首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
During left-right (L-R) axis formation, Nodal is expressed in the node and has a central role in the transfer of L-R information in the vertebrate embryo. Bone morphogenetic protein (BMP) signaling also has an important role for maintenance of gene expression around the node. Several members of the Cerberus/Dan family act on L-R patterning by regulating activity of the transforming growth factor-β (TGF-β) family. We demonstrate here that chicken Dan plays a critical role in L-R axis formation. Chicken Dan is expressed in the left side of the node shortly after left-handed Shh expression and before the appearance of asymmetrically expressed genes in the lateral plate mesoderm (LPM). In vitro experiments revealed that DAN inhibited BMP signaling but not NODAL signaling. SHH had a positive regulatory effect on Dan expression while BMP4 had a negative effect. Using overexpression and RNA interference-mediated knockdown strategies, we demonstrate that Dan is indispensable for Nodal expression in the LPM and for Lefty-1 expression in the notochord. In the perinodal region, expression of Dan and Nodal was independent of each other. Nodal up-regulation by DAN required NODAL signaling, suggesting that DAN might act synergistically with NODAL. Our data indicate that Dan plays an essential role in the establishment of the L-R axis by inhibiting BMP signaling around the node.  相似文献   

3.
The Lefty subfamily of TGFbeta signaling molecules has been implicated in early development in mouse, zebrafish, and chick. Here, we show that Xenopus lefty (Xlefty) is expressed both bilaterally in symmetric midline domains and unilaterally in left lateral plate mesoderm and anterior dorsal endoderm. To examine the roles of Xlefty in left-right development, we created a system for scoring gut asymmetry and examined the effects of unilateral Xlefty misexpression on gut development, heart development, and Xnr-1 and XPitx2 expression. In contrast to the unilateral effects of Vg1, Activin, Nodal, or BMPs, targeted expression of Xlefty in either the left or the right side of Xenopus embryos randomized the direction of heart looping, gut coiling, and left-right positioning of the gut and downregulated the asymmetric expression of Xnr-1 and XPitx2. It is currently thought that Lefty proteins act as feedback inhibitors of Nodal signaling. However, this would not explain the effects of right-sided Xlefty misexpression. Here, we show that Xlefty interacts with the signaling pathways of other members of the TGFbeta family during left-right development. Results from coexpression of Xlefty and Vg1 indicate that Xlefty can nullify the effects of Vg1 ectopic expression and that Xlefty is downstream of left-sided Vg1 signaling. Results from coexpression of Xlefty and XBMP4 indicate that XLefty and XBMP4 interact both synergistically and antagonistically in a context-dependent manner. We propose a model in which interactions of Xlefty with multiple members of the TGFbeta family enhance the differences between the right-sided BMP/ALK2/Smad pathway and the left-sided Vg1/anti-BMP/Nodal pathway, leading to left-right morphogenesis of the gut and heart.  相似文献   

4.
The asymmetric positioning of internal organs on the left or right side of the body is highly conserved in vertebrates and relies on a Nodal signaling pathway acting on the left side of the embryo. Whether the same pathway also regulates left-right asymmetry in invertebrates and what is the evolutionary origin of the mechanisms controlling left-right determination are not known. Here, we show that nodal regulates left-right asymmetry in the sea urchin but that, intriguingly, its expression is reversed compared to vertebrates. Nodal signals emitted from the right side of the larva prevent the right coelomic pouch from forming the imaginal rudiment. Inhibition of Nodal signaling after gastrulation causes formation of an ectopic rudiment on the right side, leading to twinned urchins after metamorphosis. In contrast, ectopic activation of the pathway prevents formation of the rudiment. Our results show that the mechanisms responsible for left-right determination are conserved within basal deuterostomes.  相似文献   

5.
6.
A variety of TGF-beta-related ligands regulate the left-right asymmetry of vertebrates but the involvement of TGF-betas in left-right specification has not been reported. We assessed whether TGF-beta signaling is involved in the left-right specification of Xenopus post-gastrula embryos by microinjecting Xenopus TGF-beta5 protein into the left or right flank of neurula-tailbud embryos. Injection on the right side of neurulae caused left-right reversal of the internal organs in 93% of the embryos, while injection on the left side caused less than 5% left-right reversal. Expression of Xenopus nodal related-1 (Xnr-1 ), Xenopus antivin and Xenopus Pitx2, which are normally expressed on the left, was unaltered by the left-side injection. In contrast, right-side injection into neurulae induced the expression of these genes predominantly on the right side. Right-side injection into tailbud embryos caused bilateral expression of these handed genes. Time course analysis of asymmetric gene expression revealed that Xnr-1 could be induced by TGF-beta5 at late neurula stage, while antivin and Pitx2 could be induced by TGF-beta5 at the latertail bud stage. Injection of the antisense morpholino oligonucleotide against Xenopus TGF-beta5 into the left dorsal blastomere inhibited the normal left-handed expression of Xnr-1 and Pitx2, and caused the organ reversal in the injected embryos. These results suggest that normal left-right balance of endogenous TGF-beta5 signaling in the neurula embryo may be needed to determine the laterality of the asymmetric genes and to generate the correct left-right axis.  相似文献   

7.
8.
9.
10.
Nodal factors play crucial roles during embryogenesis of chordates. They have been implicated in a number of developmental processes, including mesoderm and endoderm formation and patterning of the embryo along the anterior-posterior and left-right axes. We have analyzed the function of the Nodal signaling pathway during the embryogenesis of the sea urchin, a non-chordate organism. We found that Nodal signaling plays a central role in axis specification in the sea urchin, but surprisingly, its first main role appears to be in ectoderm patterning and not in specification of the endoderm and mesoderm germ layers as in vertebrates. Starting at the early blastula stage, sea urchin nodal is expressed in the presumptive oral ectoderm where it controls the formation of the oral-aboral axis. A second conserved role for nodal signaling during vertebrate evolution is its involvement in the establishment of left-right asymmetries. Sea urchin larvae exhibit profound left-right asymmetry with the formation of the adult rudiment occurring only on the left side. We found that a nodal/lefty/pitx2 gene cassette regulates left-right asymmetry in the sea urchin but that intriguingly, the expression of these genes is reversed compared to vertebrates. We have shown that Nodal signals emitted from the right ectoderm of the larva regulate the asymmetrical morphogenesis of the coelomic pouches by inhibiting rudiment formation on the right side of the larva. This result shows that the mechanisms responsible for patterning the left-right axis are conserved in echinoderms and that this role for nodal is conserved among the deuterostomes. We will discuss the implications regarding the reference axes of the sea urchin and the ancestral function of the nodal gene in the last section of this review.  相似文献   

11.
The bilateral symmetry of the mouse embryo is broken by leftward fluid flow in the node. However, it is unclear how this directional flow is then translated into the robust, left side-specific Nodal gene expression that determines and coordinates left-right situs throughout the embryo. While manipulating Nodal and Lefty gene expression, we have observed phenomena that are indicative of the involvement of a self-enhancement and lateral-inhibition (SELI) system. We constructed a mathematical SELI model that not only simulates, but also predicts, experimental data. As predicted by the model, Nodal expression initiates even on the right side. These results indicate that directional flow represents an initial small difference between the left and right sides of the embryo, but is insufficient to determine embryonic situs. Nodal and Lefty are deployed as a SELI system required to amplify this initial bias and convert it into robust asymmetry.  相似文献   

12.
Members of the EGF-CFC family of proteins have recently been implicated as essential cofactors for Nodal signaling. Here we report the isolation of chick CFC and describe its expression pattern, which appears to be similar to Cfc1 in mouse. During early gastrulation, chick CFC was asymmetrically expressed on the left side of Hensen's node as well as in the emerging notochord, prechordal plate, and lateral plate mesoderm. Subsequently, its expression became confined to the heart fields, notochord, and posterior mesoderm. Implantation experiments suggest that chick CFC expression in the lateral plate mesoderm is dependent on BMP signaling, while in the midline its expression depends on an Activin-like signal. The asymmetric expression domain within Hensen's node was not affected by application of FGF8, Noggin, or Shh antibody. Implantation of cells expressing human or mouse CFC2, or chick CFC on the right side of Hensen's node randomized heart looping without affecting expression of genes involved in left-right axis formation, including SnR, Nodal, Car, or Pitx2. Application of antisense oligodeoxynucleotides to the midline of Hamburger-Hamilton stage 4-5 embryos also randomized heart looping, but in contrast to the overexpression experiments, antisense oligodeoxynucleotide treatment resulted in bilateral expression of Nodal, Car, Pitx2, and NKX3.2, whereas Lefty1 expression in the midline was transiently lost. Application of the antisense oligodeoxynucleotides to the lateral plate mesoderm abolished Nodal expression. Thus, chick CFC seems to have a dual function in left-right axis formation by maintaining Nodal expression in the lateral plate mesoderm and controlling expression of Lefty1 expression in the midline territory.  相似文献   

13.
Mouse cerberus-like (cer-l) is a member of the Cerberus/Dan family of secreted factors. As other members of this family of proteins, Cer-l functions in the extracellular space, inhibiting signaling molecules. Here we show that the neural-inducing and mesoderm-inhibiting activities of Cer-l result from specific binding to BMP and Nodal molecules, respectively. These properties resemble the ones from the related factor Xenopus Cerberus. However, Xenopus Cerberus in addition to BMP4 and Nodal also binds to and inhibits Wnt proteins. We show that Cer-l does not directly inhibit Wnt signals. A null allele of the mouse Cer-l gene was generated by targeted inactivation in ES cells. Homozygous embryos show no anterior patterning defects, are born alive, and are fertile. Since mouse Cer-l and Xenopus Cerberus differ in biochemical activities, we propose the existence of additional members of this family of inhibitors, which may compensate for the loss of cer-l.  相似文献   

14.
We analyzed the endogenous requirement for Cerberus in Xenopus head development. 'Knockdown' of Cerberus function by antisense morpholino oligonucleotides did not impair head formation in the embryo. In contrast, targeted increase of BMP, Nodal and Wnt signaling in the anterior dorsal-endoderm (ADE) resulted in synergistic loss of anterior head structures, without affecting more posterior axial ones. Remarkably, those head phenotypes were aggravated by simultaneous depletion of Cerberus. These experiments demonstrated for the first time that endogenous Cerberus protein can inhibit BMP, Nodal and Wnt factors in vivo. Conjugates of dorsal ectoderm (DE) and ADE explants in which Cerberus function was 'knocked down' revealed the requirement of Cerberus in the ADE for the proper induction of anterior neural markers and repression of more posterior ones. This data supports the view that Cerberus function is required in the leading edge of the ADE for correct induction and patterning of the neuroectoderm.  相似文献   

15.
左右不对称信号分子Pitx2   总被引:3,自引:0,他引:3  
同型框基因Pitx2在鸡、小鼠和爪蟾胚胎中不对称地表达在左侧板中胚层和衍生器官(如心脏、肠等)中. 转录因子Pitx2看来是Shh和Nodal等信号分子的下游效应子. Pitx2的错误表达足以产生器官逆位和身体旋转逆向,人类若有Pitx2表达缺陷就可能导致Rieger综合征. Pitx2看来是脊椎动物介导左右不对称的关键且保守的信号分子.  相似文献   

16.
17.
During vertebrate embryogenesis, a left-right axis is established. The heart, associated vessels and inner organs adopt asymmetric spatial arrangements and morphologies. Secreted growth factors of the TGF-beta family, including nodal, lefty-1 and lefty-2, play crucial roles in establishing left-right asymmetries [1] [2] [3]. In zebrafish, nodal signalling requires the presence of one-eyed pinhead (oep), a member of the EGF-CFC family of membrane-associated proteins [4]. We have generated a mutant allele of cryptic, a mouse EGF-CFC gene [5]. Homozygous cryptic mutants developed to birth, but the majority died during the first week of life because of complex cardiac malformations such as malpositioning of the great arteries, and atrial-ventricular septal defects. Moreover, laterality defects, including right isomerism of the lungs, right or left positioning of the stomach and splenic hypoplasia were observed. Nodal gene expression in the node was initiated in cryptic mutant mice, but neither nodal, lefty-2 nor Pitx2 were expressed in the left lateral plate mesoderm. The laterality defects observed in cryptic(-/-) mice resemble those of mice lacking the type IIB activin receptor or the homeobox-containing factor Pitx2 [6] [7] [8] [9], and are reminiscent of the human asplenic syndrome [10]. Our results provide genetic evidence for a role of cryptic in the signalling cascade that determines left-right asymmetry.  相似文献   

18.
19.
We have isolated a novel gene, charon, that encodes a member of the Cerberus/Dan family of secreted factors. In zebrafish, Fugu and flounder, charon is expressed in regions embracing Kupffer's vesicle, which is considered to be the teleost fish equivalent to the region of the mouse definitive node that is required for left-right (L/R) patterning. Misexpression of Charon elicited phenotypes similar to those of mutant embryos defective in Nodal signaling or embryos overexpressing Antivin(Atv)/Lefty1, an inhibitor for Nodal and Activin. Charon also suppressed the dorsalizing activity of all three of the known zebrafish Nodal-related proteins (Cyclops, Squint and Southpaw), indicating that Charon can antagonize Nodal signaling. Because Southpaw functions in the L/R patterning of lateral plate mesoderm and the diencephalon, we asked whether Charon is involved in regulating L/R asymmetry. Inhibition of Charon's function by antisense morpholino oligonucleotides (MOs) led to a loss of L/R polarity, as evidenced by bilateral expression of the left side-specific genes in the lateral plate mesoderm (southpaw, cyclops, atv/lefty1, lefty2 and pitx2) and diencephalon (cyclops, atv/lefty1 and pitx2), and defects in early (heart jogging) and late (heart looping) asymmetric heart development, but did not disturb the notochord development or the atv/lefty1-mediated midline barrier function. MO-mediated inhibition of both Charon and Southpaw led to a reduction in or loss of the expression of the left side-specific genes, suggesting that Southpaw is epistatic to Charon in left-side formation. These data indicate that antagonistic interactions between Charon and Nodal (Southpaw), which take place in regions adjacent to Kupffer's vesicle, play an important role in L/R patterning in zebrafish.  相似文献   

20.
Exogenous application of BMP to the lateral plate mesoderm (LPM) of chick embryos at the early somite stage had a positive effect on Nodal expression. BMP applications into the right LPM were followed by a rapid activation of Nodal, while applications into the left LPM resulted in expansion of the normal domain of Nodal expression. Conversely, blocking of BMP signaling by Noggin in the left LPM interfered with the activation of Nodal expression. These results support a positive role for endogenous BMP on Nodal expression in the LPM. We also report that BMP positively regulates the expression of Caronte, Snail and Cfc in both the left and right LPM. BMP-treated embryos had molecular impairment of the midline with downregulation of Lefty1, Brachyury and Shh but we also show that the midline defect was not sufficient to induce ectopic Nodal expression. We discuss our findings in the context of the known molecular control of the specification of left-right asymmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号