首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Correlated responses to bi‐directional selection on thorax length, examined on several life‐history traits and chromosome inversion polymorphisms, have revealed apparent novel trade‐offs in Drosophila ananassae. We provide evidence of trade‐offs between hatching time and pupal period, pupal period and egg‐pupa development time, and pupal period and larval development time (LDT). Body size shows positive correlations with ovariole number, LDT and DT (egg–fly). We provide evidence of sexual dimorphism for trade‐offs between longevity and body size and starvation and longevity in females only. Trade‐offs between wing/thorax (W/T) ratio and longevity, W/T ratio and starvation, and DT (egg‐ fly) and longevity are evident in males only. Sexual dimorphism is also evident for inversion polymorphism with body size and longevity. A longevity assay suggests that low line females outlived high line females whereas high line males outlived low line males. The mean longevity in males is negatively correlated with the 2L‐ST and 3R‐ST arrangement frequencies whereas the 3L‐ST arrangement frequency is positively correlated with the mean longevity in males but opposite arrangements are found in females. Absolute starvation resistance is negatively correlated with 2L‐ST and 3R‐ST chromosome arrangements and results in a trade‐off between longevity and absolute starvation resistance in females. Analyses of fecundity, hatchability, and viabilities based on age intervals in both G10 and G13 suggest that the early reproduction is favoured in D. ananassae. The productivity percentage is highest in the high line and there is no effect of late reproduction on it. Overall, we provide some unravelled trade‐offs and striking sex differences, which may help in understanding the life‐history evolution of the species. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 90 , 669–685.  相似文献   

2.
This study is an in-depth analysis of intersexual, intraspecific, and interspecific variability in larvopupal developmental time, pupation site preference, and larval and pupal survival of a number of isofemale lines of the speciesDrosophila mauritiana, D. melanogaster, D. sechellia, D. simulans, D. teissieri, andD. yakuba. There was no significant sex differences in pupation height, but females eclosed significantly earlier than males in all species. In addition, the suggestion of a strong negative correlation between larval developmental time and pupation height could not be confirmed in this study. The hypothesis that differences in pupation height provide a basis for niche partitioning between closely related species with overlapping distributions was tested by three planned orthogonal contrast analyses of variance. First, the two speciesD. teissieri andD. yakuba, with largely overlapping distribution, were significantly different in pupation height. Second, the two allopatric, nonoverlapping island speciesD. mauritiana andD. sechellia did not significantly differ in pupation height. However, the absence of a significant difference in the final contrast between the two cosmopolitan speciesD. melanogaster andD. simulans, which are often found together, makes us cautious to accept the hypothesis.  相似文献   

3.
Life history traits and stress tolerance were studied in four domestic species of DrosophilaD. melanogaster, D. simulans, D. auraria and D. immigrans– to understand how they adapt to their environments. In all species, larval weight approximately doubled in 1 day. The relative egg weight (egg weight : pupal weight) was smaller and the larval period was longer in D. immigrans than in the other three species. The pupal period was the longest in D. auraria. However, the adaptive significance of these differences in larval and pupal periods was not clear. The pupal case was generally thicker in the larger species, probably to support the larger pupal body. The start of oviposition was earliest and reproductive effort was greatest in female D. simulans, followed by female D. melanogaster. In contrast, starvation tolerance and the increase in bodyweight after eclosion was greater in D. immigrans and D. auraria than in the other two species. Pupal desiccation tolerance was greatest in D. melanogaster and lowest in D. auraria, and the less tolerant species seemed to select more humid sites for pupation. Adult tolerance to desiccation was greatest in D. melanogaster and lowest in D. simulans. In contrast, adult cold tolerance was greater in D. auraria and adult heat tolerance was lower in D. immigrans than in the other species. These differences in life history traits and stress tolerance represent the Drosophila species differential adaptations, and are assumed to allow coexistence of the species.  相似文献   

4.
Ten isofemale lines of two natural populations of Drosophila ananassae were compared at four different temperatures for body size, W/T ratio, ovariole number and different life history traits. Three-factor nested ANOVA for thorax length and W/T ratio shows significant differences for temperature and sex, while for wing length it shows significant sex difference only. Two-factor nested ANOVA for ovariole number shows a significant difference between populations only, and not for different temperatures. Tests of correlations among different life history traits show novel trade-offs between LDT and pupal period and between pupal period and egg–pupa DT at different temperatures.  相似文献   

5.
Summary We transplanted pole cells betweenDrosophila melanogaster, D. mauritiana andD. ananassae to investigate the ability of germ cells to develop in the gonad of a heterospecific host, and to study the interaction between somatic follicle cells and the cells of the germ line in producing the species-specific chorion. FemaleD. mauritiana germ cells in aD. melanogaster ovary produced functional eggs with normal development potential. The same is true for the reciprocal combination. FemaleD. ananassae pole cells in aD. melanogaster host only developed to a very early stage and degenerated afterwards. None of the interspecific combinations of male pole cells led to functional sperm. We could not determine at what stage the transplanted male pole cells were arrested. The cooperation of follicle cells and the oocyte-nurse cell complex in producing the chorion was studied using the germ-line-dependent mutationfs(1) K10 ofD. melanogaster, which causes fused respiratory appendages and an abnormal chorion morphology. Wild-type femaleD. mauritiana germ cells in a mutantfs(1) K10 D. melanogaster ovary led to the production of wild-type eggs withD. melanogaster-specific, short respiratory appendages. On the other hand,D. melanogaster fs(1) K10 germ cells in aD. mauritiana ovary induced the formation of eggs with mutant fused appendages which were, however, typicallyD. mauritiana in length. When.D. mauritiana pole cells developed in aD. melanogaster ovary, the chorion exhibited a new imprint pattern that differs from both species-specific patterns.  相似文献   

6.
Multiple experimental evolution studies on Drosophila melanogaster in the 1980s and 1990s indicated that enhanced competitive ability evolved primarily through increased larval tolerance to nitrogenous wastes and increased larval feeding and foraging rate, at the cost of efficiency of food conversion to biomass, and this became the widely accepted view of how adaptation to larval crowding evolves in fruitflies. We recently showed that populations of D. ananassae and D. n. nasuta subjected to extreme larval crowding evolved greater competitive ability without evolving higher feeding rates, primarily through a combination of reduced larval duration, faster attainment of minimum critical size for pupation, greater efficiency of food conversion to biomass, increased pupation height and, perhaps, greater urea/ammonia tolerance. This was a very different suite of traits than that seen to evolve under similar selection in D. melanogaster and was closer to the expectations from the theory of K-selection. At that time, we suggested two possible reasons for the differences in the phenotypic correlates of greater competitive ability seen in the studies with D. melanogaster and the other two species. First, that D. ananassae and D. n. nasuta had a very different genetic architecture of traits affecting competitive ability compared to the long-term laboratory populations of D. melanogaster used in the earlier studies, either because the populations of the former two species were relatively recently wild-caught, or by virtue of being different species. Second, that the different evolutionary trajectories in D. ananassae and D. n. nasuta versus D. melanogaster were a reflection of differences in the manner in which larval crowding was imposed in the two sets of selection experiments. The D. melanogaster studies used a higher absolute density of eggs per unit volume of food, and a substantially larger total volume of food, than the studies on D. ananassae and D. n. nasuta. Here, we show that long-term laboratory populations of D. melanogaster, descended from some of the populations used in the earlier studies, evolve essentially the same set of traits as the D. ananassae and D. n. nasuta crowding-adapted populations when subjected to a similar larval density at low absolute volumes of food. As in the case of D. ananassae and D. n. nasuta, and in stark contrast to earlier studies with D. melanogaster, these crowding-adapted populations of D. melanogaster did not evolve greater larval feeding rates as a correlate of increased competitive ability. The present results clearly suggest that the suite of phenotypes through which the evolution of greater competitive ability is achieved in fruitflies depends critically not just on larval density per unit volume of food, but also on the total amount of food available in the culture vials. We discuss these results in the context of an hypothesis about how larval density and the height of the food column in culture vials might interact to alter the fitness costs and benefits of increased larval feeding rates, thus resulting in different routes to the evolution of greater competitive ability, depending on the details of exactly how the larval crowding was implemented.  相似文献   

7.
Lethal phases of the hybrids betweenDrosophila melanogaster and its sibling species,D. simulans are classified into three types: (1) embryonic lethality in hybrids carryingD. simulans cytoplasm andD. melanogaster X chromosome, (2) larval lethality in hybrids not carryingD. simulans X, and (3) temperature-sensitive pupal lethality in hybrids carryingD. simulans X. The same lethal phases are also observed when either of the two other sibling species,D. mauritiana orD. sechellia, is employed for hybridization withD. melanogaster. Here, we describe genetic analyses of each hybrid lethality, and demonstrate that these three types of lethality are independent phenomena. We then propose two models to interpret the mechanisms of each hybrid lethality. The first model is a modification of the conventional X/autosome imbalance hypothesis assuming a lethal gene and a suppressor gene are involved in the larval lethality, while the second model is for embryonic lethality assuming an interaction between a maternal-effect lethal gene and a suppressor gene.  相似文献   

8.
Adaptation of the gypsy moth to an unsuitable host plant   总被引:2,自引:0,他引:2  
The pattern of adaptation with regard to life history traits and traits thought to be important in feeding habits of caterpillars in two populations of the gypsy moth (Lymantria dispar L.; Lepidoptera: Lymantriidae) originating from the locust tree (Robinia pseudoacacia; Fabaceae) and oak (Quercus petrea; Fagaceae) forests were investigated in the laboratory. The Robinia population has experienced unsuitable locust tree leaves as an exclusive food resource for more than 40 years. Since Quercus species are the principal host plants of the gypsy moth, the specific objectives of this study have been to measure the extent of differentiation between ancestral and derived populations in several life history traits (egg-to-adult viability, duration of larval and pupal stages, and pupal weight) and nutritional indices – relative growth rate (RGR), relative consumption rate (RCR), assimilation efficiency (AD), gross growth efficiency (ECI), and net growth efficiency (ECD). Significant differences between the Quercus and Robinia populations were detected in pupal duration, RGR, RCR, and AD. The presence of a significant population × host interaction in traits such as preadult viability, duration of pupal stage, RGR, and ECI suggests that adaptation of the gypsy moth to the unsuitable host might be ongoing. Using a full-sib design, we screened for genetic variation in life history traits within both populations, and examined the genetic correlations of performance across oak and locust leaves within both populations. The genetic variances for analyzed life history traits were lower under conditions that are commonly encountered in nature. Our data show that positive cross-host genetic correlations preponderate within both populations.  相似文献   

9.
Competitive interactions between organisms from distantly related phylogenetical branches have been suggested as being one of the most pervasive forms of interspecific competition. However, so-called inter-kingdom competition has rarely been the focus of ecological and evolutionary studies. Thus, a relatively novel hypothesis has been proposed on the basis that saprophagous insects might intensively compete with filamentous fungi for ephemeral resources (e.g. decaying plant tissue). Consideration that life history traits (e.g. developmental time) are adaptive in determining developmental success in the presence of con- or hetero-specifics competitors implies that these traits have been progressively established by natural selection. Because a similar scenario may apply to antagonistic interactions between saprophagous insects and filamentous fungi, one can expect the existence of heritable variation in developmental success when insect larvae are forced to grow in the presence of noxious mould. Therefore, this study aimed at discovering whether a local population of Drosophila melanogaster indeed harbours genetic variation in developmental success in the presence of the mould Aspergillus niger. By using the isofemale line technique, single larvae forced to feed on fungal infected or uninfected substrate were analysed for variation in survival probability to the adult stage, developmental time and body size of emerged adults. I found genetic variation in survival probability in fungal infected substrates but not in uninfected larval food sources. Mean developmental time and body size varied significantly among isofemale lines in both types of larval environment. Survival was negatively correlated with developmental time on fungal infected substrate, but variation in developmental time on fungal-free substrates was not correlated with survival on fungal infected food patches. Within-trait correlation between fungal infected and uninfected substrates was surprisingly weak, and developmental time was not correlated with body size. The results of this study demonstrate (a) the existence of genetic variation for larval developmental success in the presence of A. niger in a Drosophila population, and (b) heritability of important insect life history traits differed as a function of the larval environment (fungal infected or uninfected feeding substrate). I discuss models that might explain heritability differences and the evolutionary consequences of these results.  相似文献   

10.
The utilization of detritus sources by mosquito larvae during development may significantly affect adult life history traits and mosquito population growth. Many studies have shown invertebrate carcasses to be an important detritus source in larval habitats, but little is known regarding how invertebrate carcasses are utilized by mosquito larvae. We conducted two studies to investigate the rate of detritus consumption and its effect on larval development and life history traits. Overall, we found that Aedes aegypti and Aedes albopictus larvae rapidly consumed larval detritus, while pupal detritus was consumed at a significantly slower rate. We also found that the consumption of larval detritus significantly increased larval survivorship and decreased male development time but did not significantly influence female development time or pupal cephalothorax length for either sex. Our results suggest that the direct consumption of larval detritus can support the production of adults in larval habitats that lack allochthonous detritus inputs or where such organic inputs are insufficient. These studies indicate that different forms of invertebrate detritus are utilized in distinct ways by mosquito larvae, and therefore different forms of invertebrate detritus may have distinct effects on larval development and adult life history traits.  相似文献   

11.
The outcome of interspecific competition of two closely related species may depend upon genetic variation in the two species and the environment in which the experiment is carried out. Interspecific competition in the two sibling species, Drosophila melanogaster and D. simulans, is usually investigated using longterm laboratory stocks that often have mutant markers that distinguish them. To examine competition in flies that genetically more closely resemble flies in nature, we utilized freshly caught wildtype isofemale lines of the two species collected at the same site in San Carlos, Mexico. Under ordinary laboratory conditions, D. melanogaster always won in competition. However, in hotter and drier conditions, D. simulans competed much more effectively. In these environmental conditions, there were genetic differences in competitive ability among lines with the outcome of competition primarily dependent upon the line of D. melanogaster used but in some cases also influenced by the line of D. simulans used. Differences in the measures of productivity and developmental time did not explain the differences in competitive ability among lines. This suggests that the outcome of competition was not due to differences in major fitness components among the isofemale lines but to some other attribute(s) that influenced competitive ability. When lines of flies were combined, the outcome of competition was generally consistent with competitive outcomes between pairs of lines. In several cases, the combination of lines performed better than the best of the constituent lines, suggesting that competitive ability was combined heterotically and that the total amount of genetic variation was important in the outcome of interspecific competition.  相似文献   

12.
Competition in natural populations of Daphnia   总被引:4,自引:0,他引:4  
Maarten Boersma 《Oecologia》1995,103(3):309-318
I investigated the competitive relationships between two species of Daphnia, D. galeata and D. cucullata, and their interspecific hybrid. The term hemispecific competition was introduced to describe competition between parental species and hybrids. In eutrophic Tjeukemeer both parental species were found to compete with the hybrid, whereas competition between D. galeata and D. cucullata seemed limited. Although the effect of competition on life history traits of daphnids may be profound, the influence of the competitors on the seasonal dynamics of the Daphnia species seems limited.  相似文献   

13.
Growth responses to temperature and resource limitation in three dipteran species with similar life histories were compared. With respect to current life history theory, two points are raised. First, growth rate in real time increased steeply with temperature in all species, following the standard pattern. However, when expressed in physiological time growth rate increased as temperature decreased in the yellow dung fly Scathophaga stercoraria, remained approximately constant in Sepsis cynipsea, and increased in Drosophila melanogaster. These responses can be understood as adaptations to climate and seasonality. It is concluded that some patterns of adaptation may be more easily interpreted if, and some may even go undetected unless, they are analysed in physiological time. Second, a decrease in body size, development rate and growth rate when resources are limited is believed to be nearly universal and generally predicted by life history models. Despite their similar life histories, the three species investigated showed qualitatively different growth responses to larval food shortage. At unlimited resources, yellow dung flies showed the fastest initial larval body mass gain per unit time, while those of S. cynipsea and D. melanogaster were lower and about equal. The period of no body mass gain at the end of larval development was longest in S. stercoraria and shortest in S. cynipsea. When facing resource limitation, S. stercoraria emerged smaller but earlier (thus nearly maintaining their growth rate), S. cynipsea smaller after the same development period, and D. melanogaster smaller and later (showing reduced and much reduced growth, respectively). It is concluded that whether growth really slows when resources are limited depends on the precise ecological circumstances of the species in question. More refined models, particularly those where mortality costs are independent of time, and more experiments are necessary to account for the variation in growth and size and age at maturity present in nature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
J. S. F. Barker 《Oecologia》1971,8(2):139-156
Summary In interspecific competition studies, some cases of apparent change in competitive ability have been reported. But the change in competitive outcome could equally well be due to character displacement. As a preliminary to studies of the effects of association of D. melanogaster (yellow white mutant strain) and D. simulans (vermilion mutant strain), the nature and extent of ecological differences between them, and the nature of their competitive interaction was studied. Differences between the strains were shown for oviposition site preferences, and for larval and pupal distribution. In pure species cultures, simulans showed a greater preference than melanogaster for oviposition in the center of the medium surface. In mixed populations, simulans had an increased preference for this oviposition site, where melanogaster was at low frequency. D. simulans larvae utilized the lower half of the medium to a significantly greater extent than did melanogaster. At low density (5 pairs of parents) in pure species cultures, 68.7% of simulans pupae were on the medium surface. As parental numbers increased, this proportion decreased. The distribution of melanogaster pupae was quite different, with only 8 to 12% on the medium at all densities. But the remaining pupae tended to occur higher on the cylinder wall as parental numbers increased. The competitive interaction changed during the developmental period. At four and eight days after culture initiation, simulans appeared superior, while for total adult progeny production, melanogaster was slightly superior. These strans of the two species were not ecologically equivalent.  相似文献   

15.
Female fruit flies, Drosophila melanogaster, lay their eggs on decaying plant material. Foraging fly larvae strongly depend on the availability of dietary microbes, such as yeasts, to reach the adult stage. In contrast, strong interference competition with filamentous fungi can cause high mortality among Drosophila larvae. Given that many insects are known for employing beneficial microbes to combat antagonistic ones, we hypothesized that fly larvae engaged in competition with the noxious mould Aspergillus nidulans benefit from the presence of dietary yeast species, especially when they are associated with increasingly species rich yeast communities (ranging from one to six yeast species per community). On a nutrient‐limited fruit substrate infested with A. nidulans, both larval survival and development time were positively affected by more diverse yeast communities. On a mould‐free fruit substrate, merely larval development but not survival was found to be affected by increasing species richness of dietary yeasts. Not only yeast diversity had an effect on D. melanogaster life‐history traits, but also the identity of the yeast combinations. These findings demonstrate the importance of the structure and diversity of microbial communities in mutualistic animal–microbe interactions.  相似文献   

16.
1. Unravelling the strength and modes of interspecific interactions between resident and introduced species is necessary in order to understand the basis of their coexistence or the displacement of the former by the latter. In Argentina, the indigenous Tephritidae fly Anastrepha fraterculus overlaps its distribution and host fruit with the introduced species Ceratitis capitata. 2. This study focused on the relative strength of intra‐ and interspecific competition during the larval stage as a potential factor supporting coexistence. Classical competition experiments (addition and substitution) were conducted between larvae of the two species reared in artificial larval diet. The study evaluated whether a temporal separation between oviposition events affects the outcome of the competition. 3. When both species started to consume the resource at the same time, A. fraterculus experienced a negative effect in larval survival, pupal weight and duration of larval stage, while for C. capitata, pupal weight decreased. When A. fraterculus started feeding 1 day earlier than C. capitata, the negative effects became milder, and when the temporal separation increased, these effects were reversed. Substitution experiments showed an increase in pupal weight when larvae had to share the resource with heterospecific larvae, and showed negative effects suffered for both species when they shared the resource with conspecific individuals. 4. These results suggest that intraspecific competition is stronger than interspecific competition, and a differential oviposition preference could generate an asynchrony of these species in nature. Such mechanisms could favour coexistence between A. fraterculus and C. capitata in an environment previously occupied only by the former.  相似文献   

17.
Thermal adaptation is typically detected by examining the tolerance of a few populations to extreme temperatures within a single life stage. However, the extent to which adaptation occurs among many different populations might depend on the tolerance of multiple life stages and the average temperature range that the population experiences. Here, we examined local adaptation to native temperature conditions in eleven populations of the well‐known cosmopolitan fruit fly, Drosophila melanogaster. These populations were sampled from across the global range of D. melanogaster. We measured traits related to fitness during each life stage to determine whether certain stages are more sensitive to changes in temperature than others. D. melanogaster appeared to show local adaptation to native temperatures during the egg, larval and adult life stages, but not the pupal stage. This suggests that across the entire distribution of D. melanogaster, certain life stages might be locally adapted to native temperatures, whereas other stages might use phenotypic plasticity or tolerance to a wide range of temperatures experienced in the native environment of this species.  相似文献   

18.
Glial cells are of significant importance for central nervous system development and function. In insects, knowledge of the types and development of CNS glia is rather low. This is especially true for postembryonic glial development. Using bromodeoxyuridine incorporation and enhancer trap lines we identified a reproducible spatial and temporal pattern of DNA replicating cells in the abdominal larval CNS (A3-7 neuromeres) ofDrosophila melanogaster. These cells correspond to embryonically established glial cells in that region. Except for a specific subfraction, these cells apparently do not divide during larval life. Similar patterns were found in two otherDrosophila species,D. virilis andD. hydei.  相似文献   

19.
Drosophila ananassae, a cosmopolitan and domestic species, belongs to theananassae subgroup of themelanogaster species group. Female remating was observed in ten mass culture stocks of this species, which were initiated from flies collected from different geographic localities. The frequency of female remating ranges from 24% to 56% in different strains. Strains show significant variation in remating latency (days). Significant variation has also been found in all the stocks for duration of copulation between first and second matings. The duration of copulation is shorter in second mating as compared to first mating inD. ananassae.  相似文献   

20.
The amylase gene family of Drosophila ananassae consists in seven copies, scattered on several chromosomal arms. We have evidenced that a member of the family, Amy35, lies within an intron of a gene homologous to the CG14696 gene of D. melanogaster. This nested arrangement seems restricted to the D. ananassae subgroup. The nested and the nest genes are encoded on opposite strands. Both are actively transcribed in the midgut at the same time, raising the possibility of interference between their mRNAs. Our data also help to elucidate the history of the Amy family, suggesting that Amy35 arose by duplication and translocation from another ancestral locus, into a formerly short intron, in an ancestor of the subgroup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号