首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The objective was to compare the efficiency of various vitrification techniques and solutions for preserving morphology and viability of preantral caprine follicles enclosed in ovarian tissue. Fragments of ovarian cortex were cryopreserved by conventional vitrification (CV) in French straws, vitrification in macrotubes (MTV), or solid-surface vitrification (SSV). Six solutions containing 6 M ethylene glycol, with or without sucrose (SUC; 0.25 or 0.50 M) and/or 10% fetal calf serum (FCS) were tested (Experiment I). After 1 wk, samples were warmed and preantral follicles were examined histologically. To evaluate follicular viability (Experiment II), ovarian fragments were vitrified with the three techniques listed above, in a solution containing 0.25 M SUC and 10% FCS. After warming, follicles were assessed by the trypan blue dye exclusion test. In Experiment III, preantral follicles enclosed in ovarian tissue were vitrified using the protocol which yielded the highest percentage of viable preantral follicles (SSV with 0.25 M SUC and 10% SFB). After warming, the preantral follicles enclosed in ovarian tissue were cultured in vitro and then, were analyzed by histology and fluorescence microscopy (calcein-AM and ethidium homodimer-1). Every vitrification protocol significantly reduced the percentages of morphologically normal follicles relative to the control (88.0%); however, the addition of 0.25 M SUC and 10% FCS to the vitrification solution improved preservation of follicular morphology (67.4, 67.4, and 72.0% for CV, MTV, and SSV, respectively). Although follicular viability after SSV (80.7%) did not differ from that in fresh (non-vitrified) ovarian tissues (88.0%), after in vitro culture, percentages of viable follicles were significantly reduced (70.0%). Percentages of morphologically normal follicles after in vitro culture of vitrified ovarian tissue were similar (76.0%) to those in ovarian cortex fragments cultured without previous vitrification (83.2%). In conclusion, SSV using a solution containing 0.25 M SUC and 10% FCS, was the most efficient method for vitrifying caprine ovarian tissue.  相似文献   

2.
This study aimed to evaluate different vitrification methods using distinct cryoprotectants (CPAs) for the preservation of collared peccary ovarian preantral follicles (PFs). Ovarian pairs from six females were fragmented and three fragments (fresh control group) were immediately evaluated for morphology, viability, cell proliferation capacity (assessed by quantifying the number of argyrophilic nucleolus organizer regions – NORs), and apoptosis (by the identification of activated caspase-3 expression). The remaining 18 fragments were vitrified using the solid surface vitrification (SSV) method or the ovarian tissue cryosystem (OTC) with 3 M ethylene glycol (EG), 3 M dimethylsulfoxide (DMSO), or a combination of the two (1.5 M EG/1.5 M DMSO). After two weeks, samples were rewarmed and evaluated as described previously. The OTC with any of the CPAs provided a similar conservation of morphologically normal PFs as the fresh control group (75.6 ± 8.6%); however, the SSV was only efficient with DMSO alone (63.9 ± 7.6%). Regarding the viability or cell proliferation, all tested groups provided post rewarming values similar to those observed for the fresh control group, 84.0 ± 2.9% viable cells with 2.0 ± 0.2 NORs. Related to apoptosis analysis, only the OTC with EG (46.7%) and the SSV method with EG (43.4%) or the combination of EG and DMSO (33.4%) provided similar values to those found for the fresh control group (36.7%). Our findings indicate the utilization of a closed system, the OTC, with 3 M EG as the CPA for the vitrification of collared peccary ovarian tissue.  相似文献   

3.
Goat ovarian cortex fragments were subjected to slow freezing in the presence of various solutions containing intracellular cryoprotectants, including 1.0 M ethylene glycol (EG), propanediol (PROH), or dimethyl sulfoxide (DMSO), with or without sucrose and/or fetal calf serum (FCS). Histological examination revealed that only the DMSO-containing solutions were able to maintain a follicular ultrastructure similar to the morphology observed in the fresh control. Therefore, fragments previously cryopreserved in DMSO solutions (with and without sucrose and/or FCS) were cultured in vitro for 48 h and then subjected to viability, histological, and ultrastructural analysis. No significant differences were observed among the percentages of morphologically normal follicles in cryopreserved ovarian tissue before in vitro culture (DMSO: 62.5%; DMSO + sucrose: 68.3%; DMSO + FCS: 60.0%; DMSO + sucrose + FCS: 60.0%) and after culture (DMSO: 60.8%; DMSO + sucrose: 64.2%; DMSO + FCS: 70.8%; DMSO + sucrose + FCS: 55.0%). Following in vitro culture, the viability analysis showed that only the freezing solution containing DMSO and FCS (75.6%) maintained a percentage of viable follicles similar to that observed after culture without cryopreservation (89.3%). As determined by ultrastructural analysis, morphologically normal preantral follicles were detected in the fresh control and in fragments cultured before and after cryopreservation with DMSO and FCS. Thus, a freezing solution containing DMSO and FCS, under the experimental conditions tested here, guaranteed the maintenance of viability and follicular ultrastructure after short-term in vitro culture.  相似文献   

4.
We aimed to evaluate the effect of three extracellular cryoprotectants on the morphology of vitrified feline preantral follicles. Feline ovarian fragments (0.5 × 2 × 2 mm) collected from five domestic adult cats subjected to ovariohysterectomy for routine castration were vitrified with ethylene glycol (EG) 40% combined or not with sucrose (0.1 or 0.5 M), trehalose (0.1 or 0.5 M), or raffinose (0.1 M). After vitrification using the solid-surface method and warming of the tissues, cryoprotectants were washed out of the ovarian tissues, which were fixed for histological analysis. The percentages of normal follicles were similar to the control (fresh) (62.9 ± 4.1%) only for tissues exposed and cryopreserved with EG + trehalose at concentrations of 0.1 (35.8 ± 8.3%) and 0.5 M (33.4 ± 5.4%). All the other sugars decreased the percentages of morphologically normal follicles as compared to the control group and the trehalose groups. Based on the results of the present study, we recommend the use of trehalose as the extracellular cryoprotectant for the vitrification of feline ovarian tissue.  相似文献   

5.
The aim of this study was to verify the histological and ultrastructural characteristics of sheep preantral follicles after exposure of ovarian tissue to cryopreservation in glycerol (GLY), ethylene glycol (EG), propanediol (PROH) or dimethyl sulfoxide (DMSO) in order to determine the optimum method to store sheep ovarian tissue for later experimental or clinical use. Each ovarian pair from five mixed-breed ewes was divided into 17 fragments. One (control) fragment was immediately fixed for routine histological and ultrastructural studies and the remaining (test) fragments were randomly distributed in cryotubes, equilibrated at 20 degrees C/20 min in 1.8 mL of minimal essential medium (MEM) containing 1.5 or 3 M GLY, EG, PROH or DMSO and then either fixed for morphological studies to determine their possible toxic effect or frozen/thawed and then fixed to test the effect of cryopreservation on preantral follicles. Histological analysis showed that, compared to control fragments, all cryoprotectants at both concentrations significantly reduced the percentage of normal preantral follicles in ovarian fragments prior to or after cryopreservation. PROH 3.0 M appeared to exert a more toxic effect (P<0.05) than the other cryoprotectants in noncryopreserved tissues. After freezing/thawing, the highest (P<0.05) percentages of lightmicroscopical normal preantral follicles were observed in ovarian fragments cryopreserved in EG (1.5 and 3 M) or DMSO (1.5 M). However, transmission electronic microscopical (TEM) examination showed that only the DMSO-cryopreserved preantral follicles had normal ultrastructure. The data suggest that sheep preantral follicles should be cryopreserved with 1.5 M DMSO for later clinical or experimental application.  相似文献   

6.
The aim of this study was to investigate the growth and survival rate of preantral follicles isolated from vitrified ovarian tissue by Cryotop and conventional methods. The ovaries of 14-day-old mice were separated and divided into four groups as following: Cryotop group, vitrified by Cryotop; CV (Conventional; CV) group, vitrified by conventional straw; toxicity test group and control group. After warming the vitrified ovaries, isolated preantral follicles from four groups were cultured for 4 days to compare survival rate and follicular growth between above-mentioned groups. Survival rate (97.3%) in toxicity test group alike the control group (98.7%) were significantly higher (P<0.05) than the Cryotop (92.7%) and CV (47.7%) groups. Increase in follicle diameters after 4 days in Cryotop and CV groups was significantly lower (P<0.05) than the control and toxicity test groups, but growth and survival rate of follicles in Cryotop group was significantly higher (P<0.05) than the CV group. These results demonstrated that ovarian tissue vitrification by Cryotop highly preserves the viability rate of preantral follicles.  相似文献   

7.
Caprine preantral follicles within ovarian fragments were cryopreserved in the absence or presence of 0.5 M sucrose with or without 1 M dimethyl sulfoxide and/or 1 M ethylene glycol (EG). After being thawed, they were washed in minimum essential medium with or without 0.3 M sucrose. Histological analysis of follicle integrity immediately after cryopreservation showed consistent beneficial effects of including sucrose in the three cryoprotectant solutions analyzed when tissue was thawed without sucrose (53.9±14.8–82.4±3.2% normal vs 27.6±1.6–36.6±6.5%, P<0.05). However, in further studies, the addition of sucrose to the thaw solutions proved detrimental or of no benefit. An analysis of the cryopreserved material with calcein-AM and ethidium homodimer (markers for living and dead cells, respectively) gave comparable results to those obtained by histology. Follicles cryopreserved in EG, EG plus sucrose, or sucrose alone were cultured in vitro for 24 h following warming. During this culture period, viability fell most rapidly in material cryopreserved in sucrose alone and was no longer correlated with either the viability or integrity estimates made immediately after warming. By contrast, the viability of follicles cryopreserved in EG with sucrose and then cultured for 24 h was not significantly different from the cultured non-frozen controls. These results indicate that cryopreservation in 1 M EG plus 0.5 M sucrose combined with thawing without sucrose is effective for caprine ovarian tissue.This work was supported by CAPES/Brazil. Regiane Rodrigues dos Santos is a recipient of a grant from FUNCAP of Brazil.  相似文献   

8.
Vitrification is considered a viable method for cryopreservation of ovarian tissue and selection of methods that minimize follicular damage is important. The objective of the present study was to evaluate the effects of two vitrification methods on ovarian tissue morphology, preantral follicles survival rate during in vitro culture, and relative expression of genes associated with oocyte maturation and cumulus expansion. Ovaries from 12-day-old mice were vitrified in media containing ethylene glycol, dimethyl sulphoxide, and sucrose. Before plunging in liquid nitrogen, ovaries were first loaded into an acupuncture needle (needle immersion vitrification [NIV]) or placed on a cold steel surface for 10 to 20 seconds (solid surface vitrification [SSV]). The integrity of the ovarian tissue was well-preserved after vitrification and was similar controls. Follicle viability in the SSV group was lower (P < 0.05) than in the control group after 6 days of culture and the NIV group after 10 day of culture. Follicle viability after 12 day of culture was 92.8%, 82.1%, and 58.4% in control, NIV, and SSV groups, respectively. Bmp15, Gdf9, BmprII, Alk6, Alk5, Has2, and Ptgs2 gene expression patterns were similar among groups. However, the level of gene expression in the vitrification groups during Days 6 to 10 were higher compared with the control group. In conclusion, ovarian tissue morphologic integrity was well-preserved, regardless of the vitrification method. Vitrification using the needle immersion method resulted in greater follicular survival after 12 day of culture than the SSV method. Gene expression patterns during culture did not seem to explain the reduced survival rate observed in the solid surface group.  相似文献   

9.
The objective was to evaluate different permeating cryoprotectants to vitrify testicular tissue biopsies from adult collared peccaries. Five pairs of testicles were dissected into fragments (9 mm³) that were allocated to non-vitrified (control) and vitrified groups using a solid-surface method following exposure to different cryoprotectants (3.0 M dimethyl sulfoxide (DMSO), 3.0 M ethylene glycol (EG) or 1.5 M DMSO + 1.5 M EG). After warming, samples were evaluated for histomorphology, ultrastructure, viability, and proliferative capacity potential. The appropriate conservation of the ultrastructural organization of the seminiferous tubule in terms of lumen presence and cell junctions was only observed at the use of DMSO/EG combination. Regardless of the cryoprotectant, the vitrification effectively preserved cell nuclear visualization and condensation similarly as observed at the non-vitrified group. Moreover, DMSO/EG combination provided a better preservation of basal membranes of seminiferous tubules than DMSO (P < 0.05). The occurrence of cell swelling was more evident in the use of DMSO than EG (P < 0.05), but both isolate cryoprotectants were similar to the DMSO/EG combination. Only the DMSO/EG combination maintained the proliferative capacity potential for spermatogonia (3.69 NORs/cell) and Sertoli cell (3.19 NORs/cell) similar to controls (3.46 and 3.31 NORS/cell, respectively). Moreover, ~40% cell viability was found after vitrification independent of cryoprotectant. In conclusion, DMSO/EG in combination is better than DMSO or EG alone for SSV of testicular tissue biopsies from adult collared peccaries.  相似文献   

10.
The cryopreservation of immature oocytes would generate a readily available, non-seasonal source of female gametes for research and reproduction. In domestic animals, the most promising results on oocyte cryopreservation have been reported in cattle, few studies have been conducted on buffalo. The aim of the present study was to compare the use of different vitrification solutions and various cryodevices on viability and developmental competence of buffalo oocytes vitrified at the germinal vesicle (GV) stage. Cumulus oocyte-complexes (COCs) obtained at slaughterhouse from mature buffalo ovaries were randomly divided into three main groups and vitrified by using either straw or open pulled-straw (OPS) or solid surface vitrification (SSV) in a solution composed of either 20% ethylene glycol (EG) + 20% glycerol (GLY); VS1 or 20% EG + 20% dimethylsulfoxide (DMSO); VS2, respectively. Following vitrification and warming, viable COCs were matured in vitro for 22 h. Some COCs were denuded and stained with 1.0% aceto-orcein to evaluate nuclear maturation, whereas the others were fertilized and cultured in vitro for 7 days to determine the developmental competence. Although the recovery rate (64.9%) was the lowest in the oocytes vitrified by SSV using 20% EG + 20% DMSO as compared to the other groups, the best survival rate of the COCs was achieved in the same treatment (96.7%), which was significantly higher (P < 0.05) than those vitrified using traditional straws (71.8% in VS1 and 73.6% in VS2) or those vitrified using OPS and VS1 (73.9%). Furthermore, in the nuclear maturation test, the highest maturation rate (75.5%) was achieved in SSV vitrified COCs using 20% EG + 20% DMSO (VS2), which was similar to the controls (77.1%). Post IVF and embryo culture, the highest cleavage and blastocyst development rates were obtained in COCs vitrified in 20% EG + 20% DMSO using SSV (47.1% and 24.0%, respectively), which showed no difference from the controls (61.2% and 46.9%, respectively). Our results clearly show that the combination of SSV and 20% EG + 20% DMSO could be used effectively to vitrify GV stage buffalo COCs.  相似文献   

11.
The objective was to evaluate the effect of various vitrification conditions on the morphology of bovine secondary and primordial follicles, and to use xenografting to confirm their developmental ability. Secondary follicles were placed in vitrification solution containing 15% (v:v) ethylene glycol (EG), 15% (v:v) dimethyl sulfoxide (DMSO), 20% (v:v) fetal calf serum (FCS), and 0, 0.25, or 0.5 M sucrose at room temperature for 1 or 30 min, or at 4 °C for 30 min before being plunged into liquid nitrogen (LN2). Ovarian tissues with primordial follicles were equilibrated in a solution containing 7.5% EG, 7.5% DMSO, and 20% FCS for 5 or 15 min, and then treated with a vitrification solution (15% EG, 15% DMSO, and 20% FCS) containing 0 or 0.5 M sucrose at room temperature for 1 min, and then plunged into LN2. One week later, follicles and tissues were warmed, and morphology assessed histologically. Secondary follicles vitrified in sucrose-free solution had more oocytes with shrinkage of the nucleus and abnormal cytoplasm relative to those vitrified in sucrose-containing solution. When primordial follicles were equilibrated for 5 min and vitrified in sucrose-free solution, the percentage of morphologically normal primordial follicles was higher than in the other groups (P < 0.05). After 4 wk and 6 mo of xenografting of vitrified-warmed secondary and primordial follicles, respectively, in SCID mice, follicles developed to the antral stage and oocytes grew. In conclusion, bovine secondary follicles were successfully cryopreserved in sucrose-containing vitrification solutions and maintained their ability to develop to the antral stage and grow oocytes, whereas primordial follicles vitrified in sucrose-free solution maintained their morphology and developed to the antral stage, with oocyte growth.  相似文献   

12.
The aim of the present study was to perform a qualitative and quantitative analysis of the effect of different sucrose concentrations combined with ethylene glycol in the preservation of vitrified porcine preantral follicles. Fragments of ovarian cortex were vitrified in cryotubes containing 200 μl of the vitrification solution (30% Ethylene Glycol; 20% Fetal Bovine Serum; 0 M–0.25 M – 0.75 M or 1 M sucrose) and stored in liquid nitrogen for a week. Histological analysis showed that after vitrification the number of normal follicles decreased compared to the fresh tissue (control). The percentage of normal primordial follicles was sucrose dose dependent. The percentage of normal primary follicles was similar in 0 M or 0.25 M sucrose, while higher concentrations (0.75 M and 1 M) increased significantly the percentage of abnormal follicles (p < 0.05). Morphometric analysis showed a statistically significant reduction in the total area of primordial follicles with 0.75 M sucrose and a significant increase in the cytoplasmic area of primordial follicles with 0 M sucrose (p < 0.05). The qualitative and the quantitative analysis appear to be a complementary tool when choosing a vitrification protocol. For our cryopreservation system - vitrification of ovarian cortex slices in cryotubes-the best vitrification medium was TCM 199-Hepes with 30% de ethylene glycol, 20% of Fetal Bovine Serum and 0 or 0.25 M sucrose. The present study shows that the use of high sucrose concentrations in the vitrification solution has a deleterious effect on the preservation of porcine preantral follicles contained in ovarian tissue. Consequently, its use at 0.75 M or 1 M wouldn't be recommended.  相似文献   

13.
Bovine preantral follicles within ovarian fragments were exposed and cryopreserved in absence or presence of 1.5 M glycerol (GLY), ethylene glycol (EG), propanediol (PROH) or dimethyl sulfoxide (DMSO), undergoing a previous cooling at 20 °C for 1 h (protocol 1) or at 4 °C for 24 h (protocol 2) in 0.9% saline solution. At the end of each treatment, preantral follicles were classified as non-viable/viable when they were stained/not stained with trypan blue, respectively. To confirm viability staining, ultra-structure of the follicles was evaluated by transmission electronic microscopy (TEM). Data were compared by Chi-square test (P < 0.05). The storage of the ovaries at 20 °C for 1 h (78%) and 4 °C for 24 h (80%) did not reduce significantly the percentage of viable preantral follicles when compared to the control (75%). Similar results were obtained when ovarian fragments, respectively, for protocols 1 and 2, were exposed to MEM (78 and 77%), 1.5 M EG (78 and 71%), as well as frozen in 1.5 M EG (74 and 77%). Percentages of viable follicles in control were similar to those observed after exposure (75%) and freezing (76%) in presence of 1.5 M DMSO only when protocol 1 was used. The increase of the concentration from 1.5 to 3.0 M, for all cryoprotectants, reduced significantly the percentage of viable preantral follicles after freezing. Ultra-structural analysis has confirmed trypan blue results, showing that not only basement membrane, but also organelles, were intact in viable preantral follicles. In conclusion, ovarian tissue cooling at 4 °C for 24 h before cryopreservation (protocol 2) does not affect the viability of bovine preantral follicles when 1.5 M EG is present in the cryopreservation medium.  相似文献   

14.
This study evaluated the efficiency and toxicity of two cryopreservation methods, solid-surface vitrification (SSV) and cryoloop vitrification (CLV), on in vitro matured oocytes and in vivo derived early stage goat embryos. In the SSV method, oocytes were vitrified in a solution of 35% ethylene glycol (EG), 5% polyvinyl-pyrrolidone (PVP), and 0.4% trehalose. Microdrops containing the oocytes were cryopreserved by dropping them on a cold metal surface that was partially immersed in liquid nitrogen. In the cryoloop method, oocytes were transferred onto a film of the CLV solution (20% DMSO, 20% EG, 10mg/ml Ficoll and 0.65 M sucrose) suspended in the cryoloop. The cryoloop was then plunged into the liquid nitrogen. In vivo derived embryos were vitrified using the same procedures. The SSV microdrops were warmed in a solution of 0.3M trehalose and those vitrified with CLV were warmed with incubation in 0.25 and 0.125 M sucrose. Oocytes and embryos vitrified by the SSV method had a significantly lower survival rate than the control (60 and 39% versus 100%, respectively; P<0.05), while the survival rate of CLV oocytes and embryos (89 and 88%, respectively) did not differ from controls. Cleavage and blastocyst rates of the surviving vitrified oocytes (parthenogenetically activated) and embryos (cultured for 9 days) were not significantly different (P>0.05) from the control nor did they differ between vitrification methods. Embryos vitrified with the CLV method gave rise to blastocysts (2/15). Our data demonstrated that the two vitrification methods employed resulted in acceptable levels of survival and cleavage of goat oocytes and embryos.  相似文献   

15.
This study aimed to demonstrate the expression of growth hormone receptor (GH-R) mRNA and protein in goat ovarian follicles in order to investigate the effects of GH on the survival and development of preantral follicles. The ovaries were processed for the isolation of follicles to study GH-R mRNA expression or to localization of GH-R by immunohistochemical analysis. Pieces of ovarian cortex were cultured for 7 days in minimum essential medium+ (MEM+) in the presence or absence of GH at different concentrations (1, 10, 50, 100, and 200 ng/mL). High expression levels of GH-R mRNA were observed in granulosa/theca cells from large antral follicles. However, preantral follicles do not express mRNA for GH-R. Immunohistochemistry demonstrated that the GH-R protein was expressed in the oocytes/granulosa cells of antral follicles, but any protein expression was observed in preantral follicles. The highest (P < 0.05) rate of normal follicles and intermediate follicles was observed after 7 days in MEM+ plus 10 ng/mL GH (70%). In conclusion, GH-R mRNA and protein are expressed in caprine antral follicles, but not in preantral follicles. Moreover, GH maintains the survival of goat preantral follicles and promotes the development of primordial follicles.  相似文献   

16.
《Cryobiology》2016,72(3):367-373
Cryopreservation of ovarian tissue has been studied for female germline preservation of farm animals and endangered mammalian species. However, there are relatively few reports on cryopreservation of fish ovarian tissue and especially using vitrification approach. Previous studies of our group has shown that the use of a metal container for the cryopreservation of bovine ovarian fragments results in good primordial and primary follicle morphological integrity after vitrification. The aim of this study was to assess the viability and in vitro development of zebrafish follicles after vitrification of fragmented or whole ovaries using the same metal container. In Experiment 1, we tested the follicular viability of five developmental stages following vitrification in four vitrification solutions using fluorescein diacetate and propidium iodide fluorescent probes. These results showed that the highest viability rates were obtained with immature follicles (Stage I) and VS1 (1.5 M methanol + 4.5 M propylene glycol). In Experiment 2, we used VS1 to vitrify different types of ovarian tissue (fragments or whole ovaries) in two different carriers (plastic cryotube or metal container). In this experiment, Stage I follicle survival was assessed following vitrification by vital staining after 24 h in vitro culture. Follicular morphology was analyzed by light microscopy after vitrification. Data showed that the immature follicles morphology was well preserved after cryopreservation. Follicular survival rate was higher (P < 0.05) in vitrified fragments, when compared to whole ovaries. There were no significant differences in follicular survival and growth when the two vitrification devices were compared.  相似文献   

17.
The purpose of our study was to investigate the feasibility of using less-concentrated cryoprotectants supplemented with ice blocker Supercool X-1000 to vitrify ovarian tissues. Mouse ovaries were cryopreserved in different concentrations of vitrification solution alone or with Supercool X-1000, and fresh non-frozen ovaries were used as control. The proportions of morphological normality of follicles, normal GCs in follicular fluids and developing to blastocysts were higher in 12.5% ethylene glycol (EG) + 12.5% dimethylsulfoxide (DMSO) with Supercool X-1000 than those of treated in 10% EG + 10% DMSO or 15% EG + 15% DMSO alone or with Supercool X-1000. In conclusion, the inclusion of Supercool X-1000 in less-concentrated vitrification solution was effective to improve the efficiency and efficacy of cryopreservation of ovarian tissues.  相似文献   

18.
Cryopreservation of ovarian tissue is a new and promising technique for germ-line storage. The objective of this study was to evaluate the effect of four cryoprotectants (at two concentrations each) on the preservation of zebu bovine preantral follicles after ovarian cryostorage. Strips of ovarian cortex were cryopreserved using glycerol (GLY; 10 or 20%), ethylene glycol (EG), propanediol (PROH) or dimethylsulphoxide (DMSO; 1.5 or 3M). In addition, a toxicity test was performed for each cryoprotectant by exposing the ovarian tissue to them without freezing. Tissues were analyzed by histology and transmission electron microscopy. Ovarian tissue frozen in either concentration of DMSO or PROH or in 10% GLY retained a higher percentage of morphologically normal follicles (73-88%) than tissue frozen in 20% GLY or in either concentration of EG (16-52%). In the toxicity test, exposure of tissues to DMSO, PROH or GLY resulted in higher percentages of normal follicles (80-97%) than exposure to EG (49%). Electron microscopy revealed damage to the ultrastructure of follicles frozen in 10% GLY, while follicles cryopreserved in DMSO and PROH at either concentration exhibited normal ultrastructure. In conclusion, DMSO and PROH were the most effective cryoprotectants for zebu ovarian tissue, preserving the structural integrity of somatic and reproductive cells within the ovary.  相似文献   

19.
The objective was to develop an efficient protocol for cryopreservation of agouti (Dasyprocta aguti) ovarian tissue. Agouti ovarian fragments were placed, for 10 min, in a solution containing MEM and fetal bovine serum plus 1.5 M dimethyl sulfoxide (DMSO), ethylene glycol (EG) or propanediol (PROH); some of those fragments were subsequently cryopreserved in a programmable freezer. After exposure and/or thawing, all samples were fixed in Carnoy prior to histological analysis. To evaluate ultrastructure, follicles from the control and all cryopreserved treatments were fixed in Karnovsky and processed for transmission electron microscopy. After exposure and freezing, there was a significant decrease in the percentage of morphologically normal preantral follicles in all treatments when compared to the control (92.67 ± 2.79, mean ± SD). However, there were no significant difference when the exposure and freezing procedures were compared using the same cryoprotectant. Moreover, there was no significant difference among cryoprotectants at the time of exposure (DMSO: 64.7 ± 3.8; EG: 70.7 ± 11.2, PROH: 63.3 ± 8.5) or after freezing (DMSO: 60.6 ± 3.6, EG: 64.0 ± 11.9; PROH: 62.0 ± 6.9). However, only follicles frozen with PROH had normal ultrastructure. In conclusion, preantral follicles enclosed in agouti ovarian tissue were successfully cryopreserved using 1.5 M PROH, with satisfactory maintenance of follicle morphology and ultrastructure.  相似文献   

20.
Ovaries from 8 to 10-week-old N MRI mice were vitrified using RPMI solution containing 30% (W/V) ficoll 70, 0.5 M sucrose, 10.7% (V/V) acetamide and 40% (V/V) ethylene glycol (EGFS40%), and were stored in liquid nitrogen. After warming at 25 degrees C in 1 M sucrose solution and equilibration with RPMI medium, the vitrified and fresh ovarian tissues were autografted intraperitoneally. After one and two estrus cycles the animals were sacrificed and the recovered grafts were examined histologically. Five days after transplantation the vitrified ovaries they were invaded by fat and fibrous cells and the large preantral and antral follicles were degenerated. At 11 days postgrafting the stroma was devoid of necrotic cells and contained normal primordial and primary follicles, suggesting that the vitrification is a simple, useful and efficient procedure for cryopreservation of murine ovarian tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号