首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sibutramine is a serotonin–norepine‐phrine reuptake inhibitor that was used for weight‐loss management in obese patients. Even though it was officially withdrawn from the market in 2010, it is still present in some tainted weight‐loss pills (as reported by US Food and Drug Administration). Thus, it is still reasonable to study the effects of this compound. The aim of this work was to investigate the potential of sibutramine to induce CYP1A1/CY3A4 in human cancer cell lines and CYP1A1/2, CYP2A6, CYP2B6, and CYP3A4 in human hepatocytes, a competent model of metabolically active cells. The levels of mRNA and protein of CYP1A1/1A2/3A4/2A6/2B6 were compared with the typical inducers, 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin (TCDD) and rifampicin (RIF) for CYP1A1/2 and for other CYPs, respectively. The mRNA and protein levels of all genes in either cancer cell lines or human hepatocytes were induced when treated with typical inducers but not with sibutramine.  相似文献   

2.
CYP3A4 and CYP3A7 mRNA expression levels were markedly up-regulated by dexamethasone (DEX), but not by rifampicin (RIF). CYP3A5 mRNA level was not increased significantly by DEX, RIF, or phenobarbital. Testosterone 6beta-hydroxylase activity was induced to about 2-fold of control by DEX. However, concomitant treatment with RIF did not alter DEX-mediated induction of CYP3A mRNA expression and testosterone 6beta-hydroxylase activity. DEX-mediated induction of CYP3A mRNA was suppressed in a dose-dependent manner by RU486, a glucocorticoid receptor (GR) antagonist. At 5microM RU486, DEX-mediated induction of CYP3A4, CYP3A5, and CYP3A7 mRNA expression was inhibited almost completely. These results suggest that, in human fetal hepatocytes, PXR is not involved in DEX-mediated induction of CYP3A4 and CYP3A7, and that the induction is mediated directly by GR.  相似文献   

3.
Benzimidazoles compounds like omeprazole (OME) and thiabendazole (TBZ) mediate CYP1A1 induction differently from classical aryl hydrocarbon receptor (AhR) ligands, 3-methylcholanthrene (3-MC) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). To clarify the involvement of an intracellular signal pathway in CYP1A1 induction by OME and TBZ, the TBZ, OME and 3-MC signal-transducing pathways were compared by using specific protein tyrosine kinase inhibitors in primary culture of rat hepatocytes. The effect of OME and TBZ (75-250 microM) on cytochrome P450 1A1 (CYP1A1) expression was therefore studied in primary cultures of rat hepatocytes after 24 h, 48 h and 72 h of exposure. Both compounds provoked a dose- and time-dependent increase in CYP1A1 (EROD activity, protein and mRNA levels), but OME was less effective at all the concentrations and times tested. The mechanism of benzimidazole-mediated induction of CYP1A1 was investigated by comparison with 3-MC, a prototypical AhR ligand. As expected, OME and TBZ were unable to displace [(3)H]-TCDD from its binding sites to the AhR in competitive binding studies. Moreover, classic tyrosine kinase inhibitor herbimycin A (HA) inhibited the two benzimidazoles-mediated CYP1A1 inductions, but only partially inhibited the 3-MC-mediated one. Another two tyrosine kinase inhibitors, Lavendustin A (LA) and genistein (GEN), had no effect on CYP1A1 induction by benzimidazoles and 3-MC. These results are consistent with the implication of a tyrosine kinase, most probably the Src tyrosine kinase, in the mechanism of CYP1A1 induction in rat hepatocytes.  相似文献   

4.
Fipronil induces CYP isoforms and cytotoxicity in human hepatocytes   总被引:1,自引:0,他引:1  
Recent studies have demonstrated the potential of pesticides to either inhibit or induce xenobiotic metabolizing enzymes in humans. Exposure of human hepatocytes to doses of fipronil (5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl) sulfinyl]-1H-pyrazole-3-carbonitrile) ranging from 0.1 to 25 microM resulted in a dose dependent increase in CYP1A1 mRNA expression (3.5 to approximately 55-fold) as measured by the branched DNA assay. In a similar manner, CYP3A4 mRNA expression was also induced (10-30-fold), although at the higher doses induction returned to near control levels. CYP2B6 and 3A5 were also induced by fipronil, although at lower levels (2-3-fold). Confirmation of bDNA results were sought through western blotting and/or enzyme activity assays. Western blots using CYP3A4 antibody demonstrated a dose responsive increase from 0.5 to 1 microM followed by decreasing responses at higher concentrations. Similar increases and decreases were observed in CYP3A4-specific activity levels as measured using 6beta-hydroxytestosterone formation following incubation with testosterone. Likewise, activity levels for a CYP1A1-specific substrate, luciferin CEE, demonstrated that CYP1A1 enzyme activities were maximally induced by 1 microM fipronil followed by dramatically declining activity measurements at 10 and 25 microM. Cytotoxic effects of fipronil and fipronil sulfone were examined using the adenylate kinase and the trypan blue exclusion assays in HepG2 cells and human hepatocytes. The results indicate both that HepG2 cells and primary human hepatocytes are sensitive to the cytotoxic effects of fipronil. The maximum induction of adenylate kinase was ca. 3-fold greater than the respective controls in HepG2 and 6-10-fold in the case of primary hepatocytes. A significant time- and dose-dependent induction of adenylate kinase activity in HepG2 cells was noted from 0.1 to 12.5 microM fipronil followed by decreasing activities at 25 and 50 microM. For fipronil sulfone, cytotoxic effects increased throughout the dose range. The trypan blue assay indicated that cytotoxic effects contributing to an increase of greater than 10% of control values was indicated at doses above 12.5 microM. However, fipronil sulfone induced cytotoxic effects at lower doses. The possibility that cytotoxic effects were due to apoptosis was indicated by significant time- and dose-dependent induction of caspase-3/7 activity in both HepG2 cells and human hepatocytes. Fipronil mediated activation of caspase-3/7 in concurrence with compromised ATP production and viability are attributed to apoptotic cell death.  相似文献   

5.
6.
Compared to other species, little information is available on the xenobiotic-induced regulation of cytochrome P450 enzymes in the beagle dog. Dogs are widely used in the pharmaceutical industry for many study types, including those that will impact decisions on compound progression. The purpose of this study was (1) to determine the temporal kinetics of drug-induced changes in canine CYP1A, CYP2B, and CYP3A mRNA and enzymatic activity, and (2) to characterize concentration-response relationships for CYP1A2, CYP2B11, and CYP3A12 using primary cultures of canine hepatocytes treated with beta-naphthoflavone (BNF), phenobarbital (PB), and rifampin (RIF), respectively. CYP1A1 and CYP1A2 mRNA exhibited maximal expression (12,700-fold and 206-fold, respectively) after 36 h of treatment with BNF. PB treatment, but not RIF treatment, caused maximal induction of CYP2B11 mRNA (149-fold) after 48 h of treatment. CYP3A12 and CYP3A26 mRNA levels were increased maximally after 72 h of treatment with PB and RIF (CYP3A12, 35-fold and 18-fold, and CYP3A26, 72-fold and 22-fold with PB and RIF treatment, respectively). Concentration-response relationships for BNF induced 7-ethoxyresorufin O-dealkylation (EROD) (EC(50) = 7.8 +/- 4.2 microM), PB induced 7-benzyloxyresorufin O-dealkylation (BROD) (EC(50) = 123 +/- 30 microM), and PB and RIF induced testosterone 6beta-hydroxylation (EC(50) = 132 +/- 28 microM and 0.98 +/- 0.16 microM) resembled the relationship for human CYP induction compared to that of rodent. Interestingly, RIF had no effect on CYP2B11 expression, which represents a species difference overlooked in previous investigations. Overall, the induction of dog CYP1A, CYP2B, and CYP3A exhibits characteristics that are intermediate to those of rodent and human.  相似文献   

7.
Albumin secretion, expression of cytochrome P450 dependent mono-oxygenases (CYPs) and their inducibility by well-known inducers were evaluated during 1 week in collagen type I gel sandwich and immobilisation cultures of adult primary rat hepatocytes. Albumin secretion increased during culture time and, following an initial decrease, CYP biotransformation activities remained stable for at least 7 days. Better preservation results were observed in the collagen gel sandwich culture than in the immobilisation model. The inducibility of CYPs by beta-naphthoflavone (beta-NF), 3- methylcholanthrene (3-MC), phenobarbital (PB) and dexamethasone (DEX) was studied in both collagen gel hepatocyte cultures. Exposure of the cells to either 5microM 3-MC or 25 microM beta-NF, added to the culture medium, resulted in strong increases of CYP1A1/2 activity in both culture models. Treatment with PB (3.2 mM) resulted in an increase in the CYP2B activity and a higher hydroxylation of testosterone in the 16alpha-position (CYP2B1/2 and CYP2C11), the 7alpha-position (CYP2A1/2), and the 6beta-position (CYP3A1). DEX (10 microM) markedly increased testosterone 6beta- and 7alpha-hydroxylation. Expression and induction experiments of CYP proteins exposed to these molecules confirmed the results of the CYP activity measurements. The patterns of CYP induction in collagen gel cultures of rat hepatocytes were similar to those observed in vivo. Consequently, collagen gel cultures and, more specifically, collagen gel sandwich cultures seem to be suitable as in vitro models for evaluating xenobiotics as potential inducers of CYP-enzymes.  相似文献   

8.
The primary objective of this study was to evaluate the modulation of UGT1A1 expression in human hepatocytes using prototypical CYP450 inducers. A bank of 16 human livers was utilized to obtain an estimate of the range of UGT1A1 protein expression and catalytic activity. Concentration-dependent changes in UGT1A1 response were evaluated in hepatocyte cultures after treatment with 3-methylchloranthrene, beta-napthoflavone, rifampicin, or phenobarbital. Pharmacodynamic analyses of UGT1A1 expression were conducted and compared to those of CYP450 after treatment with inducers in 2-3 different hepatocyte preparations. Additionally, expression of UGT1A1 mRNA and protein was evaluated in human hepatocytes treated with 14 different compounds known to activate differentially the human pregnane-X-receptor or constitutive androstane receptor. Pharmacodynamic modeling revealed EC50 values statistically significant between UGT1A1 and CYP2B6 after treatment with PB, but not statistically distinguishable between UGT1A1 and CYP's 1A2 or 3A4 after treatment with 3-methylchloranthrene or rifampicin, respectively. UGT1A1 was most responsive to the pregnane-X-receptor-agonists rifampicin, ritonavir, and clotrimazole at the mRNA level and, to a lesser extent, the constitutive androstane receptor-activators, phenobarbital and phenytoin. Pharmacodynamic analyses support a mechanism of coordinate regulation between UGT1A1 and a number of CYP450 enzymes by multiple nuclear receptors.  相似文献   

9.
Recently, we have improved the cryopreservation procedures for human hepatocytes, leading to cells that can be cultured after thawing (“plateable” cryopreserved human hepatocytes). The ability to culture cryopreserved human hepatocytes allows application of the cells for prolonged incubations such as long-term (days) metabolism studies, enzyme induction studies, and cytotoxicity studies. We report here the application of the plateable cryopreserved human hepatocytes to evaluate the relationship between xenobiotic metabolism and toxicity. Two assays were developed: The Metabolism Comparative Cytotoxicity Assay (MCCA) and the Cytotoxic Metabolic Pathway Identification Assay (CMPIA). The MCCA was designed for the initial identification of the role of metabolism in cytotoxicity by comparing the cytotoxic potential of a toxicant in a metabolically competent (primary human hepatocytes) and a metabolically incompetent (Chinese hamster ovary (CHO)) cell type, as well as the evaluation of the role of P450 metabolism by comparing the cytotoxicity of the toxicant in question in human hepatocytes in the presence and absence of a nonspecific, irreversible P450 inhibitor, 1-aminobenzotriazole (ABT). The CMPIA was designed for the identification of the P450 isoforms involved in metabolic activation via the evaluation of the cytotoxicity of the toxicant in the presence and absence of isoform-selective P450 inhibitors. Results of a proof-of-concept study with the MCCA and CMPIA with a known hepatotoxicant, aflatoxin B1 (AFB1), are reported. AFB1 is known to require P450 metabolism for its toxicity. In the MCCA, AFB1 was found to have significantly higher cytotoxicity in human hepatocytes than CHO cells, therefore confirming its requirement for biotransformation to be toxic. ABT was found to effectively attenuate AFB1 cytotoxicity, confirming that P450 metabolism was involved in its metabolic activation. In the CMPIA, AFB1 cytotoxicity was found to be attenuated by ketoconazole and diethyldithiocarbamate, but not by furafylline, quinidine, and sulfaphenazole. Results with the isoform-selective inhibitors suggest that the isoforms inhibited by ketoconazole (mainly CYP3A4) and diethyldithiocarbamate (mainly CYP2A6, and CYP2E1), but not the isoforms inhibited by furafylline (mainly CYP1A2), sulfaphenazole (mainly CYP2C9) and quinidine (mainly CYP2D6) are involved in the metabolic activation of AFB1. This proof-of-concept study suggests that MCCA and CMPIA with cryopreserved human hepatocytes are potentially useful for the evaluation of the relationship between human xenobiotic metabolism and toxicity.  相似文献   

10.
Cytochrome P450 1A2 (CYP1A2) is constitutively expressed in the mouse liver, but the constitutive expression progressively declines to an undetectable level in isolated hepatocytes. In this study, CYP1A2 was induced in hepatocytes exposed to the histone deacetylase inhibitors trichostatin A (TSA) and sodium butyrate (SB), but only well after constitutive CYP1A2 expression was silenced. However, cotreatment with the arylhydrocarbon receptor (AhR) ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and either TSA or SB reduced the induction of CYP1A2 with the same time course as TSA or SB increased its induction. These results suggest that histone modification is involved in CYP1A2 regulation in hepatocytes through pathways that are independent of AhR.  相似文献   

11.
This work describes the rational amelioration of Cytochrome P450 4/5 (CYP3A4/5) induction through the Pregnane-X Receptor (PXR) pathway in a series of compounds that modulate the metabotropic glutamate Receptor 2 (mGluR2) via an allosteric mechanism. The compounds were initially shown to induce CYP3A4/5 via the gold-standard induction assay measured in primary human hepatocytes. This was followed up by testing the compounds in a PXR assay which correlated well with the assay in primary cells. Further, one of the compounds was crystallized with PXR (pdb code 6DUP). Analysis of this co-crystal structure, together with previously published PXR co-crystal structures, lead to modification ideas. The compounds synthesized based on these ideas were shown not to be CYP3A4/5 inducers. The mGluR2 activity of the resulting compounds was maintained.  相似文献   

12.
Green MD  Jiang X  King CD 《Life sciences》2004,75(8):947-953
Characterization of new chemical entities for their potential to produce drug-drug interactions is an important aspect of early drug discovery screening. In the present study, the potential for three metabotropic glutamate receptor antagonists to interact with recombinant human CYPs was investigated. 2-Methyl-6-(phenylethenyl) pyridine (SIB-1893), 2-methyl-6-(phenylethynyl) pyridine (MPEP) and 3-[2-methyl-1,3-thiazol-4-yl) ethynyl]-pyridine (MTEP) were moderate competitive inhibitors of recombinant human CYP1A2 (Ki, 0.5-1 microM). SIB-1893, but not MPEP or MTEP, was also a moderate competitive inhibitor of CYP1B1. MPEP and MTEP were weak inhibitors of CYP2C19. None of the three compounds tested were significant inhibitors (IC(50) values >50 microM) of CYP3A4, 2C9, 2D6, 2A6, 2B6 or 2E1. The results suggest that MTEP is a selective inhibitor of CYP1A2 and may prove to be a useful tool in studying drug-drug interactions involving this enzyme.  相似文献   

13.
14.
15.
Lee WY  Zhou X  Or PM  Kwan YW  Yeung JH 《Phytomedicine》2012,19(2):169-176
This study investigated the effects of Danshen and its active ingredients on the protein expression and enzymatic activity of CYP1A2 in primary rat hepatocytes. The ethanolic extract of Danshen roots (containing mainly tanshinones) inhibited CYP1A2-catalyzed phenacetin O-deethylation (IC50 = 24.6 μg/ml) in primary rat hepatocytes while the water extract containing mainly salvianolic acid B and danshenshu had no effect. Individual tanshinones such as cryptotanshinone, dihydrotanshinone, tanshinone IIA inhibited the CYP1A2-mediated metabolism with IC50 values at 12.9, 17.4 and 31.9 μM, respectively. After 4-day treatment of the rat hepatocytes, the ethanolic extract of Danshen and tanshinone I increased rat CYP1A2 activity by 6.8- and 5.2-fold, respectively, with a concomitant up-regulation of CYP1A2 protein level by 13.5- and 6.5-fold, respectively. CYP1A2 induction correlated with the up-regulation of mRNA level of aryl hydrocarbon receptor (AhR), which suggested a positive feedback mechanism of tanshinone I-mediated CYP1A2 induction. A formulated Danshen pill (containing mainly danshensu and salvianolic acid B and the tanshinones) up-regulated CYP1A2 protein expression and enzyme activity, but danshensu and salvianolic acid B, when used individually, did not affect CYP1A2 activity. This study was the first report on the Janus action of the tanshinones on rat CYP1A2 activity.  相似文献   

16.
17.
Induction of P450 isoforms 1A (CYP1A) and 3A (CYP3A) by model inducers dexamethasone, omeprazole and rifampin was evaluated in primary cultured hepatocytes from man and laboratory animals. Inducer-specific species-differences were observed. Results with human hepatocytes from six human donors consistently show that both rifampin and dexamethasone were inducers of CYP3A activity (measured as testosterone 6beta-hydroxylase activity), with rifampin being more potent. Conversely, in rat hepatocytes, dexamethasone was a potent CYP3A inducer while rifampin was not an inducer. Rifampin but not dexamethasone induced CYP3A in minipig and beagle dog hepatocytes. Omeprazole was a potent inducer of CYP1A activity (measured as ethoxyresorufin-O-deethylase activity) in human, beagle dog and minipig hepatocytes, and not an inducer in rat hepatocytes. The species-differences observed suggest that human hepatocytes represent the most appropriate preclinical experimental system for the evaluation of P450 induction in human.  相似文献   

18.
Induction of cytochrome-P450 in cryopreserved rat and human hepatocytes.   总被引:4,自引:0,他引:4  
Our laboratory has been routinely using suspended and cultured human hepatocytes for predicting drug metabolism and enzyme induction by drug candidates to aid drug discovery. Increasing limitation and irregular availability of human tissue has indicated the need for maximizing the use of this valuable resource. Cryopreservation of surplus hepatocytes after isolation would greatly increase the potential of this model. However, cryopreservation of hepatocytes by various methods has resulted in cells with poor metabolic activity and unacceptably low survival rates in culture. Recently, Zaleski et al. (Biochem. Pharmacol. 46 (1993) 111-116) reported that cryopreserved rat hepatocytes retained metabolic capacity similar to fresh hepatocytes when the cells were preincubated for 30 min at 37 degrees C in Krebs Ringer bicarbonate buffer prior to freezing. To further explore this methodology, both the functional capacity of the cells in culture as well as their ability to retain CYP inducibility were investigated with thawed cryopreserved hepatocytes. Although human hepatocytes were used in this study the initial work focused on rat hepatocytes as a cell model. Our results showed that while the preincubation step did not appear to effect the initial viability of cryopreserved hepatocytes, survival of the cells in culture was greatly enhanced. Plating efficiencies for nonpreincubated cryopreserved hepatocytes were decreased to approximately 15% of fresh cells after 48 h in culture. In contrast, cells that had been preincubated prior to freezing had an excellent plating efficiency (approximately 60%) and responded to classical CYP inducers dexamethasone, beta-naphthoflavone and phenobarbital in a manner indistinguishable from that of fresh hepatocytes. Experiments with human hepatocytes have also demonstrated similar results. This is the first time to our knowledge that cryopreserved hepatocytes from both rat and human have been shown to reproducibly respond to CYP inducers in culture.  相似文献   

19.
We studied the mechanism of toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the chick embryo, which is an organism highly sensitive to TCDD. TCDD was injected into egg yolks prior to embryogenesis, and eggs were incubated for 12 or 18 days. In TCDD-exposed embryos, we observed increased heart wet weight and change in the color of the liver, with abnormal fatty vesicle formation. To determine whether these effects were mediated by the aryl hydrocarbon receptor (AhR), we examined expression levels of AhR, CYP1A4, and CYP1A5. AhR was expressed continuously in the heart and liver during embryogenesis, whereas induction of CYP1A4 and CYP1A5 by TCDD was detected only in the liver. In situ hybridization study of tissue sections revealed induction of CYP1A4 in the abnormal liver tissue in which color change was not observed. To determine whether these different responses to TCDD depended on the cell type, primary cultures of chick hepatocytes and cardiac myocytes were established and 7-ethoxyresorufin-O-deethylase (EROD) activity was measured. Induction of EROD activity following exposure to TCDD was detected in hepatocytes but not in cardiac myocytes. Although the heart is a principal target organ for TCDD toxicity and AhR is expressed throughout embryogenesis, induction of CYP1A was not observed in the chick heart. Thus, we conclude that defects in the heart induced by exposure to TCDD occur via a different pathway than that occurring in the liver.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号