首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Fetal lung liquid secretion depends on active transport of chloride ions. Chloride secretion in the stomach is inhibited by epidermal growth factor (EGF). For this reason, the effect of EGF on lung liquid secretion was measured using the impermeant-tracer technique in chronically-prepared fetal sheep. Infusion of EGF over 4 h resulted in decreased lung liquid secretion (from 4.2 +/- 0.6 to 1.7 +/- 0.8 ml/h, P = 0.02) and significant dose related tachycardia. During the infusion, plasma epinephrine levels increased from 27 +/- 5 to 67 +/- 13 pg/ml (P = 0.05) and norepinephrine levels increased from 257 +/- 31 to 544 +/- 69 pg/ml (P = 0.01). Since it is known that beta-adrenergic agonists inhibit lung liquid secretion, subsequent studies were performed with beta-adrenergic blockade using propranolol. Infusion of EGF and propranolol resulted in a significant decrease in lung liquid secretion (from 8.9 +/- 2.1 to 3.0 +/- 1.1 ml/h, P = 0.03). Infusion of propranolol alone had no demonstrable effect on lung liquid secretion. It is concluded that acute EGF infusion increases heart rate and stimulates catecholamine secretion in fetal sheep. EGF also inhibits lung liquid secretion, an effect which appears to be independent of a possible indirect catecholamine effect.  相似文献   

3.
Membrane Ca(2+)-ATPase activity was stimulated in vitro separately by T4 (10(-10) M) and by epinephrine (10(-6) M). In the presence of a fixed concentration of T4, additions of 10(-8) and 10(-6) M epinephrine reduced the T4 effect on the enzyme. beta-Adrenergic blockade with propranolol (10(-6) M) prevented stimulation by epinephrine of Ca(2+)-ATPase activity, but did not prevent the suppressive action of epinephrine on T4-stimulable Ca(2+)-ATPase. In contrast, alpha 1-adrenergic blockade with unlabelled prazosin restored the effect of T4 on Ca(2+)-ATPase activity in the presence of epinephrine. Like propranolol, prazosin prevented enhancement of enzyme activity by epinephrine in the absence of thyroid hormone. Neither prazosin nor propranolol had any effect on the stimulation by T4 of red cell Ca(2+)-ATPase in the absence of epinephrine. Analysis of radiolabelled prazosin binding to human red cell membranes revealed the presence of a single class of high-affinity binding sites (Kd, 1.2 x 10(-8) M; Bmax, 847 fmol/mg membrane protein). Thus, the human erythrocyte membrane contains alpha 1-adrenergic receptor sites that are capable of regulating Ca(2+)-ATPase activity.  相似文献   

4.
The skin is our primary defense against noxious environmental agents. Upon injury, keratinocytes migrate directionally into the wound bed to initiate re-epithelialization, essential for wound repair and restoration of barrier integrity. Keratinocytes express a high level of beta2-adrenergic receptors (beta2-ARs) that appear to play a role in cutaneous homeostasis as aberrations in either keratinocyte beta2-AR function or density are associated with various skin diseases. Here we report the novel finding that beta-AR antagonists promote wound re-epithelialization in a "chronic" human skin wound-healing model. beta-AR antagonists increase ERK phosphorylation, the rate of keratinocyte migration, electric field-directed migration, and ultimately accelerate human skin wound re-epithelialization. We demonstrate that keratinocytes express two key enzymes required for catecholamine (beta-AR agonist) synthesis, tyrosine hydroxylase and phenylethanolamine-N-methyl transferase, both localized within keratinocyte cytoplasmic vesicles. Finally, we confirm the synthesis of epinephrine by measuring the endogenously synthesized catecholamine in keratinocyte extracts. Previously, we have demonstrated that beta-AR agonists delay wound re-epithelialization. Here we report that the mechanism for the beta-AR antagonist-mediated augmentation of wound repair is due to beta2-AR blockade, preventing the binding of endogenously synthesized epinephrine. Our work describes an endogenous beta-AR mediator network in the skin that can temporally regulate skin wound repair. Further investigation of this network will improve our understanding of both the skin repair process and the multiple modes of action of one of the most frequently prescribed class of drugs, hopefully resulting in a new treatment for chronic wounds.  相似文献   

5.
6.
We elucidated the contribution of endogenous pituitary adenylate cyclase-activating polypeptide (PACAP) to neurally evoked catecholamine secretion from the isolated perfused rat adrenal gland. Infusion of PACAP (100 nM) increased adrenal epinephrine and norepinephrine output. The PACAP-induced catecholamine output responses were inhibited by the PACAP type I receptor antagonist PACAP- (6-38) (30-3,000 nM) but were resistant to the PACAP type II receptor antagonist [Lys1,Pro2,5,Ara3,4,Tyr6]-vasoactive intestinal peptide (LPAT-VIP; 30-3,000 nM). Transmural electrical stimulation (ES; 1-10 Hz) or infusion of ACh (6-200 nM) increased adrenal epinephrine and norepinephrine output. PACAP-(6-38) (3,000 nM), but not LPAT-VIP, also inhibited the ES-induced catecholamine output responses. However, PACAP-(6-38) did not affect the ACh-induced catecholamine output responses. PACAP at low concentrations (0.3-3 nM), which had no influence on catecholamine output, enhanced the ACh-induced catecholamine output responses, but not the ES-induced catecholamine output responses. These results suggest that PACAP is released from the nerve endings to facilitate the neurally evoked catecholamine secretion through PACAP type I receptors in the rat adrenal gland.  相似文献   

7.
To examine the responses of the sympatho-adrenal system to reduced oxygen supply we studied plasma and tissue concentrations of catecholamines during normoxemia, hypoxemia, and asphyxia in 22 fetal guinea pigs near term. Fetal blood was obtained by cardiopuncture in utero under ketamine/xylazine-anesthesia. Catecholamines were determined in plasma and tissue of 15 organs and 14 brain parts by HPLC-ECD. During normoxemia (SO2 54 +/- 4 (SE) %, pH 7.36 +/- 0.02, n = 5) plasma catecholamine levels were low (norepinephrine 447 +/- 53, epinephrine 42 +/- 12, dopamine 44 +/- 6 pg/ml). During hypoxemia (SO2 27 +/- 3%, pH 7.32 +/- 0.01, n = 6) and asphyxia (SO2 24 +/- 2%, pH 7.23 +/- 0.02, n = 11) tissue catecholamine concentrations changed with changing blood gases and with increasing plasma catecholamines. Norepinephrine concentrations increased in both skin and lung and decreased in liver, pancreas, and scalp; those of epinephrine increased in the heart, lung liver, and scalp and decreased in the adrenal. There were only minor changes in brain catecholamine concentrations except for a 50% reduction in dopamine in the caudate nucleus. Concentrations of dopamine catabolite 3,4-dihydroxyphenylacetic acid decreased in many brain parts, suggesting that cerebral catecholamine metabolism was affected by hypoxemia and asphyxia. We conclude that the sympatho-adrenal system of fetal guinea pigs near term is mature and that its stimulation by reduced fetal oxygen supply leads to changes in both plasma and tissue catecholamine concentrations.  相似文献   

8.
The internal mammary artery (IMA) is currently the preferred conduit for myocardial revascularization. However, perioperative vasospasm and a hypoperfusion state during maximal exercise may limit its use as a bypass graft. The mechanism of spasm has not been clearly defined. Since beta-adrenoceptor activation plays a major role in vasorelaxation, the present study was carried out to investigate the beta-adrenoceptor responsiveness of human IMA smooth muscle. Isoproterenol produced a concentration-dependent relaxation in endothelium-denuded IMA segments, precontracted with phenylephrine (maximal relaxation 46.33+/-5.45%). Atenolol (10(-6)M) and propranolol (2x10(-7)M) inhibited isoproterenol-induced relaxation. While atenolol produced partial inhibition, propranolol caused a complete inhibition in a majority of the segments and a partial inhibition in a minority. BRL 37344, a selective beta 3-adrenoceptor agonist, produced a concentration-dependent relaxation in phenylephrine-precontracted rings of endothelium-denuded IMA (maximal relaxation 40.35+/-4.07%). Cyanopindolol, a beta-adrenoceptor partial agonist, produced a marked relaxation (58.65+/-6.2%) in endothelium-denuded IMA rings, precontracted with phenylephrine. Cyanopindolol-induced relaxation was resistant to blockade by propranolol (2x10(-7)M). Spontaneous contractions of IMA rings were also observed in some cases that were inhibited by isoproterenol and BRL 37344. This observation implies the important role of beta-adrenoceptor activation in prevention of human IMA spasm. The results obtained in present study indicate that human IMA smooth muscle possesses an atypical beta-adrenoceptor together with beta1- and beta2-adrenoceptors. Regarding the relaxation induced in IMA rings by adding BRL 37344, the possible identical entities of IMA atypical beta-adrenoceptors and beta 3-adrenoceptors are suggested.  相似文献   

9.
Alanine and glutamine formation and release were studied using the intact epitrochlaris preparation of rat skeletal muscle. Epinephrine reduced the release of alanine and glutamine in a concentration-dependent manner. Measurable inhibition was observed at 10(-9) M epinephrine, and maximal inhibition was obtained at 10(-5) M. Norepinephrine also reduced alanine and glutamine formation and release but the concentration required for maximal inhibition was approximately 100-fold greater than for epinephrine. Isoproterenol (beta agonist), but not phenylephrine (alpha agonist), reproduced the effects of epinephrine, and propranolol (beta antagonist), but not phentolamine (alpha antagonist), blocked the effect of the catecholamine. N6,O2'-Dibutyryl adenosine 3':5'-monophosphate reproduced the effects of epinephrine and theophylline potentiated the effect of submaximal concentrations of the hormone. Glucagon and prostaglandin E2 had no observable effect on amino acid release. Insulin did not modify the inhibition of alanine and glutamine release produced by epinephrine. Alanine and glutamine formation from added precursor amino acids was unaffected by epinephrine or cyclic adenosine 3':5'-monophosphate. Epinephrine reduced alanine formation in muscles obtained from diabetic rats or animals treated with thyroxine or cortisone. These findings indicate that physiological levels of catecholamines reduce alanine and glutamine formation and release from skeletal muscle. This effect is mediated by a beta-adrenergic receptor and the adenylate cyclase system and can be accounted for by an inhibition of muscle protein degradation.  相似文献   

10.
The purpose of this study was to determine the role of direct hepatic adrenergic stimulation in the control of endogenous glucose production (R(a)) during moderate exercise in poorly controlled alloxan-diabetic dogs. Chronically catheterized and instrumented (flow probes on hepatic artery and portal vein) dogs were made diabetic by administration of alloxan. Each study consisted of a 120-min equilibration, 30-min basal, 150-min moderate exercise, 30-min recovery, and 30-min blockade test period. Either vehicle (control; n = 6) or alpha (phentolamine)- and beta (propranolol)-adrenergic blockers (HAB; n = 6) were infused in the portal vein. In both groups, epinephrine (Epi) and norepinephrine (NE) were infused in the portal vein during the blockade test period to create suprapharmacological levels at the liver. Isotopic ([3-(3)H]glucose, [U-(14)C]alanine) and arteriovenous difference methods were used to assess hepatic function. Arterial plasma glucose was similar in controls (345 +/- 24 mg/dl) and HAB (336 +/- 23 mg/dl) and was unchanged by exercise. Basal arterial insulin was 5 +/- 1 mU/ml in controls and 4 +/- 1 mU/ml in HAB and fell by approximately 50% during exercise in both groups. Basal arterial glucagon was similar in controls (56 +/- 10 pg/ml) and HAB (55 +/- 7 pg/ml) and rose similarly, by approximately 1.4-fold, with exercise in both groups. Despite greater arterial Epi and NE levels in HAB compared with controls during the basal and exercise periods, exercise-induced increases in catecholamines from basal were similar in both groups. Gluconeogenic conversion from alanine and lactate and the intrahepatic efficiency of this process were increased by twofold during exercise in both groups. R(a) rose similarly by 2.9 +/- 0.7 and 2.7 +/- 1.0 mg. kg(-1). min(-1) at time = 150 min during exercise in controls and HAB. During the blockade test period, arterial plasma glucose and R(a) rose to 454 +/- 43 mg/dl and 11.3 mg. kg(-1). min(-1) in controls, respectively, but were essentially unchanged in HAB. The attenuated response to the blockade test in HAB substantiates the effectiveness of the hepatic adrenergic blockade. In conclusion, these results demonstrate that direct hepatic adrenergic stimulation does not play a role in the stimulation of R(a) during exercise in poorly controlled diabetes.  相似文献   

11.
12.
The effect of clinically used equipotent doses of nonselective (beta 1/beta 2; propranolol) and selective (beta 1; atenolol) beta-adrenoceptor blockers on thermoregulation was studied during prolonged exercise in the heat. Oral propranolol (160 mg/day), atenolol (100 mg/day) or matching placebo were taken for 6 days each by 11 healthy young adult caucasian males. Subjects participated in 2 h of block-stepping at a work rate of 54 W in an environmental chamber with a temperature of 33.2 +/- 0.3 degree C dry bulb and 31.7 /+- 0.3 degree C wet bulb, 2 h after ingestion of the final dose of each drug. Both active agents produced similar marked (P less than 0.001) increases in subjective perception of effort, the mechanism of which was not immediately evident from changes in serum electrolytes, blood glucose, blood lactate, or ventilatory parameters. Propranolol did, however, cause a greater rise in serum K+ than placebo (P less than 0.02) and atenolol (P = NS) after exercise. Although rectal and mean skin temperatures were insignificantly altered by beta-adrenoceptor blockade, an increased total sweat production was noted with propranolol (P less than 0.01 vs. placebo) and to a lesser degree atenolol (P = NS vs. placebo) therapy. Analysis of the time course of sweat production showed the propranolol-mediated enhancement of sweating to ensue largely during the initial hour of block-stepping and to be transient in nature. The scientific and clinical implications of this observation will be dependent upon the precise underlying mechanism, a factor not identified by the present study.  相似文献   

13.
14.
Cultured and propagated smooth muscle cells contain adenylate cyclase (AC) responsive to catecholamines and their analogues. Isoproterenol and zinterol were the most effective stimulants of AC activity with EC50 = 8.5 X 10(-8)M. They were followed by epinephrine, phenylephrine and norepinephrine (EC50 = 7.5 X 10(-7)M, 6.5 X 10(-6)M and 4 X 10(-6)M, respectively). When the selective antagonists for beta 1 and beta 2 receptors (beta 1-type practolol and atenolol, beta 1/beta 2-type propranolol and beta 2-type butoxamine) were tested against isoproterenol, epinephrine and norepinephrine stimulation of AC activity, the beta 1 in contrast to beta 2 antagonists were found ineffective. The alpha-blockers (phentolamine alpha 1/alpha 2-type antagonists) and yohimbine (alpha 2-type antagonist) alone or in the presence of propranolol did not significantly inhibit the catecholamine-induced enhancement of cAMP formation. On the other hand, prazosine (alpha 1-type antagonist) blocked the stimulatory effect of epinephrine and norepinephrine on AC system. Similarly, the alpha 2-agonist, clonidine, did not affect the catecholamines' stimulated AC activity while alpha 1 agonist, phenylephrine, induced an additive enhancement of norepinephrine production of cAMP. The findings of beta-2- and alpha-1-type adrenergic receptors in the cultured cerebrovascular smooth muscle provide additional support for the implicated involvement of adrenergic innervation in the regulation of cerebral blood flow and/or systemic blood pressure.  相似文献   

15.
An electrical potential difference (PD) is measured between maternal organism and fetus in the pregnant guinea pig. To investigate whether the PD is generated by active or passive forces these studies examined the temperature dependence of the PD in guinea pigs at 55-61 days gestation. Anesthesia was induced (ketamine, 44 mg/kg) and maintained (halothane, 1.5%) in 5 pregnant guinea pigs. The animals were subjected to alternating 1 hour periods of cooling and recovery, changing core body and intrauterine temperature about 5 degrees C. PD was monitored continuously with Ag/AgCl electrodes placed in the maternal abdominal cavity and the amniotic fluid. The resting PD (+/- SEM) was 24.1 +/- 2.8 mV. Analysis of covariance indicated that PD decreased slowly with time and increased significantly with lowered temperature. A second group of 4 guinea pigs was studied after beta blockade with propranolol (0.1 mg iv, repeated hourly). In this group the resting PD was 20.7 +/- 3.6 mV. The PD decreased gradually with time and decreased consistently during cooling. In the propranolol group the relation between PD and temperature yielded a calculated activation energy of 11.7 +/- 0.8 kcal/mol (Q10 = 1.9, 30-40 degrees C). These results are consistent with the hypothesis that at least some of the PD is generated by an energy-dependent electrogenic ion pump, or by selective passive diffusion of ions across a lipid membrane during which a significant energy barrier is overcome. They are not consistent with the generation of the PD exclusively by passive streaming of ions through water-filled channels. During cooling catecholamines are presumably released, favoring the generation of the PD.  相似文献   

16.
Effect of beta-adrenoceptor blockade on H+ and K+ flux in exercising humans   总被引:1,自引:0,他引:1  
The effect of beta-adrenoceptor blockade (beta B) on muscle release and uptake of H+ and K+ in humans during maximal exercise has been investigated. Eight volunteers cycled intermittently at power outputs corresponding to 100% of maximal O2 uptake. Prior to exercise either propranolol (beta B) or saline (control) was infused into the femoral vein. Arterial and femoral venous blood samples were drawn at rest, during exercise, and during 30-min recovery. Peak arterial blood values for K+, lactic acid (LA), and base deficit (BD) (mean +/- SE) were respectively 5.5 +/- 0.1, 9.5 +/- 0.6, and 11.7 +/- 0.9 mmol/l during beta B and 5.1 +/- 0.1, 8.3 +/- 0.6, and 10.3 +/- 1.0 for control (P less than 0.05). The release of K+ from the working leg did not differ between treatments during exercise, but K+ uptake during late recovery (5-30 min) was slightly lower during beta B. Thus the higher arterial K+ levels during exercise (beta B) cannot be attributed to greater release by active muscle but are likely due to decreased K+ uptake by noncontracting muscle. Arterial-femoral venous differences for LA and BD did not differ significantly between treatments. Additionally LA exchange across the leg was similar to H+ exchange (arterial-femoral venous differences for BD) under all conditions. During early recovery (1-5 min), regardless of experimental treatment, BD levels iin arterial blood were higher than LA (P less than 0.05). These elevated BD levels may be due to unequal removal rates between LA and H+ equivalents by nonexercised tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
To assess the involvement of beta 1- and beta 2-receptors in the regulation of venous return in humans, changes in left ventricular end-diastolic (LVED) dimension were determined during beta-receptor stimulation either by exogenous catecholamines or by increased endogenous sympathetic activity after hydralazine, after placebo and during nonselective versus beta 1-selective blockade. Taking changes in heart rate and LV emptying into account, the three beta-agonists (isoproterenol, terbutaline, and epinephrine) as well as hydralazine increased venous return as inferred from LVED dimension. After hydralazine, nonselective and beta 1-selective blockade were equally effective in blunting the increases in venous return, in heart rate, and in positive inotropic response. Beta 1-Selective blockade did not affect the increase in heart rate caused by epinephrine and partially inhibited the positive inotropic effect and the increase in venous return. Nonselective blockade not only blocked the increase in venous return owing to epinephrine but actually led to a decrease, as evidenced by a decrease in LVED dimension despite the marked bradycardia and high afterload with this combination. The present findings in healthy humans indicate that stimulation of both beta 1- and beta 2-receptors increases venous return, heart rate, and myocardial contractility. Beta 1-Receptors appear to predominate in the response to neuronal sympathetic activity.  相似文献   

18.
Rat liver ornithine decarboxylase induction by dexamethasone or laparatomy, which is dramatically impaired by catecholamine depletion, is not affected by alpha-and beta -adrenergic blockers administered simultaneously 1 h prior to steroid injection or operation. However, if blockade is maintained for 24 h, an effect comparable to that of catecholamine depletion is obtained. Reciprocally, the response of the decarboxylase to catecholamines is severely compromised in adrenalectomized rats. Under the same conditions, induction of tyrosine aminotransferase by dexamethasone is not significantly affected by catecholamine availability, which altogether demonstrates that rat liver ornithine decarboxylase activity is specifically governed by the interaction between glucocorticoids and catecholamines.  相似文献   

19.
Cyclosporine A (CyA), an immunosuppressant drug, has been shown to attenuate the baroreflex control of heart rate (HR). This study investigated whether or not the CyA-induced baroreflex dysfunction is due to alterations in the autonomic (sympathetic and parasympathetic) control of the heart. We evaluated the effect of muscarinic or beta-adrenergic blockade by atropine and propranolol, respectively, on reflex HR responses in conscious rats treated with CyA (20 mg x kg(-1) x day(-1) dissolved in sesame oil) for 11-13 days or the vehicle. Baroreflex curves relating changes in HR to increases or decreases in blood pressure (BP) evoked by phenylephrine (PE) and sodium nitroprusside (NP), respectively, were constructed and the slopes of the curves were taken as a measure of baroreflex sensitivity (BRS(PE) and BRS(NP)). Intravenous administration of PE and NP produced dose-related increases and decreases in BP, respectively, that were associated with reciprocal changes in HR. CyA caused significant (P < 0.05) reductions in reflex HR responses as indicated by the smaller BRS(PE) (-0.97 +/- 0.07 versus -1.47 +/- 0.10 beats x min(-1) x mmHg(-1) (1 mmHg = 133.322 Pa)) and BRS(NP) (-2.49 +/- 0.29 versus -5.23 +/- 0.42 beats x min(-1) x mmHg(-1)) in CyA-treated versus control rats. Vagal withdrawal evoked by muscarinic blockade elicited significantly lesser attenuation of BRS(PE) in CyA compared with control rats (40.2 +/- 8.0 versus 57.7 +/- 4.4%) and abolished the BRS(PE) difference between the two groups, suggesting that CyA reduces vagal activity. CyA also appears to impair cardiac sympathetic control because blockade of beta-adrenergic receptors by propranolol was less effective in reducing reflex tachycardic responses in CyA compared with control rats (41.6 +/- 4.2 versus 59.5 +/- 4.5%). These findings confirm earlier reports that CyA attenuates the baroreceptor control of HR. More importantly, the study provides the first pharmacological evidence that CyA attenuates reflex chronotropic responses via impairment of the autonomic modulation of the baroreceptor neural pathways.  相似文献   

20.
The pharmacological actions of three leukotriene D4 (LTD4) receptor antagonists, FPL-55712, L-648,051, and L-649,923, and a novel inhibitor of leukotriene biosynthesis, L-651,896, have been investigated on isolated human tracheal smooth muscle. In the order of potency L-648,051 greater than FPL-55712 greater than L-649,923, these agents antagonized contractions to LTD4 and produced parallel rightward shifts in the dose-response curves. Mean -log KB values against LTD4 were 6.9 +/- 0.1, 6.5 +/- 0.3, and 6.0 +/- 0.1 for L-648,051, FPL-55712, and L-649,923, respectively. FPL-55712 also antagonized contractions to LTC4 (-log KB value, 6.4 +/- 0.3) and this activity was not decreased by the gamma-glutamyl transpeptidase inhibitor, L-serine borate. In the presence of 1 x 10(-7) M atropine, 7 x 10(-6) M mepyramine, and 1.4 x 10(-6) M indomethacin, L-648,051 at 2 x 10(-5) and 2 x 10(-6) M produced complete and partial blockade, respectively, of the contraction to goat anti-IgE. L-649,923 and FPL-55712 produced partial but significant inhibition at 2 x 10(-5) M, whereas the 5-lipoxygenase inhibitor, L-651,896, produced almost complete inhibition at 3.5 and 35 x 10(-6) M. L-Serine borate (15 mM) did not alter the the activity of FPL-55712 versus anti-IgE. These findings indicate that LTD4 receptors mediate contraction of human trachea to exogenously applied and endogenously (anti-IgE) released leukotrienes. LTD4 antagonists, such as L-648,051, may be useful in assessing the role of leukotrienes in respiratory disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号