首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major goal of population genetics research is to identify the relative influences of historical and contemporary processes that serve to structure genetic variation. Most population genetic models assume that populations exist in a state of migration-drift equilibrium. However, in the past this assumption has rarely been verified, and is likely rarely achieved in natural populations. We assessed the equilibrium status at both local and regional scales of the Atlantic killifish, Fundulus heteroclitus . This species is a model organism for the study of adaptive clinal variation, but has also experienced a complicated history of range expansion and secondary contact following allopatric divergence, potentially obscuring the influence of contemporary evolutionary processes. Presumptively neutral genetic markers (microsatellites) demonstrated zones of secondary intergradation among coastal populations centred around northern New Jersey and the Chesapeake Bay region. Analysis of genetic variation indicated isolation by distance among some populations and provided supporting evidence that the Delaware Bay, but not the Chesapeake Bay, has acted as a barrier to dispersal among coastal populations. Bayesian estimates indicated large effective population sizes and low migration rates, and were in good agreement with empirically derived estimates of population and neighbourhood size from mark–recapture studies. These data indicate that populations are not in migration-drift equilibrium at a regional scale, and suggest that contributing factors include large population size combined with relatively low migration rates. These conditions should be considered when interpreting the evolutionary significance of the distribution of genetic variation among F. heteroclitus populations.  相似文献   

2.
Spanish Cedar (Cedrela odorata L.) is a globally important timber species which has been severely exploited in Mesoamerica for over 200 years. Using polymerase chain reaction-restriction fragment length polymorphisms, its chloroplast (cp) DNA phylogeography was studied in Mesoamerica with samples from 29 populations in six countries. Five haplotypes were characterized, phylogenetically grouped into three lineages (Northern, Central and Southern). Spatial analysis of ordered genetic distance confirmed deviation from a pattern of isolation by distance. The geographically proximate Northern and Central cpDNA lineages were genetically the most differentiated, with the Southern lineage appearing between them on a minimum spanning tree. However, populations possessing Southern lineage haplotypes occupy distinct moist habitats, in contrast to populations possessing Northern and Central lineage haplotypes which occupy drier and more seasonal habitats. Given the known colonization of the proto-Mesoamerican peninsula by South American flora and fauna prior to the formation of the Isthmus of Panama, it seems most likely that the observed population structure in C. odorata results from repeated colonization of Mesoamerica from South American source populations. Such a model would imply an ancient, pre-Isthmian colonization of a dry-adapted type (possessing the Northern lineage or a prototype thereof), with a secondary colonization via the land bridge. Following this, a more recent (possibly post-Pleistocene) expansion of moist-adapted types possessing the Southern lineage from the south fits the known vegetation history of the region.  相似文献   

3.
Plant resistance (R) genes tend to be highly variable within plant species and are thought to be under natural selection; however, little is known about the geographic distribution of R gene diversity within and among plant populations. To determine the possible roles of demography and selection on R gene evolution, patterns of diversity at the multigenic Cf-2 R gene family were studied in Solanum pimpinellifolium populations along the northern coast of Peru. Population diversity levels of Cf-2 homologs follow a latitudinal cline, consistent with the species's history of gradual colonization of the Peruvian coast and population variation in outcrossing levels. Although previous evidence suggests that selection has shaped the DNA sequence content of the Cf-2 genes, current results imply that the geographic distribution of Cf-2 homolog diversity has been shaped primarily by demographic factors or by selective pressures with a clinal distribution.  相似文献   

4.
The genus Boechera is a widespread North American group with great potential for studies of ecology and evolution: Boechera is closely related to Arabidopsis and exhibits different ecological and reproductive strategies. Boechera stricta (previously Arabis drummondii) is a morphologically and genetically well-defined, perennial crucifer species. Fifteen natural populations of diploid individuals from the Rocky Mountains were analysed using 21 microsatellite loci. In accordance with our expectation for this predominately inbreeding species, a high F IS value (0.89) was observed. Furthermore, populations of B. stricta were highly differentiated, as indicated by F ST = 0.56. Three clusters were identified using structure- the majority of populations belonged to either the Northern or Southern cluster. Together, the north-south partitioning and evenness of genetic variation across the two clusters suggested multiple refugia for this perennial herb in the Rocky Mountains. Pleistocene glaciation, together with the topographically and climatologically heterogeneous cordillera, has profoundly influenced the genetic architecture of B. stricta. Genetic population structure was also influenced by relatively recent genome admixture at two levels: within species (involving individuals from the Northern and Southern clusters) and between species (with the hybridization of B. stricta and Boechera holboellii). This complexity of population structure at presumably neutral microsatellite loci located throughout the genome in B. stricta provides a baseline against which to test whether functional genetic variation is undergoing local adaptive evolution throughout the natural species range.  相似文献   

5.
In plants, ecologically important life history traits often display clinal patterns of population divergence. Such patterns can provide strong evidence for spatially varying selection across environmental gradients but also may result from nonselective processes, such as genetic drift, population bottlenecks and spatially restricted gene flow. Comparison of population differentiation in quantitative traits (measured as Q(ST) ) with neutral molecular markers (measured as F(ST) ) provides a useful tool for understanding the relative importance of adaptive and nonadaptive processes in the formation and maintenance of clinal variation. Here, we demonstrate the existence of geographic variation in key life history traits in the diploid perennial sunflower species Helianthus maximiliani across a broad latitudinal transect in North America. Strong population differentiation was found for days to flowering, growth rate and multiple size-related traits. Differentiation in these traits greatly exceeds neutral predictions, as determined both by partial Mantel tests and by comparisons of global Q(ST) values with theoretical F(ST) distributions. These findings indicate that clinal variation in these life history traits likely results from local adaptation driven by spatially heterogeneous environments.  相似文献   

6.
7.
Populations arrayed along broad latitudinal gradients often show patterns of clinal variation in phenotype and genotype. Such population differentiation can be generated and maintained by both historical demographic events and local adaptation. These evolutionary forces are not mutually exclusive and can in some cases produce nearly identical patterns of genetic differentiation among populations. Here, we investigate the evolutionary forces that generated and maintain clinal variation genome‐wide among populations of Drosophila melanogaster sampled in North America and Australia. We contrast patterns of clinal variation in these continents with patterns of differentiation among ancestral European and African populations. Using established and novel methods we derive here, we show that recently derived North America and Australia populations were likely founded by both European and African lineages and that this hybridization event likely contributed to genome‐wide patterns of parallel clinal variation between continents. The pervasive effects of admixture mean that differentiation at only several hundred loci can be attributed to the operation of spatially varying selection using an FST outlier approach. Our results provide novel insight into the well‐studied system of clinal differentiation in D. melanogaster and provide a context for future studies seeking to identify loci contributing to local adaptation in a wide variety of organisms, including other invasive species as well as temperate endemics.  相似文献   

8.
The allele frequencies at ten polymorphic loci are described from 31 Bufo marinus populations in the Moreton Bay region in southeastern Queensland, Australia and the variation of these is found to be non-random in all cases. The pattern of non-randomness varies among loci, being clinal in two instances. The allele frequencies at the same ten loci are also described for 12 populations sampled from throughout B. marinus' Australian range. The frequency variation on this larger geographical scale is non-random at all but two loci (Mpi and Hbdh) and also varies among loci, in this case being clinal in four instances. In both cases, the patterns of variation are most reasonably explained as having resulted from genetic drift occurring during the recent range expansion which B. marinus is known to have experienced in Australia. It seems that natural selection has played little, if any, role in generating the observed gene frequency patterns. These results emphasize the need for caution in interpreting geographical patterns of variation. They show that even when clinal patterns exist at some loci but not at others, one cannot conclude that the patterns result from natural selection, unless the demographic histories of the studied populations are known and are inconsistent with the alternative hypothesis that the patterns result from genetic drift.  相似文献   

9.
Fourteen Indian populations ofD. melanogaster collected along a 22° latitudinal range were analyzed electrophoretically to compare the geographical patterns of allozymic variation at 13 loci. The data show higher genetic differentiation on the basis of moderate to higherF ST values and significant statistical correlation of allelic frequencies at six polymorphic loci with latitude. The results add support to the hypothesis that the occurrence of parallel or complementary latitudinal clines across different continental populations provides evidence of natural selection maintaining such clinal variation.  相似文献   

10.
Singh RS  Hickey DA  David J 《Genetics》1982,101(2):235-256
We have studied allozyme variation at 26 gene loci in nine populations of Drosophila melanogaster originating on five different continents. The distant populations show significant genetic differentiation. However, only half of the loci studied have contributed to this differentiation; the other half show identical patterns in all populations. The genetic differentiation in North American, European and African populations is correlated with the major climatic differences between north and south. These differences arise mainly from seven loci that show gene-frequency patterns suggestive of latitudinal clines in allele frequencies. The clinal variation is such that subtropical populations are more heterozygous than temperate populations. These results are discussed in relation to the selectionist and neutralist hypotheses of genetic variation in natural populations.  相似文献   

11.
Both historical and contemporary processes influence the genetic structure of species, but the relative roles of such processes are still difficult to access. Population genetic studies of species with recent evolutionary histories such as the New Zealand endemic scallop Pecten novaezelandiae (<1 Ma) permit testing of the effects of recent processes affecting gene flow and shaping genetic structure. In addition, studies encompassing the entire distributional range of species can provide insight into colonization processes. Analyses of genetic variation in P. novaezelandiae (952 individuals from 14 locations, genotyped at 10 microsatellite loci) revealed a weak but significant regional structure across the distributional range of the species, as well as latitudinal gradients of genetic diversity and differentiation: estimates of migration rates supported these patterns. Our results suggest that the observed genetic structure and latitudinal gradients reflect a stepping‐stone model of colonization (north to south) and emerging divergence of populations as a result of ongoing limitations to gene flow and insufficient time to reach migration–drift equilibrium. The low levels of interpopulation and interregional genetic differentiation detected over hundreds of kilometres reflect the recent evolutionary history of P. novaezelandiae and stand in contrast to patterns reported for other evolutionary older species at the same spatial scale. The outcomes of this study contribute to a better understanding of evolutionary processes influencing the genetic variation of species and provide vital information on the genetic structure of P. novaezelandiae.  相似文献   

12.
The spatial variation in gene frequencies of four unlinked polymorphic loci was studied in the teleost Fundulus heteroclitus. Three loci (Idh-A, Idh-B, and Est-S) exhibit significant north-south clinal variation in allelic frequencies along the Atlantic Coast of North America, while a fourth locus (6-Pgdh-A) shows a modest clinal variation. These data, together with our previous data for Ldh-B, Mdh-A, Gpi-B, and Pgm-A, reveal a pattern of low gene diversity in the colder northern extremes of the species range and high gene diversity in warmer southern latitudes.This work was supported by Grants DEB76-19877 and DEB79-12216 from the National Science Foundation and by Grant P60-80-04 from the State of Maryland. REC and RVB were supported by NIH Training Grant GM07231 to the Department of Biology.Contribution No. 1104 from the Department of Biology, The Johns Hopkins University.  相似文献   

13.
Understanding the genetic basis of local adaptation is challenging due to the subtle balance among conflicting evolutionary forces that are involved in its establishment and maintenance. One system with which to tease apart these difficulties is clines in adaptive characters. Here we analyzed genetic and phenotypic variation in bud set, a highly heritable and adaptive trait, among 18 populations of Norway spruce (Picea abies), arrayed along a latitudinal gradient ranging from 47°N to 68°N. We confirmed that variation in bud set is strongly clinal, using a subset of five populations. Genotypes for 137 single-nucleotide polymorphisms (SNPs) chosen from 18 candidate genes putatively affecting bud set and 308 control SNPs chosen from 264 random genes were analyzed for patterns of genetic structure and correlation to environment. Population genetic structure was low (F(ST) = 0.05), but latitudinal patterns were apparent among Scandinavian populations. Hence, part of the observed clinal variation should be attributable to population demography. Conditional on patterns of genetic structure, there was enrichment of SNPs within candidate genes for correlations with latitude. Twenty-nine SNPs were also outliers with respect to F(ST). The enrichment for clinal variation at SNPs within candidate genes (i.e., SNPs in PaGI, PaPhyP, PaPhyN, PaPRR7, and PaFTL2) indicated that local selection in the 18 populations, and/or selection in the ancestral populations from which they were recently derived, shaped the observed cline. Validation of these genes using expression studies also revealed that PaFTL2 expression is significantly associated with latitude, thereby confirming the central role played by this gene in the control of phenology in plants.  相似文献   

14.
Colonization history, landscape structure, and environmental conditions may influence patterns of neutral genetic variation because of their effects on gene flow and reproductive mode. We compared variation at microsatellite loci within and among 26 Arabidopsis lyrata populations in two disjunct areas of its distribution in northern Europe (Norway and Sweden). The two areas probably share a common colonization history but differ in size (Norwegian range markedly larger than Swedish range), landscape structure (mountains vs. coast), and habitat conditions likely to affect patterns of gene flow and opportunities for sexual reproduction. Within-population genetic diversity was not related to latitude but was higher in Sweden than in Norway. Population differentiation was stronger among Norwegian than among Swedish populations (F(ST) = 0.23 vs. F(ST) = 0.18). The frequency of clonal propagation (proportion of identical multilocus genotypes) increased with decreasing population size, was higher in Norwegian than in Swedish populations, but was not related to altitude or substrate. Differences in genetic structure are discussed in relation to population characteristics and range size in the two areas. The results demonstrate that the possibility of clonal propagation should be considered when developing strategies for sampling and analyzing data in ecological and genetic studies of this emerging model species.  相似文献   

15.
A common geographical pattern of genetic variation is the one-dimensional cline. Clines may be maintained by diversifying selection across a geographical gradient but can also reflect historical processes such as allopatry followed by secondary contact. To identify loci that may be undergoing diversifying selection, we examined the distribution of geographical variation patterns across the range of the killifish (Fundulus heteroclitus) in 310 loci, including microsatellites, allozymes, and single nucleotide polymorphisms. We employed two approaches to detect loci under strong diversifying selection. First, we developed an automated method to identify clinal variation on a per-locus basis and examined the distribution of clines to detect those that exhibited signifcantly steeper slopes. Second, we employed a classic -outlier method as a complementary approach. We also assessed performance of these techniques using simulations. Overall, latitudinal clines were detected in nearly half of all loci genotyped (i.e., all eight microsatellite loci, 12 of 16 allozyme loci and 44% of the 285 SNPs). With the exception of few outlier loci (notably mtDNA and malate dehydrogenase), the positions and slopes of Fundulus clines were statistically indistinguishable. The high frequency of latitudinal clines across the genome indicates that secondary contact plays a central role in the historical demography of this species. Our simulation results indicate that accurately detecting diversifying selection using genome scans is extremely difficult in species with a strong signal of secondary contact; neutral evolution under this history produces clines as steep as those expected under selection. Based on these results, we propose that demographic history can explain all clinal patterns observed in F. heteroclitus without invoking natural selection to either establish or maintain the pattern we observe today.  相似文献   

16.
Sivasundar A  Hey J 《Genetics》2003,163(1):147-157
Caenorhabditis elegans has become one of the most widely used model research organisms, yet we have little information on evolutionary processes and recent evolutionary history of this widespread species. We examined patterns of variation at 20 microsatellite loci in a sample of 23 natural isolates of C. elegans from various parts of the world. One-half of the loci were monomorphic among all strains, and overall genetic variation at microsatellite loci was low, relative to most other species. Some population structure was detected, but there was no association between the genetic and geographic distances among different natural isolates. Thus, despite the nearly worldwide occurrence of C. elegans, little evidence was found for local adaptation in strains derived from different parts of the world. The low levels of genetic variation within and among populations suggest that recent colonization and population expansion might have occurred. However, the patterns of variation are not consistent with population expansion. A possible explanation for the observed patterns is the action of background selection to reduce polymorphism, coupled with ongoing gene flow among populations worldwide.  相似文献   

17.
Haenel GJ 《Molecular ecology》2007,16(20):4321-4334
Isolation due to both geological barriers and range contractions during the Pleistocene glacial maxima has been an important cause of diversification of arid-adapted species in the North American deserts. Tree lizards, Urosaurus ornatus, are distributed across much of the southwestern arid regions and can tolerate a wide range of environments. Thus, they may have avoided large-scale shifts in distribution caused by Pleistocene climate change and any subsequent evolutionary impacts. Cytochrome b sequences were sampled from U. ornatus across the northern part of their range to test if current structure of these populations resulted from post-Pleistocene range expansion and habitat fragmentation, or prior geological isolation. Phylogenetic analyses found geographical structuring of populations consistent with a model of long-term geographical isolation corresponding to each of the desert regions. The two post-Pleistocene hypotheses were not well supported as estimated times of divergence predated the retreat of the last continental ice sheet. Populations in different regions were impacted by different processes. Southern populations of U. ornatus appear to have remained largely independent of more derived northern and eastern populations during Pleistocene climate change, while populations in regions containing more derived populations showed evidence of more recent range expansion (Colorado Plateau). As populations of U. ornatus attest to, the complex and dynamic history of the southwestern USA has left a deep-rooted and multifaceted imprint on genetic and phylogeographical structure of the species living there.  相似文献   

18.
The genetic structure of contemporary populations can be shaped by both their history and current ecological conditions. We assessed the relative importance of postglacial colonization history and habitat type in the patterns and degree of genetic diversity and differentiation in northern European nine‐spined sticklebacks (Pungitius pungitius), using mitochondrial DNA (mtDNA) sequences and 12 nuclear microsatellite and insertion/deletion loci. The mtDNA analyses identified – and microsatellite analyses supported – the existence of two historically distinct lineages (eastern and western). The analyses of nuclear loci among 51 European sites revealed clear historically influenced and to minor degree habitat dependent, patterns of genetic diversity and differentiation. While the effect of habitat type on the levels of genetic variation (coastal > freshwater) and differentiation (freshwater > coastal) was clear, the levels of genetic variability and differentiation in the freshwater sites were independent of habitat type (viz. river, lake and pond). However, levels of genetic variability, together with estimates of historical effective population sizes, decreased dramatically and linearly with increasing latitude. These geographical patterns of genetic variability and differentiation suggest that the contemporary genetic structure of freshwater nine‐spined sticklebacks has been strongly impacted by the founder events associated with postglacial colonization and less by current ecological conditions (cf. habitat type). In general, the results highlight the strong and persistent effects of postglacial colonization history on genetic structuring of northern European fauna and provide an unparalleled example of latitudinal trends in levels of genetic diversity.  相似文献   

19.
The genetic diversity and structure of four populations of the cycad Zamia loddigesii were studied throughout its range in Mexico. Allozyme electrophoresis of 15 loci was conducted. The mean number of alleles per locus was 1.80 ± 0.09, the percentage of polymorphic loci was 66.6 ± 5.4, and the expected heterozygosity was 0.266 ± 0.02. The results indicated that the genetic diversity was relatively higher, with respect to tropical tree species and other cycads. The genetic variation explained by differences among populations was 18%. On average, gene flow between paired populations was similar ( Nm  = 1.6) to other tropical forest trees and cycad species. Our results indicated that the geographical isolation among populations of Z. loddigesii generated allele loss, as well as a clinal variation in the frequencies of two loci ( MDH and MNR2 ), in relation to the latitudinal distribution of populations. The populations have become fragmented due to increasingly higher pressure of habitat conversion and disturbance. The importance of the establishment of sanctuaries and protected areas and a reduction in deforestation is highlighted in this research as a way of preserving the high genetic diversity of this and other endemic species.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 152 , 533–544.  相似文献   

20.
Morton RA  Choudhary M  Cariou ML  Singh RS 《Genetica》2004,120(1-3):101-114
Comparison of synonymous and nonsynonymous variation/substitution within and between species at individual genes has become a widely used general approach to detect the effect of selection versus drift. The sibling species group comprised of two cosmopolitan (Drosophila melanogaster and Drosophila simulans) and two island (Drosophila mauritiana and Drosophila sechellia) species has become a model system for such studies. In the present study we reanalyzed the pattern of protein variation in these species, and the results were compared against the patterns of nucleotide variation obtained from the literature, mostly available for melanogaster and simulans. We have mainly focused on the contrasting patterns of variation between the cosmopolitan pair. The results can be summarized as follows: (1) As expected the island species D. mauritiana and D. sechellia showed much less variation than the cosmopolitan species D. melanogaster and D. simulans. (2) The chromosome 2 showed significantly less variation than chromosome 3 and X in all four species which may indicate effects of past selective sweeps. (3) In contrast to its overall low variation, D. mauritiana showed highest variation for X-linked loci which may indicate introgression from its sibling, D. simulans. (4) An average population of D. simulans was as heterozygous as that of D. melanogaster (14.4% v.s. 13.9%) but the difference was large and significant when considering only polymorphic loci (37.2% v.s. 26.1%). (5) The species-wise pooled populations of these two species showed similar results (all loci = 18.3% v.s. 20.0%, polymorphic loci = 47.2% v.s. 37.6%). (6) An average population of D. simulans had more low-frequency alleles than D. melanogaster, and the D. simulans alleles were found widely distributed in all populations whereas the D. melanogaster alleles were limited to local populations. As a results of this, pooled populations of D. melanogaster showed more polymorphic loci than those of D. simulans (48.0% v.s. 32.0%) but the difference was reduced when the comparison was made on the basis of an average population (29.1% v.s. 21.4%). (7) While the allele frequency distributions within populations were nonsignificant in both D. melanogaster and D. simulans, melanogaster had fewer than simulans, but more than expected from the neutral theory, low frequency alleles. (8) Diallelic loci with the second allele with a frequency less than 20% had similar frequencies in all four species but those with the second allele with a frequency higher than 20% were limited to only melanogaster the latter group of loci have clinal (latitudinal) patterns of variation indicative of balancing selection. (9) The comparison of D. simulans/D. melanogaster protein variation gave a ratio of 1.04 for all loci and 1.42 for polymorphic loci, against a ratio of approximately 2-fold difference for silent nucleotide sites. This suggests that the species ratios of protein and silent nucleotide polymorphism are too close to call for selective difference between silent and allozyme variation in D. simulans. In conclusion, the contrasting levels of allozyme polymorphism, distribution of rare alleles, number of diallelic loci and the patterns of geographic differentiation between the two species suggest the role of natural selection in D. melanogaster, and of possibly ancient population structure and recent worldwide migration in D. simulans. Population size differences alone are insufficient as an explanation for the patterns of variation between these two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号