首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of cAMP-dependent protein kinase (PKA) in the plasma membrane compartment and its association with an A-kinase anchoring protein (AKAP150) is implicated in mediating cAMP regulatory events in the rat myometrium. The association of PKA with purified myometrial plasma membrane declined gradually between Day 16 and Day 21 of gestation, with a decrease of 53% +/- 11% of the catalytic subunit and of 61% +/- 7% of the regulatory subunit at Day 21 compared with Day 19. To determine the role of progesterone in this association, pregnancy was prolonged by administration of progesterone or shortened by administration of the antiprogestin RU486. Progesterone treatment maintained PKA association with plasma membrane at Day 21 at 123% +/- 23% (catalytic subunit) and 92% +/- 4% (regulatory subunit) of Day 19 levels. In contrast, protein phosphatase 1, protein phosphatase 2B, phospholipase Cbeta(3), and AKAP150 concentrations in the plasma membrane did not change over this interval or with progesterone treatment. Changes in PKA coimmunoprecipitated with membrane-associated AKAP150 paralleled those in total plasma membrane on Days 19 and 21 and on Day 21 following progesterone treatment. In contrast, plasma membrane PKA catalytic and regulatory subunits decreased by 20 h after RU486 injection on Day 15 of pregnancy to levels resembling those on Day 21. These data indicate that progesterone prevents the decline in PKA associated with myometrial plasma membrane and with AKAP150 in the pregnant rat. The decrease in membrane-bound PKA between Days 19 and 21 and after RU486 treatment precedes the onset of parturition in both experimental paradigms. The loss of plasma membrane PKA may be critical for the decrease in the inhibitory effect of cAMP on oxytocin-induced phosphatidylinositide turnover that occurs near the end of pregnancy and may contribute to enhanced myometrial contractile responsiveness near term.  相似文献   

2.
Plasma membranes of pig myometrium show the ability for endogenous phosphorylation (160 +/- 45 pmol 32P/mg.min); the initial rate of this process increases 2.5-fold in the presence of 10(-6) cAMP. Micromolar concentrations of cAMP activate the ATP-dependent transport of Ca2+ in myometrium plasma membranes; cAMP at concentrations of 10(-9)-10(-4) M has no effect on Ca,Mg-ATPase. Myometrium plasma membranes possess the Mg2+-dependent phosphatase activity. Dephosphorylation of membranes is accompanied by a decrease (by 25-50%) of the Ca,Mg-ATPase activity and Ca2+ uptake, respectively. The exogenous catalytic subunit of cAMP-dependent protein kinase increases the activity of Ca,Mg-ATPase in native and dephosphorylated membranes. Tolbutamide diminishes the activity of Ca,Mg-ATPase in native membranes by 25% without causing any appreciable influence on the enzyme activity in dephosphorylated membranes. Taking into account the similarity of dependence of Ca2+ uptake on Ca2+ concentration in native and cAMP-phosphorylated vesicles, it can be assumed that the cAMP-dependent phosphorylation affects the enzyme turnover number but not its affinity for Ca2+. The dephosphorylation-induced inhibition of Ca,Mg-ATPase activity and accumulation of Ca2+ are reversible processes.  相似文献   

3.
During pregnancy in the rat, there is a change in the ability of chlorophenylthio (CPT)-cAMP to inhibit myometrial phosphatidylinositide turnover. This is accompanied by a change in the association of proteins with a plasma membrane A kinase anchoring protein (AKAP). Both CPT-cAMP and isoproterenol inhibited oxytocin-stimulated phosphatidylinositide turnover on days 12 through 20 of gestation, whereas neither agent had an effect on day 21. Accompanying this change was a dramatic decrease in the concentration and activity of cAMP-dependent protein kinase [protein kinase A (PKA)] and an increase in the concentration of protein phosphatase 2B (PP2B) in plasma membranes from day 21 compared with day 19 pregnant rats. In contrast, both PKA and PP2B concentrations and activities increased in total myometrial homogenates. Both PKA and PP2B coimmunoprecipitated with an antibody against the 150-kDa AKAP found in rat myometrial plasma membranes. More PKA was associated with AKAP150 on day 19 than on day 21, while the reverse was true for PP2B. Disruption of PKA/AKAP association in day 19 pregnant rat myometrial cells with the specific interaction inhibitor peptide S-Ht31 resulted in the loss of the cAMP-inhibitory effect on phosphatidylinositide turnover. PP2B activity in myometrial homogenates dephosphorylated PLCbeta3, a PKA substrate targeted in the inhibition of Galphaq-stimulated phosphatidylinositide turnover. The dramatic loss of the cAMP-inhibitory effect on day 21 of pregnancy may alter the balance between uterine contraction and relaxation near parturition. The changes in the relative concentrations of PKA and PP2B associated with AKAP150 are consistent with a functional role for AKAP150 scaffolding in the alteration of cellular signaling.  相似文献   

4.
cAMP-dependent protein kinase (PKA) mediates key cellular processes via compartmentalized activity, and the ability to track its activity in living cells should help increase our understanding of this precise regulation. Here, through systematic testing of new fluorescent proteins, we developed a new FRET-based A-kinase activity reporter (AKAR), AKAR3, with a dynamic range of 31-41%, twice that of predecessors. Visualization of PKA activity at plasma membrane, cytoplasm, nucleus, and mitochondria was achieved. Targeting AKAR3 to outer mitochondrial membrane revealed that basal PKA activity at mitochondria differs from that in the cytoplasm, indicating differential regulation of PKA activity at different subcellular locations.  相似文献   

5.
The distribution of adenylate cyclase (AC) in Golgi and other cell fractions from rat liver was studied using the Golgi isolation procedure of Ehrenreich et al. In liver homogenate the AC activity was found to decay with time, but addition of 1 mM EGTA reduced the rate of enzyme loss. The incorporation of 1 mM EGTA into the sucrose medium used in the initial two centrifugal steps of the Golgi isolation method stabilized the enzyme activity throughout the entire procedure and resulted in good enzyme recovery. In such preparations, AC activity was demonstrated to be associated not only with plasma membranes but also with Golgi membranes and smooth microsomal membranes as well. Furthermore, under the conditions used, enzyme activity was also associated with the 105,000 g x 90 min supernatant fraction. The specific activity of the liver homogenate was found to be 2.9 pmol-mg protein-1-min-1, the nonsedimentabel and microsomal activity was of the same order of magnitude, but the Golgi and plasma membrane activities were much higher. The specific activity of plasma membrane AC was 29 pmol-mg proten-1-min-1. The Golgi activity varied in the three fractions, with the highest activity (14 pmol) in GF1 lowest activity (1.8) in GF2, and intermediate activity (5.5) in GF3, when the Golgi activity was corrected for the presence of content protein, the activity in GF1 became much higher (9 x) than that of the plasma membrane while the activities in GF2 and GF3 were comparable to that of plasma membrane. In all locations studied, the AC was sensitive to NaF stimulation, especially the enzyme associated with Golgi membranes. The activities in plasma and microsomal membranes were stimulated by glucagon, whereas the Golgi and nonsedimentable AC were not.  相似文献   

6.
Agents which elevate cellular cAMP are known to inhibit the activation of phospholipase D (PLD) in human neutrophils. The PLD activity of human neutrophils requires protein factors in both membrane and cytosolic fractions. We have studied the regulation of PLD by the catalytic subunit of protein kinase A (cPKA) in a cell-free system. cPKA significantly inhibited GTPgammaS-stimulated PLD activity but had no effect on phorbol ester-activated PLD activity. Pretreatment of plasma membranes with cPKA and ATP inhibited subsequent PLD activation upon reconstitution with untreated cytosol. RhoA, which is known to be a plasma membrane activator of PLD, was dissociated from PKA-treated plasma membrane by addition of cytosol. Plasma membrane-associated RhoA in human neutrophils was phosphorylated by cPKA. The PKA-phosphorylated form of RhoA was more easily extracted from membranes by RhoGDI than the unphosphorylated form. These results suggest that inhibition of neutrophil PLD by PKA may be due to phosphorylation of RhoA on the plasma membrane.  相似文献   

7.
Different phase changes were observed in adenylate cyclase (AC) activity of pulmonary tissue plasma membranes under chronic gamma-irradiation of rats at a dose-rate of 12.9 cGy/day. Comparison of AC basal activity with the data reported earlier on changes in ornithine decarboxylase activity under similar radiation conditions showed unidirectional changes which indicated that cAMP-dependent processes were possibly involved in radiation modification of ornithine decarboxylase.  相似文献   

8.
C Maurel  R T Kado  J Guern    M J Chrispeels 《The EMBO journal》1995,14(13):3028-3035
The vacuolar membrane protein alpha-TIP is a seed-specific protein of the Major Intrinsic Protein family. Expression of alpha-TIP in Xenopus oocytes conferred a 4- to 8-fold increase in the osmotic water permeability (Pf) of the oocyte plasma membrane, showing that alpha-TIP forms water channels and is thus a new aquaporin. alpha-TIP has three putative phosphorylation sites on the cytoplasmic side of the membrane (Ser7, Ser23 and Ser99), one of which (Ser7) has been shown to be phosphorylated. We present several lines of evidence that the activity of this aquaporin is regulated by phosphorylation. First, mutation of the putative phosphorylation sites in alpha-TIP (Ser7Ala, Ser23Ala and Ser99Ala) reduced the apparent water transport activity of alpha-TIP in oocytes, suggesting that phosphorylation of alpha-TIP occurs in the oocytes and participates in the control of water channel activity. Second, exposure of oocytes to the cAMP agonists 8-bromoadenosine 3',5'-cyclic monophosphate, forskolin and 3-isobutyl-1-methylxanthine, which stimulate endogenous protein kinase A (PKA), increased the water transport activity of alpha-TIP by 80-100% after 60 min. That the protein can be phosphorylated by PKA was demonstrated by phosphorylating alpha-TIP in isolated oocyte membranes with the bovine PKA catalytic subunit. Third, the integrity of the three sites at positions 7, 23 and 99 was necessary for the cAMP-dependent increase in the Pf of oocytes expressing alpha-TIP, as well as for in vitro phosphorylation of alpha-TIP. These findings demonstrate that the alpha-TIP water channel can be modulated via phosphorylation of Ser7, Ser23 and Ser99.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Purified alkaline phosphatase and plasma membranes from human liver were shown to dephosphorylate phosphohistones and plasma membrane phosphoproteins. The protein phosphatase activity of the liver plasma membranes was inhibited by levamisole, a specific inhibitor of alkaline phosphatase, and by phenyl phosphonate and orthovanadate, but was relatively insensitive to fluoride (50 mM). Endogenous membrane protein phosphatase activity was optimal at pH 8.0, compared to pH 7.8 for purified liver alkaline phosphatase. Plasma membranes also exhibited protein kinase activity using exogenous histone or endogenous membrane proteins (autophosphorylation) as substrates; this activity was cAMP-dependent. Autophosphorylation of plasma membrane proteins was apparently enhanced by phenyl phosphonate, levamisole, or orthovanadate. The dephosphorylation of phosphohistones by protein phosphatase 1 was not inhibited by levamisole but was inhibited by fluoride. Inhibition of endogenous protein phosphatase activity by orthovanadate during autophosphorylation of plasma membranes could be reversed by complexation of the inhibitor with (R)-(-)-epinephrine, and the dephosphorylation that followed was levamisole-sensitive. Neither plasma membranes nor purified liver alkaline phosphatase dephosphorylated glycogen phosphorylase a. These results suggest that the increased [32P]phosphate incorporation by endogenous protein kinases into the membrane proteins is due to inhibition of alkaline phosphatase and that the major protein phosphatase of these plasma membranes is alkaline phosphatase.  相似文献   

10.
The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed intracellular calcium (Ca(2+)) release channel on the endoplasmic reticulum. IP3Rs play key roles in controlling Ca(2+) signals that activate numerous cellular functions including T cell activation, neurotransmitter release, oocyte fertilization and apoptosis. There are three forms of IP3R, all of which are ligand-gated channels activated by the second messenger inositol 1,4,5-trisphosphate. Channel function is modulated via cross-talk with other signaling pathways including those mediated by kinases and phosphatases. In particular IP3Rs are known to be regulated by cAMP-dependent protein kinase (PKA) phosphorylation. In the present study we show that PKA and the protein phosphatases PP1 and PP2A are components of the IP3R1 macromolecular signaling complex. PKA phosphorylation of IP3R1 increases channel activity in planar lipid bilayers. These studies indicate that regulation of IP3R1 function via PKA phosphorylation involves components of a macromolecular signaling complex.  相似文献   

11.
N Misaki  T Imaizumi  Y Watanabe 《Life sciences》1989,45(18):1671-1678
The effects of addition of activated cyclic AMP-dependent protein kinase (PKA) on the function of islet-activating protein (IAP)-sensitive GTP-binding (G) protein were studied in the plasma membranes of 3H-inositol-labeled differentiated human leukemic (HL-60) cells. Pretreatment of the membranes with activated PKA (0.1 mg/ml) in the presence of MgATP for 15 min. at 37 degrees C decreased GTP gamma S-stimulated inositol trisphosphate (IP3) formation by about 30%, but had no influence on Ca2+-stimulated IP3 formation. And autoradiography in the phosphorylation experiments of solubilized HL-60 cell membranes by PKA showed some 32P incorporated bands, and among them one of the major bands showed the migration at 40 kDa supporting that the G protein coupling with PI response was phosphorylated by PKA. These results showed that pretreatment with activated PKA inhibited the mediating function of the G protein between the fMLP receptor and phospholipase C by its phosphorylation.  相似文献   

12.
In non-excitable cells, the inositol 1,4,5-trisphosphate receptor (IP(3)R), a ligand-gated Ca(2+) channel, plays an important role in the control of intracellular Ca(2+). There are three subtypes of IP(3)R that are differentially distributed among cell types. AR4-2J cells express almost exclusively the IP(3)R-2 subtype. The purpose of this study was to investigate the effect of cAMP-dependent protein kinase (PKA) on the activity of IP(3)R-2 in AR4-2J cells. We showed that immunoprecipitated IP(3)R-2 is a good substrate for PKA. Using a back-phosphorylation approach, we showed that endogenous PKA phosphorylates IP(3)R-2 in intact AR4-2J cells. Pretreatment with PKA enhanced IP(3)-induced Ca(2+) release in permeabilized AR4-2J cells. Pretreatment with the cAMP generating agent's forskolin and vasoactive intestinal peptide (VIP) enhanced carbachol (Cch)-induced and epidermal growth factor (EGF)-induced Ca(2+) responses in intact AR4-2J cells. Our results are consistent with an enhancing effect of PKA on IP(3)R-2 activity. This conclusion supports the emerging concept of crosstalk between Ca(2+) signaling and cAMP pathways and thus provides another way by which Ca(2+) signals are finely encoded within non-excitable cells.  相似文献   

13.
The membrane cortex has an important role in generating and maintaining spatially and functionally distinct domains in neurons. As a tool to functionally characterize molecules of the membrane cortex, we generated novel monoclonal antibodies against a fraction enriched for components of the neuronal membrane skeleton. We obtained two antibodies against the kinase-anchoring protein gravin. Gravin was strongly up-regulated during differentiation of human model neurons (NT2-N neurons) and was enriched at the inner peripheral cortex in close proximity to the plasma membrane where its localization primarily depended on association with membranes. In differentiated neurons, gravin colocalized in putative signaling complexes with protein kinase C (PKCbetaII) and partially with PKCalpha and cAMP-dependent protein kinase (PKA). Colocalization with PKCepsilon was not observed. PKCbetaII, PKCalpha, and PKA but not PKCepsilon coprecipitated with gravin indicating physical interaction. Binding of gravin to PKCalpha required the presence of Ca2+ and was increased after inhibition of PKC. In contrast, binding of PKCbetaII and PKA were independent of Ca2+ and PKC inhibition. Activation of PKC decreased binding of PKCalpha to gravin, decreased its association with the plasma membrane, and reduced the mean size of gravin particles. Taken together the data suggest that gravin provides a dynamic platform to localize kinases in an isoenzyme-specific and activation-dependent manner at specific sites in neurons.  相似文献   

14.
Viruses exploit signaling pathways to their advantage during multiple stages of their life cycle. We demonstrate a role for protein kinase A (PKA) in the hepatitis C virus (HCV) life cycle. The inhibition of PKA with H89, cyclic AMP (cAMP) antagonists, or the protein kinase inhibitor peptide reduced HCV entry into Huh-7.5 hepatoma cells. Bioluminescence resonance energy transfer methodology allowed us to investigate the PKA isoform specificity of the cAMP antagonists in Huh-7.5 cells, suggesting a role for PKA type II in HCV internalization. Since viral entry is dependent on the host cell expression of CD81, scavenger receptor BI, and claudin-1 (CLDN1), we studied the role of PKA in regulating viral receptor localization by confocal imaging and fluorescence resonance energy transfer (FRET) analysis. Inhibiting PKA activity in Huh-7.5 cells induced a reorganization of CLDN1 from the plasma membrane to an intracellular vesicular location(s) and disrupted FRET between CLDN1 and CD81, demonstrating the importance of CLDN1 expression at the plasma membrane for viral receptor activity. Inhibiting PKA activity in Huh-7.5 cells reduced the infectivity of extracellular virus without modulating the level of cell-free HCV RNA, suggesting that particle secretion was not affected but that specific infectivity was reduced. Viral particles released from H89-treated cells displayed the same range of buoyant densities as did those from control cells, suggesting that viral protein association with lipoproteins is not regulated by PKA. HCV infection of Huh-7.5 cells increased cAMP levels and phosphorylated PKA substrates, supporting a model where infection activates PKA in a cAMP-dependent manner to promote virus release and transmission.  相似文献   

15.
Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a "myosheet," was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and the lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells.  相似文献   

16.
The cAMP-dependent protein kinase (PKA) is localized to specific subcellular compartments by association with A-kinase anchoring proteins (AKAPs). AKAPs are a family of functionally related proteins that bind the regulatory (R) subunit of PKA with high affinity and target the kinase to specific subcellular organelles. Recently, AKAP18, a low molecular weight plasma membrane AKAP that facilitates PKA-mediated phosphorylation of the L-type Ca(2+) channel, was cloned. We now report the cloning of two additional isoforms of AKAP18, which we have designated AKAP18beta and AKAP18gamma, that arise from alternative mRNA splicing. The AKAP18 isoforms share a common R subunit binding site, but have distinct targeting domains. The original AKAP18 (renamed AKAP18alpha) and AKAP18beta target the plasma membrane when expressed in HEK-293 cells, while AKAP18gamma is cytosolic. When expressed in epithelial cells, AKAP18alpha is targeted to lateral membranes, whereas AKAP18beta is accumulated at the apical membrane. A 23-amino acid insert, following the plasma membrane targeting domain, facilitates the association of AKAP18beta with the apical membrane. The data suggest that AKAP18 isoforms are differentially targeted to modulate distinct intracellular signaling events. Furthermore, the data suggest that plasma membrane AKAPs may be targeted to subdomains of the cell surface, adding additional specificity in intracellular signaling.  相似文献   

17.
Spatial regulation of the cAMP-dependent protein kinase (PKA) is required for chemotaxis in fibroblasts; however, the mechanism(s) by which PKA regulates the cell migration machinery remain largely unknown. Here we report that one function of PKA during platelet-derived growth factor (PDGF)-induced chemotaxis was to promote membrane ruffling by regulating phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) dynamics. Inhibition of PKA activity dramatically altered membrane dynamics and attenuated formation of peripheral membrane ruffles in response to PDGF. PKA inhibition also significantly decreased the number and size of PIP(3)-rich membrane ruffles in response to uniform stimulation and to gradients of PDGF. This ruffling defect was quantified using a newly developed method, based on computer vision edge-detection algorithms. PKA inhibition caused a marked attenuation in the bulk accumulation of PIP(3) following PDGF stimulation, without effects on PI3-kinase (PI3K) activity. The deficits in PIP(3) dynamics correlated with a significant inhibition of growth factor-induced membrane recruitment of endogenous Akt and Rac activation in PKA-inhibited cells. Simultaneous inhibition of PKA and Rac had an additive inhibitory effect on growth factor-induced ruffling dynamics. Conversely, the expression of a constitutively active Rac allele was able to rescue the defect in membrane ruffling and restore the localization of a fluorescent PIP(3) marker to membrane ruffles in PKA-inhibited cells, even in the absence of PI3K activity. These data demonstrate that, like Rac, PKA contributes to PIP(3) and membrane dynamics independently of direct regulation of PI3K activity and suggest that modulation of PIP(3)/3-phosphatidylinositol (3-PI) lipids represents a major target for PKA in the regulation of PDGF-induced chemotactic events.  相似文献   

18.
Cyclic adenosine monophosphate (cAMP) and cAMP-dependent protein kinase A (PKA) are evolutionary conserved molecules with a well-established position in the complex network of signal transduction pathways. cAMP/PKA-mediated signaling pathways are implicated in many biological processes that cooperate in organ development including the motility, survival, proliferation and differentiation of epithelial cells. Cell surface polarity, here defined as the anisotropic organisation of cellular membranes, is a critical parameter for most of these processes. Changes in the activity of cAMP/PKA elicit a variety of effects on intracellular membrane dynamics, including membrane sorting and trafficking. One of the most intriguing aspects of cAMP/PKA signaling is its evolutionary conserved abundance on the one hand and its precise spatial-temporal actions on the other. Here, we review recent developments with regard to the role of cAMP/PKA in the regulation of intracellular membrane trafficking in relation to the dynamics of epithelial surface domains.  相似文献   

19.
A cAMP-dependent protein kinase (PKA) is localized in mammalian mitochondria with the catalytic site at the matrix side of the membrane where it phosphorylates a number of proteins. One of these is the 18 kDa(IP) subunit of the mammalian complex I of the respiratory chain, encoded by the nuclear NDUFS4 gene. Mitochondria have a Ca2+-inhibited phosphatase, which dephosphorylates the 18 kDa phosphoprotein of complex I. In fibroblast and myoblast cultures cAMP-dependent phosphorylation of the 18 kDa protein is associated with stimulation of complex I and overall respiratory activity with NAD-linked substrates. Mutations in the human NDUFS4 gene have been found, which in the homozygous state are associated with deficiency of complex I and fatal neurological syndrome.  相似文献   

20.
Ca(2+) is a highly versatile intracellular signal that regulates many different cellular processes, and cells have developed mechanisms to have exquisite control over Ca(2+) signaling. Epidermal growth factor (EGF), which fails to mobilize intracellular Ca(2+) when administrated alone, becomes capable of evoking [Ca(2+)](i) increase and exocytosis after bradykinin (BK) stimulation in chromaffin cells. Here, we provide evidence that this sensitization process is coordinated by a macromolecular signaling complex comprised of inositol 1,4,5-trisphosphate receptor type I (IP(3)R1), cAMP-dependent protein kinase (PKA), EGF receptor (EGFR), and an A-kinase anchoring protein, yotiao. The IP(3)R complex functions as a focal point to promote Ca(2+) release in two ways: (1) it facilitates PKA-dependent phosphorylation of IP(3)R1 in response to BK-induced elevation of cAMP, and (2) it couples the plasmalemmal EGFR with IP(3)R1 at the Ca(2+) store located juxtaposed to the plasma membrane. Our study illustrates how the junctional membrane IP(3)R complex connects different signaling pathways to define the fidelity and specificity of Ca(2+) signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号