phage, an Escherichia coli O157:H7 specific phage. Homologous recombination between the T2 phage genome and a plasmid encoding the region around genes 37-38 of PP01 occurred in transformant E. coli K12 cells. The recombinant T2 phage, named T2ppD1, carried PP01 gp37 and 38 and infected the heterogeneous host cell E. coli O157:H7 and related species. On the other hand, T2ppD1 could not infect E. coli K12, the original host of T2, or its derivatives. The host range of T2ppD1 was the same as that of PP01. Infection of T2ppD1 produced turbid plaques on a lawn of E. coli O157:H7 cells. The binding affinity of T2ppD1 to E. coli O157:H7 was weaker than that of PP01. The adsorption rate constant (ka) of T2ppD1 (0.17 x 10(-9)(ml CFU(-1) min(-1)) was almost 1/6 that of PP01 (1.10 x 10(-9)(ml CFU(-1) min(-1))). In addition to the tip of the long tail fiber, exchange of gene products expressed in the short tail fiber may be necessary for tight binding of recombinant phage.  相似文献   

16.
17.
The role of ATP and membrane potential in phage T7 DNA injection into E. coli during infection has been studied. Entrance of phage T7 genes of class II and III was shown to be prevented by arsenate, indicating the requirement for phosphorylated macroergs in the phage DNA injection. The injection process was also inhibited by exposition of the cells to the uncoupler of oxidative phosphorylation. Dependence of the injection efficiency on the membrane-potential value has been shown to be sigmoidal, which suggests a regulatory role of the membrane potential in phage T7 DNA injection from the virion into the host cell.  相似文献   

18.
"Conservative phage" containing a genome derived from an infecting phage particle which has not undergone replication in the cell but nevertheless has become encapsulated and released in a normal phage particle, are found after infection of Escherichia coli with rII(-) or rI(-) mutants under conditions which result in rapid lysis. If such conservative phage are derived from a mixed infection with v(+) and v(1) phage, they display phenotypic mixing of the v gene product (an endonuclease carried in the phage particle). Populations of rI and rII mutant phage grown under conditions of rapid lysis include particles containing short DNA fragments. It is suggested that a "maturation defect", common to rI and rII mutants, but absent in rIII mutants, may account for the encapsulation of nonreplicated DNA as well as that of the DNA fragments.  相似文献   

19.
A bacteriophage T5 mutant has been isolated that is completely deficient in the induction of deoxynucleoside 5'-monophosphatase activity during infection of Escherichia coli F. The mutant bacteriophage has been shown to be deficient in the excretion of the final products of DNA degradation during infection of E. coli F, and about 30% of the host DNA's thymine residues were reinocorporated into phage DNA. During infection with this mutant, host DNA degradation to trichloroacetic acid-soluble products was normal, host DNA synthesis was shut off normally, and second-step transfer was not delayed. However, induction of early phage enzymes and production of DNA and phage were delayed by 5 to 15 min but eventually reached normal levels. The mutant's phenotype strongly suggests that the enzyme's role is to act at the final stage in the T5-induced system of host DNA degradation by hydrolyzing deoxynucleoside 5'-monophosphates to deoxynucleosides and free phosphate; failure to do this may delay expression of the second-step-transfer DNA.  相似文献   

20.
Bacteriophage LL-H is a virulent phage of Lactobacillus lactis LL23. A restriction map of the phage genome was constructed with various restriction endonucleases. This chromosome has a 34-kilobase size and seems to be circularly permuted. We used a bank of LL-H restriction fragments to study the expression of five of the seven main phage particle proteins. Immunoblotting experiments permitted the mapping on the chromosome of several genes coding for phage particle proteins. We also show that the gene of the main capsid protein is expressed from its own promoter in an Escherichia coli strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号