共查询到20条相似文献,搜索用时 0 毫秒
1.
Kohshi Kinkawa Shin Watanabe Kyozo Hayashi Seiji Inoue 《Biochemical and biophysical research communications》2010,395(3):377-381
Venomous snakes such as Gloydius brevicaudus have three distinct types of phospholipase A2 inhibitors (PLIα, PLIβ, and PLIγ) in their blood so as to protect themselves from their own venom phospholipases A2 (PLA2s). Expressions of these PLIs in G. brevicaudus liver were found to be enhanced by the intramuscular injection of its own venom. The enhancement of gene expressions of PLIα and PLIβ in the liver was also found to be induced by acidic PLA2 contained in this venom. Furthermore, these effects of acidic PLA2 on gene expression of PLIs were shown to be unrelated to its enzymatic activity. These results suggest that these venomous snakes have developed the self-protective system against their own venom, by which the venom components up-regulate the expression of anti-venom proteins in their liver. 相似文献
2.
Ji-Fu Wei Xiao-long Wei Qiu-Yu Chen Tian Huang Li-Ya Qiao Wan-Yu Wang Yu-Liang Xiong Shao-Heng He 《Biochimica et Biophysica Acta (BBA)/General Subjects》2006
A novel phospholipase A2 (PLA2) with Asn at its site 49 was purified from the snake venom of Protobothrops mucrosquamatus by using SP-Sephadex C25, Superdex 75, Heparin-Sepharose (FF) and HPLC reverse-phage C18 chromatography and designated as TM-N49. It showed a molecular mass of 13.875 kDa on MALDI-TOF. TM-N49 does not possess enzymatic, hemolytic and hemorrhagic activities. It fails to induce platelet aggregation by itself, and does not inhibit the platelet aggregation induced by ADP. However, it exhibits potent myotoxic activity causing inflammatory cell infiltration, severe myoedema, myonecrosis and myolysis in the gastrocnemius muscles of BALB/c mice. Phylogenetic analysis found that that TM-N49 combined with two phospholipase A2s from Trimeresurus stejnegeri, TsR6 and CTs-R6 cluster into one group. Structural and functional analysis indicated that these phospholipase A2s are distinct from the other subgroups (D49 PLA2, S49 PLA2 and K49 PLA2) and represent a unique subgroup of snake venom group II PLA2, named N49 PLA2 subgroup. 相似文献
3.
Phospholipase A2 selectively hydrolyses the ester linkage at the sn-2 position of phospholipids forming lysocompounds. This bioconversion has importance in biotechnology since lysophospholipids are strong bioemulsifiers. The aim of the present work was to study the kinetic behaviour and properties of immobilized phospholipase A2 from bee venom adsorbed into an ion exchange support. The enzyme had high affinity for CM-Sephadex® support and the non-covalent interaction was optimum at pH 8. The activity of immobilized phospholipase A2 was comparatively evaluated with the soluble enzyme using a phospholipid/Triton X-100 mixed micelle as assay system. The immobilized enzyme showed high retention activity and excellent stability under storage. The activity of the immobilized system remained almost constant after several cycles of hydrolysis. Immobilized phospholipase A2 was less sensitive to pH changes compared to soluble form. The kinetic parameters obtained (Vmax 883.4 μmol mg−1 min−1 and a Km 12.9 mM for soluble form and Vmax = 306 μmol mg−1 min−1 and a Km = 3.9 for immobilized phospholipase A2) were in agreement with the immobilization effect. The results obtained with CM-Sephadex®-phospholipase A2 system give a good framework for the development of a continuous phospholipid bioconversion process. 相似文献
4.
Juhan Kim Chang-Soo Lee Jongmin Oh Byung-Gee Kim 《Enzyme and microbial technology》2001,29(10):587-592
Production of egg yolk lysolecithin was compared using free phospholipase A2 (PLA2) and immobilized PLA2 in alginate-silicate sol-gel matrix. Choice of solvent, water content, calcium, and temperatures changed the activity of the free and immobilized PLA2 a lot, owing to their effects on the catalytic properties of the enzyme as well as the conformational change of lecithin in ethanol-buffer mixture. Free PLA2 shows typical microemulsion kinetics in ethanol-buffer system. The effect of the water content on the enzyme reaction was greatly influenced by the presence of calcium ion. In the absence of calcium ion, certain optimal water content for the production of lysolecithin always exists in the free PLA2 reaction. However, with calcium ion, three distinctive regions were observed with free PLA2 reactions. Initially, in the micro-aqueous region of the ethanol-buffer system with calcium ion, the hydrolysis activity of PLA2 was proportional to the water content. Beyond the region, concave type of activity profiles were observed as the water content increases. As the water content increases further, the hydrolysis rate of the PLA2 abruptly decreased by the phase separation. On the contrary, in case of immobilized enzyme, optimal water content for the production of lysolecithin exists regardless of the presence of calcium ion. The calcium ion was essential for achieving the maximum activity of both free and immobilized PLA2. The addition of calcium ion not only affected the catalytic activity of the enzyme but also was necessary to improve the enzyme stability. As the immobilization of the enzyme remarkably increased thermal stability of the free enzyme, the immobilized PLA2 is more desirable to be used in the production of various lysophospholipids. It was successfully reused over 250 h. 相似文献
5.
聚酮化合物具有丰富的生物活性,为了解红汁乳菇(Lactarius hatsudake)中聚酮合酶基因,从红汁乳菇基因组中分离并克隆得到LhPKS1基因,通过生物信息学分析推测其功能,并通过RT-PCR验证该基因的表达量。结果显示,LhPKS1基因全长cDNA含有6 036 bp,编码2 011个氨基酸残基,结构域顺序依次为SAT-KS-AT-PT-ACP-TE,该蛋白无跨膜结构和信号肽,聚类分析显示LhPKS1蛋白与参与生物合成苔色酸的真菌PKS蛋白聚为一支。在以10%肌醇、2%和10%的山梨醇为碳源添加物及以番茄浸粉为氮源添加物时,该基因表达量较高。研究有助于通过LhPKS1基因的过表达及异源表达,为大量获取苔色酸类化合物及其骨架提供参考。 相似文献
6.
A phospholipase A2 was isolated from the snake venom of Chinese Agkistrodon blomhoffii Ussurensis by column chromatography using DEAE Sephadex A-50 ion-exchange chromatography, Sephadex G-75 gel filtration chromatography and Mono Q ion-exchange chromatography, and designated as Akbu-PLA2. It showed an average molecular mass of 13,980 ± 3 amu determined by MALDI TOF mass spectrometry. Protein identification results from HPLC-nESI-MS/MS analysis indicated that the Akbu-PLA2 was a new snake venom acidic PLA2. Seven peptides were sequenced from Akbu-PLA2 by HPLC-nESI-MS/MS analysis. Sequencing alignment indicated that Akbu-PLA2 shared homolog peptides of phospholipases A2 from the venoms of Gloydius ussurensis, Gloydius halys, Gloydius halys (halys viper), Deinagkistrodon acutus and Agkistrodon halys Pallas. Akbu-PLA2 has an optimum hydrolytic activity temperature of ∼45 °C. The intrinsic fluorescences of Tyr and Trp residues of Akbu-PLA2 showed emission wavelengths red-shifted by 13.6 and 1.6 nm from those of free Tyr and Trp, respectively. Akbu-PLA2 was shown to contain one Ca2+ per monomer by ICP-AES measurement. The Ca2+ ion was found to be critical for both the hydrolytic activity and the structure of Akbu-PLA2. Ca2+ increased the emission fluorescence intensity and the hydrophobicity of the environment of Akbu-PLA2. The hydrolytic activity of Akbu-PLA2 was accelerated due to the addition of Ca2+ ion by enhancing the substrate binding. However, a protein component with the molecular weight two-fold relative to that of Akbu-PLA2 was found to be difficult to eliminate for the purification of Akbu-PLA2. HPLC-nESI-MS/MS detected the same peptides from it as from Abku-PLA2, which indicated that it should be a homodimer of Akbu-PLA2. A proteomic approach, 2D SDS-PAGE coupled to HPLC-nESI-MS/MS, supported the co-existence of the Akbu-PLA2 monomer and dimer in the crude snake venom. Results from the combination of phosphoprotein and glycoprotein specific stains combined with the HPLC-nESI-MS/MS method indicated that both the Akbu-PLA2 monomer and dimer were both phosphorylated and glycosylated. The addition of exogenous Ca2+ ion was found to be able to promote the dimer formation of Akbu-PLA2. We conclude that a novel PLA2 was successfully obtained. The systemically biochemical, proteomic, structural and functional characterization results from Akbu-PLA2 reveal new threads and provide valuable inputs for the study of snake venom phospholipases A2. 相似文献
7.
Phospholipase A2 (PLA2) from cobra venom, which can hydrolyze the SN2 ester bond of 1,2-diacylphosphatides, was immobilized by covalent binding to porous chitosan beads. Immobilization has to be carried out by using the carboxylic groups instead of the amine groups of the enzyme to get reasonable activity retention (higher than 50%). The effects of amount of activating reagent EDC and enzyme loading during the immobilization step were investigated. Since EDC could modify important Asp groups in the enzyme, the EDC/enzyme weight ratio should be less than 10. Although the activity retention of immobilized enzyme increased with enzyme/bead weight ratio, this ratio should be kept to a minimum at 1×10−3 to optimize coupling yield of enzyme activity and reduce internal diffusion resistance. The kinetic properties and stability of the immobilized enzyme were determined. The immobilized PLA2 was packed into a column to hydrolyze phospholipid in a circulating packed-bed reactor. The flow rate of the substrate solution should be set at 37.5 cm/min (superficial velocity) to eliminate external diffusion resistance, under which condition the column reactor could be reused up to 10 times with less than 20% loss of activity. Since enzymatic hydrolysis of phospholipid on low density lipoprotein (LDL) particle surface with PLA2 could result in faster plasma clearance of the modified LDL particles, an in vitro bioreactor containing immobilized PLA2 should be able to lower serum cholesterol concentration. A significant decrease in total serum cholesterol concentration in hypercholesterolemic rabbits was observed after 90-min treatment. 相似文献
8.
- 1. 1. Cobra venom phospholipase A2 from three different sources has been fractionated into different isoenzymes by DEAE ion-exchange chromatography.
- 2. 2. Treatment of intact human erythrocytes with the various isoenzymes revealed significant differences in the degree of phosphatidylcholine hydrolysis in those cells.
- 3. 3. It is argued that the plateaus observed in dose-response curves for such treatments may be caused by an increase in lateral surface pressure within the outer half of the membrane due to the production of free fatty acids and lyso-compounds.
Keywords: Phospholipase A2 isoenzyme; Snake venom; Phosphatidylcholine hydrolysis; Fatty acid; (Naja naja,Erythrocyte) 相似文献
9.
通过丙酮沉淀、DEAE-纤维素离子交换柱层析和Sephadex G-100凝胶过滤柱层析等分离纯化技术,对巴西橡胶树胶乳C-乳清磷脂酶A2进行分离纯化。用SDS-PAGE测定其亚基的相对分子量。测定该酶最适温度和pH,动力学常数Km和Vmax。并测定Ca2+和La3+对酶活性的影响。结果显示:该酶被纯化了49.47倍,产率为5.12%。SDS-PAGE检测为单一条带,其亚基相对分子量约43kDa。最适反应温度为37℃,最适反应pH为8.0,Km为0.44mmol·L-1,Vmax为7.22μmol.(mL.min)-1。最适Ca2+浓度为50μmol·L-1,稀土元素La3+离子对磷脂酶A2活性有抑制作用,但加入Ca2+后可缓解La3+对磷脂酶A2活性的抑制作用。胶乳C-乳清磷脂酶A2与其他植物磷脂酶A2在Ca2+的依赖性上存在差异。研究结果为今后探索橡胶树胶乳磷脂酶A2的催化机理、调节机理及生理功能等奠定了基础。 相似文献
10.
Consuelo Latorre Fortes-Dias Paula Ladeira Ortolani Carlos Alexandre H. Fernandes Kelli Roberta Lobo Lutiana Amaral de Melo Márcia Helena Borges Wallance Moreira Pazin Mário de Oliveira Neto Roberto Morato Fernandez Marcos Roberto M. Fontes 《Biochimica et Biophysica Acta - Proteins and Proteomics》2014,1844(9):1569-1579
Several snake species possess endogenous phospholipase A2 inhibitors (sbPLIs) in their blood plasma, the primary role of which is protection against an eventual presence of toxic phospholipase A2 (PLA2) from their venom glands in the circulation. These inhibitors have an oligomeric structure of, at least, three subunits and have been categorized into three classes (α, β and γ) based on their structural features. SbγPLIs have been further subdivided into two subclasses according to their hetero or homomeric nature, respectively. Despite the considerable number of sbγPLIs described, their structures and mechanisms of action are still not fully understood. In the present study, we focused on the native structure of CNF, a homomeric sbγPLI from Crotalus durissus terrificus, the South American rattlesnake. Based on the results of different biochemical and biophysical experiments, we concluded that, while the native inhibitor occurs as a mixture of oligomers, tetrameric arrangement appears to be the predominant quaternary structure. The inhibitory activity of CNF is most likely associated with this oligomeric conformation. In addition, we suggest that the CNF tetramer has a spherical shape and that tyrosinyl residues could play an important role in the oligomerization. The carbohydrate moiety, which is present in most sbγPLIs, is not essential for the inhibitory activity, oligomerization or complex formation of the CNF with the target PLA2. A minor component, comprising no more than 16% of the sample, was identified in the CNF preparations. The amino-terminal sequence of that component is similar to the B subunits of the heteromeric sbγPLIs; however, the role played by such molecule in the functionality of the CNF, if any, remains to be determined. 相似文献
11.
Molecular cloning and characterization of a venom phospholipase A2 from the bumblebee Bombus ignitus
Yu Xin Young Moo Choo Zhigang Hu Kwang Sik Lee Hyung Joo Yoon Zheng Cui Hung Dae Sohn Byung Rae Jin 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2009,154(2):195-202
Phospholipase A2 (PLA2) is one of the main components of bee venom. Here, we identify a venom PLA2 from the bumblebee, Bombus ignitus. Bumblebee venom PLA2 (Bi-PLA2) cDNA, which was identified by searching B. ignitus venom gland expressed sequence tags, encodes a 180 amino acid protein. Comparison of the genomic sequence with the cDNA sequence revealed the presence of four exons and three introns in the Bi-PLA2 gene. Bi-PLA2 is an 18-kDa glycoprotein. It is expressed in the venom gland, cleaved between the residues Arg44 and Ile45, and then stored in the venom sac. Comparative analysis revealed that the mature Bi-PLA2 (136 amino acids) possesses features consistent with other bee PLA2s, including ten conserved cysteine residues, as well as a highly conserved Ca2+-binding site and active site. Phylogenetic analysis of bee PLA2s separated the bumblebee and honeybee PLA2 proteins into two groups. The mature Bi-PLA2 purified from the venom of B. ignitus worker bees hydrolyzed DBPC, a known substrate of PLA2. Immunofluorescence staining of Bi-PLA2-treated insect Sf9 cells revealed that Bi-PLA2 binds at the cell membrane and induces apoptotic cell death. 相似文献
12.
Structural and functional characterization of myotoxin, Cr-IV 1, a phospholipase A2 D49 from the venom of the snake Calloselasma rhodostoma 总被引:1,自引:0,他引:1
V.L. Bonfim L.A. Ponce-Soto D. Martins de Souza G.H.M.F. Souza P.A. Baldasso M.N. Eberlin S. Marangoni 《Biologicals》2008,36(3):168-176
A new D49 PLA(2) was purified from the venom of Calloselasma rhodostoma after two chromatographic steps. Molecular exclusion chromatography was done through a Protein-Pack 300 SW column (0.78 cm x 30 cm), eluting with 0.25 M ammonium bicarbonate, pH 7.9, at a flow rate of 0.3 ml/min. Reverse-phase HPLC was then performed on mu-Bondapack C-18. The sample was determined to have a molecular mass of 13,870.94 Da MALDI-TOF by mass spectrometry, and the amino acid composition showed that Cr-IV 1 presented a high content of Lys, Tyr, Gly, Pro, and 14 half-Cys residues, typical of a basic PLA(2). Cr-IV 1 presented a sequence of 122 amino acid residues: DLWEFGQMILKETGSLPFPY YTTYGCYCGV GGRGGKPKDA TDRCCFVHDC CYGKLTGCPK TNDRYSYSRL DYTIVCGEGG PCKQICECDK AAAVCFRENL RTYNKKYRYHLKPFCKEPAE TC and a calculated pI value of 8.0. Cr-IV 1 had PLA(2) activity in the presence of a synthetic chromogenic substrate (4-nitro-3-(octanoyloxy)benzoic acid) and showed a rapid cytolytic effect on mouse skeletal muscle myoblasts and myotubes in culture. In mice, Cr-IV 1 induced myonecrosis and edema upon intramuscular and intravenous injections, respectively. The LD(50) of Cr-IV 1 was determined to be 0.07 mg/k body weight by intracerebroventricular (i.c.v.) injection. The combination of structural and functional information obtained herein classifies Cr-IV 1 as a new member of the D49 PLA(2) family, as it presents the typical behavior of a phospholipase A(2) from this family. 相似文献
13.
Hideki Kishimura Kenji Hayashi 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》1999,124(4):689
Phospholipase A2 was purified from the pyloric ceca of the starfish Asterina pectinifera. The final enzyme preparation was nearly homogeneous in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and its molecular weight was estimated as approximately 20,000. The optimum pH and temperature of the enzyme were at around pH 9.0 and 50°C, respectively, and the activity was enhanced by sodium deoxycholate and 1 mM or higher concentration of Ca2+. The enzyme had no fatty acid specificity. Starfish phospholipase A2 hydrolyzed phosphatidylcholine more effectively than phosphatidylethanolamine. 相似文献
14.
Reaction progress curves for the hydrolysis of dimyristoylphosphatidylcholine by pig pancreatic phospholipase A2 exhibits a latency phase. Addition of 1-palmitoyllysophosphatidylcholine to the preformed vesicles reduces the latency phase and enhances the binding of phospholipase A2 to the vesicles. In contrast, the binary codispersions prepared from diacylphospholipids premixed with lysophosphatidylcholine do not exhibit such enhanced susceptibility to the phospholipase. This effect appears to be due to organizational defects created by asymmetrical incorporation of lysophospholipid molecules into the outer monolayer of the vesicles, and the action of phospholipase is not observed when the additive is equilibrated in both the monolayers of the vesicles. 相似文献
15.
Kieran F. Scott Mila Sajinovic Juliane Hein Sheri Nixdorf Peter Galettis Winston Liauw Paul de Souza Qihan Dong Garry G. Graham Pamela J. Russell 《Biochimie》2010
Phospholipase A2 (PLA2) enzymes (EC3.1.4.4) regulate the release of biologically active fatty acids and lysophospholipids from membrane phospholipid pools. These lipids are also substrates for intracellular biochemical pathways that generate potent autocrine and paracrine lipid mediators such as the eicosanoids and platelet activating factor. These factors, in turn, regulate cell proliferation, survival, differentiation, motility, tissue vascularisation, and immune surveillance in virtually all tissues, functions that are subverted by cancer cells for tumour growth and metastasis. Thus the relevance of PLA2-dependent pathways to the genesis and progression of cancer has been of interest since their discovery and with recent technological advances, their role in tumourigenesis has become more tractable experimentally. Limited human genetic studies have not yet identified PLA2 enzymes as classical mutated oncogenes or tumour suppressor genes. However, there is strong evidence that of the 22 identified human PLA2 enzymes, ten of which have been studied in cancer to date, most are aberrantly expressed in a proportion of tumours derived from diverse organs. Correlative and functional studies implicate the expression of some secreted enzymes (sPLA2s), particularly the best studied enzyme Group IIA sPLA2 in either tumour promotion or inhibition, depending on the organ involved and the biochemical microenvironment of tumours. As in immune-mediated inflammatory pathologies, genetic deletion studies in mice, supported by limited studies with human cells and tissues, have identified an important role for Group IVA PLA2 in regulating certain cancers. Pharmacological intervention studies in prostate cancer suggest that hGIIA-dependent tumour growth is dependent on indirect regulation of Group IVA PLA2. Group VI calcium-independent PLA2 enzymes have also been recently implicated in tumourigenesis with in vitro studies suggesting multiple possible roles for these enzymes. Though apparently complex, further characterization of the regulatory relationships amongst PLA2 enzymes, lipid mediator biosynthetic enzymes and the lipid mediators they produce during tumour progression is required to define the biochemical context in which the enzymes modulate cancer growth and development. 相似文献
16.
A method for solid-phase detection of phospholipase A2 (PLA2) was developed. The method uses 1-octanoyloxynaphthalene-3-sulfonic acid, which was found to be a good substrate of PLA2. The substrate is hydrolyzed by PLA2 into 1-naphthol-3-sulfonic acid, which is spontaneously coupled with coexisting diazonium salt to form a red-purple azo dye. Streptomyces and bovine pancreatic PLA2 spotted on a nitrocellulose membrane could be detected by this method with considerable sensitivity. In addition, colonies of recombinant Escherichia coli producing bacterial PLA2 were distinguishable from those producing an inactive mutant PLA2, facilitating high-throughput screening in directed evolution of the enzyme. 相似文献
17.
Yongzheng Wu Benoît Raymond Pierre L. Goossens Elisabeth Njamkepo Nicole Guiso Miguel Paya Lhousseine Touqui 《Biochimie》2010
Type-IIA secreted phospholipase A2 (sPLA2-IIA) has been proposed to play a role in the development of inflammatory diseases. It has been shown to release arachidonic acid, the precursor of proinflammatory eicosanoids, to hydrolyze phospholipids of pulmonary surfactant, and to bind to specific receptors located on cell surface membranes. However, the most established biological role of sPLA2-IIA is related to its potent bactericidal property in particular toward Gram-positive bacteria. This enzyme is present in animal and human biological fluids at concentrations sufficient to kill bacteria. Human recombinant sPLA2-IIA is able to kill Gram-positive bacteria at concentrations as low as 1.1 ng/ml. This remarkable property is due to the unique preference of sPLA2-IIA for anionic phospholipids such as phosphatidylglycerol, the main phospholipid component of bacterial membranes. Much higher concentrations of sPLA2-IIA are required for its action on host cell membranes and surfactant both of which are mainly composed by phosphatidylcholine, a poor substrate for sPLA2-IIA. Transgenic mice over-expressing human sPLA2-IIA are resistant to infection by Staphylococcus aureus, Escherichia coli, and Bacillus anthracis, the etiological agent of anthrax. Conversely, certain bacteria, such as B. anthracis, E. coli and Bordetella pertussis are able to inhibit sPLA2-IIA expression by host cells, thus highlighting a mechanism by which these bacteria can subvert the host immune system. Intranasal instillation of recombinant sPLA2-IIA protects mice from mortality caused by pulmonary anthrax. Interestingly, this protective effect was obtained even with B. anthracis strains that down-regulate the expression of endogenous sPLA2-IIA, indicating that instilled sPLA2-IIA can overcome the subversive action of B. anthracis. We conclude that sPLA2-IIA is an efficient endogenous antibiotic of the host and can play a role in host defense against pathogenic bacteria. It can be used as a therapeutic agent in adjunct with current therapy to treat bacteria resistant to multiple antibiotics. 相似文献
18.
19.
Phospholipase A2 (PLA2) enzymes catalyze the hydrolysis of the sn-2 position of glycerophospholipids to produce free fatty acids and lysophospholipids. More than one third of the mammalian PLA2 enzymes belong to the secreted PLA2 (sPLA2) family, which consists of low molecular mass, Ca2+-requiring enzymes with a His–Asp catalytic dyad. Individual sPLA2 enzymes exhibit unique tissue and cellular localizations and specific enzymatic properties, suggesting their distinct biological roles. The past decade has met a new era of the sPLA2 research field toward deciphering their in vivo functions by developing several specific tools and methods. These include i) the production of transgenic and knockout mouse lines for several sPLA2s, ii) the development of specific analytical tools including the production of large amounts of recombinant sPLA2 proteins, and iii) applying mass spectrometry lipidomics to unveil their specific enzymatic properties occurring in vivo. It is now obvious that individual sPLA2s are involved in diverse biological events through lipid mediator-dependent and -independent processes, act redundantly or non-redundantly in the context of physiology and pathophysiology, and may represent potential drug targets or novel bioactive molecules in certain situations. In this review, we will highlight the newest understanding of the biological roles of sPLA2s in the past few years. 相似文献
20.
W. Richard Burack Andrew R. G. Dibble Rodney L. Biltonen 《Chemistry and physics of lipids》1997,90(1-2):87-95
The action of phospholipase A2 (PLA2) on bilayer substrates causes the accumulation of reaction products, lyso-phospholipid and fatty acid. These reaction products and the phospholipid substrate generate compositional heterogeneities and then apparently phase separate when a critical mole fraction of reaction product accumulates in the membrane. This putative phase separation drives an abrupt morphologic rearrangement of the vesicle, which may be in turn responsible for modulating the activity of PLA2. Here we examine the thermotropic properties of the phase-separated lipid system formed upon hydrating colyophilized reaction products (1:1 palmitic acid:1-palmitoyl-2-lyso-phosphatidylcholine) and substrate, dipalmitoylphosphatidylcholine. The mixture forms structures which are not canonical spherical vesicles and appear to be disks in the gel-state. The main gel-liquid transition of these structures is hysteretic. This hysteresis is apparent using several techniques, each selected for its sensitivity to different aspects of a lipid aggregate's structure. The thermotropic hysteresis reflects the coupling between phase separation and changes in vesicle morphology. 相似文献