首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study demonstrates that signal transduction through a receptor lacking intrinsic tyrosine protein kinase activity involves a rapid and potent phosphorylation of a non-receptor tyrosine protein kinase in the membranes. Vasoactive intestinal peptide (VIP) stimulates phosphorylation of a membrane protein with a M.W. of 56 KD (pp60) in the cultured chick embryonic retinal pigment epithelium. VIP stimulates phosphorylation of the pp60 with such efficiency and potency that the maximal phosphorylation has been observed at the earliest time (3 minutes at 1 x 10(-6)M VIP) and the lowest concentration (1 x 10(-11)M for 20 minutes) examined. Western blot analysis with a monoclonal antibody anti-pp60src (GD11, Parsons et al., J. Virol. 51, 272-282, 1984) indicates that the pp60 is the pp60c-src, a normal cell oncogene product with intrinsic tyrosine protein kinase activity.  相似文献   

2.
Previous studies showed that VIP modulates mediators of two signal transduction pathways, namely the adenylate cyclase and the nonreceptor tyrosine protein kinase pp60c-src in cultured chick retinal pigment epithelium (RPE). Here we show that VIP modulates simultaneously two disparate cellular events, namely the cell proliferation and differentiation of the RPE, however, with different potencies. The maximal effects on proliferation and differentiation are observed at 5 x 10(-9)M and 5 x 10(-7)M, respectively. Treatment with the maximally effective concentrations of VIP for 10 days increases the cell numbers and the melanin contents to 150% and 200% of the controls, respectively. The lowest concentrations of VIP showing significant stimulatory effect on cell proliferation and melanin synthesis are 5 x 10(-11) M and 5 x 10(-9)M, respectively.  相似文献   

3.
The aim of this study is to characterize the subtype of tyrosine kinase-regulated L-type Ca(2+) channels in retinal pigment epithelial (RPE) cells. Ca(2+) channel alpha1D-subunits were enriched by immunoprecipitation from membrane proteins isolated from rat RPE cells. Western blot analysis of the precipitates revealed coprecipitation of pp60(c-src). In addition, in precipitates obtained with antibodies against pp60(c-src), alpha1D-subunits were identified. The same was observed in immunoprecipitations from rat brain neurons. Tyrosine phosphorylation of alpha1D-subunits was confirmed using anti-phosphotyrosine antibodies. Ba(2+) currents through L-type channels in cultured rat RPE cells were increased by intracellular application of active pp60(c-src) (30 U/ml) (heat-inactivated pp60(c-src) had no effect). Thus, L-type channels of the neuroendocrine subtype can be expressed in epithelial cells and are activated by tyrosine kinase of the src subtype. This kind of regulation is also suggested for brain-derived neurons.  相似文献   

4.
The derivation and characterization of 22 hybridoma clones producing monoclonal antibodies (Mabs) specific for the transforming protein of Rous sarcoma virus, pp60src, are described. All Mabs reacted with pp60v-src encoded by Prague, Schmidt-Ruppin, and Bratislava 77 strains of Rous sarcoma virus. Of these Mabs, 10 efficiently immunoprecipitated pp60c-src from chicken embryo cells. Of these 10 Mabs, 2 (GD11 and EB8) readily detected pp60c-src from a variety of rodent and human cultured cells and from rat brain tissue in an in vitro immune complex kinase assay. Mapping experiments have tentatively localized the determinant(s) recognized by GD11 and EB8 to a region of the src protein bounded by amino acid residues 82 to 169, whereas the remaining Mabs appeared to recognize determinants residing within residues 1 to 82 or 169 to 173. Most of the Mabs complexed denatured pp60v-src in a Western immunoblot, and several were used to localize pp60v-src in Rous sarcoma virus-transformed chicken embryo cells by indirect immunofluorescence microscopy.  相似文献   

5.
pp60c-src Kinase is in chick and human embryonic tissues   总被引:28,自引:0,他引:28  
The normal cellular protein pp60c-src is a tyrosine-specific protein kinase that is homologous to the transforming protein of Rous sarcoma virus (RSV) but its function is unknown. The expression of pp60c-src in chick and human embryonic tissues was monitored by the immune complex protein kinase assay, Western transfer analysis, and immunocytochemical staining at the light microscope level. pp60c-src kinase was expressed in the head and trunk regions of the chick embryo at all stages of development examined; however, expression increased significantly during the major period of organogenesis (Hamburger and Hamilton stages 21 to 32). Western transfer analysis showed that the amount of pp60c-src protein increased in parallel with the increase in kinase activity. Highest levels of pp60c-src kinase were present in the neural tube, brain, and heart of the stage 32 chick embryo. Lower levels of activity were found in eye, limb bud, and liver. Immunocytochemical staining of the neural tube region and heart of the chick confirmed the results of biochemical analysis and showed immunoreactive pp60c-src distributed throughout the neural tube and heart. The distribution of pp60c-src kinase in human fetal tissues was similar to that in the chick embryo; elevated levels of pp60c-src kinase were present in cerebral cortex, spinal cord, and heart, but all other tissues examined expressed some pp60c-src kinase. The results of our studies suggest that pp60c-src plays a fundamental role in an aspect of cellular metabolism that is particularly important in electrogenic tissues.  相似文献   

6.
The high amount of pp60c-src in platelets has led to speculation that this kinase is responsible for tyrosine-specific phosphorylation of cellular proteins during platelet activation by different agonists, and is, therefore, implicated in signal transduction of these cells. Unlike pp60v-src, the association of which with the cytoskeleton appears to be a prerequisite for transformation, pp60c-src is detergent-soluble in fibroblasts overexpressing the c-src gene, and its role in normal cellular function remains elusive. To gain a better understanding of the function of pp60c-src we have investigated the subcellular distribution of pp60c-src and its relationship to the cytoskeleton during platelet activation. Quantitative immunoblotting and immunoprecipitation have revealed that pp60c-src is detergent-soluble in resting platelets, while 40% of total platelet pp60c-src becomes associated with the cytoskeletal fraction upon platelet activation. We have also shown that a small pool of pp60c-src is associated with the membrane skeletal fraction which remains unchanged during the activation process. The interaction of pp60c-src with cytoskeletal proteins strongly correlates with aggregation and is mediated by GPIIb/IIIa receptor-fibrinogen binding. We suggest that the translocation of pp60c-src to the cytoskeleton and its association with cytoskeletal proteins may regulate tyrosine phosphorylation in platelets.  相似文献   

7.
A protein tyrosine kinase involved in regulation of pp60c-src function   总被引:22,自引:0,他引:22  
We recently identified a novel protein tyrosine kinase that specifically phosphorylates truncated pp60c-src (Mr = 53,000) at a tyrosine residue(s) distinct from its autophosphorylation site. In this study, we examined whether this enzyme phosphorylates intact pp60c-src (Mr = 60,000) and determined its phosphorylation site. Non-neuronal and neuronal forms of intact pp60c-src were separately purified from the membrane fraction of neonatal rat brain by sequential column chromatographies. The novel kinase phosphorylated tyrosine residues of both forms of intact pp60c-src. The phosphorylation occurred in parallel with autophosphorylation of pp60c-src, and in both forms the final stoichiometry estimated was quite similar to that of autophosphorylation (about 5%). The enzyme also phosphorylated pp60c-src in which the kinase activity had been destroyed by an ATP analogue, p-fluorosulfonylbenzoyl 5'-adenosine. The phosphorylation site of the non-neuronal form was analyzed by sequential peptide mapping with tosylphenylalanyl chloromethyl ketone-treated trypsin and alpha-chymotrypsin. Tryptic digestion of the phosphorylated pp60c-src yielded a unique phosphopeptide that cross-reacted with an antibody specific for the carboxyl-terminal sequence of chicken pp60c-src. Digestion of the phosphopeptide with chymotrypsin yielded a product that comigrated with a synthetic phosphopeptide corresponding to the carboxyl-terminal 15 residues of chicken pp60c-src. These results clearly indicate that the carboxyl-terminal sequence of rat pp60c-src is identical to that of chicken pp60c-src, and a tyrosine residue corresponding to chicken Tyr527 is the phosphorylation site. This phosphorylation resulted in a decrease in the enolase phosphorylating activity of pp60c-src. Kinetic experiments indicated that this decrease in activity was due to a decrease in the Vmax value of pp60c-src. These findings support our previous proposal that the novel tyrosine kinase acts as a specific regulator of pp60c-src in cells.  相似文献   

8.
A Wyss  S Kaech    K Ballmer-Hofer 《Journal of virology》1990,64(10):5163-5166
Middle-T antigen (middle-T), the transforming gene product of polyomavirus, associates with several cellular tyrosine kinases, such as pp60c-src. Complex formation leads to kinase activation and is essential for cell transformation. Middle-T-associated as well as uncomplexed pp60c-src is predominantly found in the plasma membrane. We transfected mouse 3T3 fibroblasts with a mutated c-src gene (2Ac-src), allowing the expression of a protein containing alanine instead of glycine in position 2 of the primary translation product. Contrary to the wild-type c-src gene product, pp60c-src(2A) was not myristylated and accumulated in the cytoplasm instead of being transferred to cellular membranes. The mutant protein was able to associate with middle-T and was activated similarly to the wild-type c-src gene product. Both wild-type and 2A mutant protein were membrane associated upon complex formation with middle-T. This finding suggests that the putative carboxy-terminal membrane anchor sequence of middle-T is sufficient to hold middle-T-associated pp60c-src(2A) in the plasma membrane.  相似文献   

9.
pp60c-src in the developing cerebellum.   总被引:18,自引:18,他引:18       下载免费PDF全文
pp60c-src was localized in the cerebellum of developing chicken embryos by immunoperoxidase staining with antisera raised against bacterially expressed pp60v-src. Immunoreactivity (IR) appeared in the cerebellum of the chicken embryos at the time of neuronal differentiation. pp60c-src IR was detected in regions of the developing cerebellum where processes of developing neurons and glia are located. In the early embryo (stage 17), pp60c-src IR was localized in the marginal zone of the cerebellar plate. By stage 40, pp60c-src IR was localized in the process-rich molecular layer of the cerebellum and between the cells of the developing internal granular layer. Cell bodies of cerebellar neurons did not show pp60c-src IR at any stage of development. Mitotically active neuroepithelial cells of the metencephalon did not express pp60c-src before the onset of differentiation in the early embryo, nor did proliferating cells of the external granular layer express pp60c-src at later stages. Although it is not possible to ascertain whether pp60c-src is localized in developing neurons or glia at the light microscope level, the time of its appearance and pattern of distribution in the molecular layer is suggestive of a localization within the developing neuronal processes which compose the bulk of this layer. Biochemical analyses of pp60c-src in the developing cerebellum by the immune complex protein kinase activity and sensitivity of the kinase to inhibition by P1,P4-di(adenosine-5')tetraphosphate confirmed that the expression of pp60c-src coincided with the time of neuronal differentiation. We conclude from these results that in the central nervous systems, pp60c-src may be more important in an aspect of cell differentiation or a mature neuronal function than in the proliferation of neuronal or glial precursors.  相似文献   

10.
The protein product of the proto-oncogene c-src is a membrane-associated tyrosine kinase of unknown function. Identification of pp60c-src target membranes may elucidate the function of the c-src protein. The available evidence indicates that pp60c-src associates with distinct membranes within single cell types and has different distributions in different cell types. Our experiments demonstrate targeting of pp60c-src to an isolatable and biochemically identified membrane fraction in the neuroendocrine cell line PC12. The c-src protein was found to be specifically associated with synaptic vesicles since: (a) the pp60c-src immunofluorescent pattern overlapped with a synaptic vesicle marker, synaptophysin; (b) a significant proportion (44%) of the pp60c-src from PC12 but not fibroblast postnuclear supernatants was recovered in a small vesicle fraction; (c) an anti-synaptophysin cytoplasmic domain antibody immunodepleted all of the pp60c-src vesicles in this fraction, and (d) pp60c-src copurified during a 100-fold purification of PC12 synaptic vesicles. These results suggest a role for the c-src protein in the regulation of synaptic vesicle function.  相似文献   

11.
Shigella flexneri causes bacillary dysentery in humans by invading epithelial cells of the colon. Cell invasion occurs via bacterium-directed phagocytosis, a process requiring polymerization of actin at the site of bacterial entry. We show that invasion of HeLa cells by S.flexneri induces tyrosine phosphorylation of cortactin, a host cell protein previously identified as a cytoskeleton-associated protein tyrosine kinase (PTK) substrate for the proto-oncoprotein pp60c-src. Immunolocalization experiments indicate that cortactin is recruited to submembranous actin filaments formed during bacterial entry. In particular, cortactin is highly enriched in membrane ruffles of the entry structure, which engulf entering bacteria, and also in the periphery of the phagosome early after bacterial internalization. The proto-oncoprotein pp60c-src appears to mediate tyrosine phosphorylation of cortactin, since overexpression of this PTK in HeLa cells specifically increases the level of cortactin tyrosine phosphorylation induced during bacterial entry. Immunolocalization studies in pp60c-src-overexpressing HeLa cells indicate that pp60c-src is recruited to the entry structure and to the periphery of the phagosome, where pp60c-src appears to accumulate in association with the membrane. Our results suggest that epithelial cell invasion by S.flexneri involves recruitment and kinase activation of pp60c-src. Signalling by the proto-oncoprotein pp60c-src may play a role in cytoskeletal changes that facilitate S.flexneri uptake into epithelial cells, since transient overexpression of pp60c-src in HeLa cells can provoke membrane ruffling and appears also to stimulate bacterial uptake of a non-invasive S.flexneri strain.  相似文献   

12.
Deletion of the c-src gene in transgenic mice by homologous recombination leads to osteopetrosis, a skeletal defect characterized by markedly deficient bone resorption (Soriano, P., C. Montgomery, R. Geske, and A. Bradley. 1991. Cell. 64:693-702), demonstrating a critical functional role of pp60c-src in osteoclast activity. Since decreased bone resorption could result from a defect either within the osteoclast or within other cells present in its environment, indirectly affecting osteoclast functions, we determined which cell(s) in bone expressed high levels of pp60c-src Measuring pp60c-src protein and kinase activities in osteoclasts and immunolocalizing pp60c-src in bone, we find that expression of pp60c-src is nearly as high in osteoclasts as in brain and platelets. In contrast, other bone cells contain only very low levels of the protein. In addition, expression of the c-src gene product increases when bone marrow cells are induced to express an osteoclast-like phenotype by 1,25-dihydroxy-vitamin D3, further suggesting that high expression of pp60c-src is part of the osteoclast phenotype. Three other src-like kinases, c-fyn, c-yes, and c-lyn, are also expressed in osteoclasts at ratios to pp60c-src similar to what is found in platelets. These src-related proteins do not, however, compensate for the absence of pp60c-src in the src- mice, thereby suggesting that pp60c-src may have a specific function in osteoclasts. Although further work is necessary to elucidate what the critical role of pp60c-src in osteoclasts is, our observation that the protein is associated mostly with the membranes of intracellular organelles suggests the possibility that this role might be at least in part related to the targeting or fusion of membrane vesicles.  相似文献   

13.
pp60c-src is developmentally regulated in the neural retina   总被引:60,自引:0,他引:60  
L K Sorge  B T Levy  P F Maness 《Cell》1984,36(2):249-257
We have localized normal cellular pp60c-src in the developing chick neural retina by immunocytochemical staining using antisera raised against bacterially expressed pp60v-src, the src gene product of Rous sarcoma virus. pp60c-src was expressed in developing retinal neurons at the onset of differentiation. Expression of pp60c-src persisted in mature neuronal cells that were postmitotic, fully differentiated, and functional. pp60c-src immunoreactivity was localized within processes and cell bodies of ganglion neurons, processes of rods and cones, and in some but not all neurons of the inner nuclear layer. Protein kinase assays and Western transfer analyses identified the immunoreactive protein as pp60c-src, and confirmed that its expression occurs at the time the first neuronal cells in the retina differentiate. We conclude from these studies that pp60c-src is the product of a developmentally regulated gene that is more important in neuronal differentiation or function than cell proliferation.  相似文献   

14.
An early developmental phase of pp60c-src expression in the neural ectoderm   总被引:10,自引:0,他引:10  
The expression of the normal cellular src protein (pp60c-src) was investigated in the early chick embryo during gastrulation and neurulation by immunoperoxidase staining using antisera, raised against bacterially expressed pp60v-src, that recognizes pp60c-src specifically in normal cells. During gastrulation pp60c-src immunoreactivity appeared primarily in the neural ectoderm and was much less prominent in the mesoderm, endoderm, and nonneural ectoderm. During neurulation pp60c-src immunoreactivity began to disappear from the wall of the closing neural tube so that by the completion of neural tube closure no specific pp60c-src immunoreactivity appeared in any of the neuroepithelial cells composing the neural tube. These studies reveal a developmental phase of pp60c-src expression even earlier than reported previously, when neuroepithelial cells of later embryos undergo terminal neuronal differentiation. These findings raise the possibility that pp60c-src may mediate two different differentiation signals in the neuronal lineage.  相似文献   

15.
Antiserum to the Rous sarcoma virus (RSV)-transforming protein, pp60v-src, was produced in rabbits immunized with p60 expressed in Escherichia coli. alpha p60 serum immunoprecipitated quantitatively more pp60v-src than did tumor-bearing rabbit (TBR) sera. When RSV-transformed cell lysates were preadsorbed with TBR serum, the remaining lysate contained additional pp60v-src, which was recognized only by reimmunoprecipitation with alpha p60 serum and not by TBR serum. In subcellular fractions of RSV-infected chicken embryo fibroblasts (RSV-CEFs) and field vole cells probed with TBR serum, the majority of the pp60v-src was associated with the plasma membrane-enriched P100 fraction. However, alpha p60 serum revealed equal distribution of pp60v-src and its kinase activity between the P1 (nuclear) and P100 fractions. The same results were obtained for pp60c-src in uninfected CEFs. On discontinuous sucrose gradients nearly 50% of the P1-pp60v-src sedimented with nuclei, in fractions where no plasma membrane was detected. Indirect immunofluorescence microscopy of RSV-CEFs with alpha p60 serum revealed a distinct pattern of perinuclear fluorescence, in addition to staining at the cell periphery. Thus the use of a highly specific antibody reveals that enzymatically active pp60v-src and pp60c-src molecules are present in other intracellular structures, probably juxtareticular nuclear membranes, in addition to the plasma membrane in normal, uninfected, and wild-type RSV-infected cells.  相似文献   

16.
Phosphorylation at tyrosine 527 of the proto-oncogene product, pp60c-src, has been proposed to decrease the tyrosine kinase activity of the enzyme. We have investigated potential factors that might influence phosphorylation at this site by making mutant variants of the pp60c-src protein. By effectively eliminating the site of N-terminal myristylation, we demonstrated that stable membrane association is not necessary for tyrosine 527 phosphorylation. Furthermore, mutational elimination of the enzymatic activity of this mutant pp60c-src protein did not alter the efficiency of phosphorylation at tyrosine 527. These data are consistent with the proposal that pp60c-src may be phosphorylated at tyrosine 527 by a cellular tyrosine kinase distinct from pp60c-src. In addition, using detergent-permeabilized cells, we established conditions that allow efficient phosphorylation of tyrosine 527 in vitro.  相似文献   

17.
The c-src protein isolated from neuronal cells (pp60c-src+) displays a higher level of protein kinase activity than does pp60c-src from nonneural tissues. There are two structural alterations present in the amino-terminal half of pp60c-src+ expressed in neurons which could contribute to the enhanced activity of this form of pp60c-src: (i) a hexapeptide insert located at amino acid 114 of avian pp60c-src+ and (ii) a novel site(s) of serine phosphorylation. We characterized pp60c-src+ expressed in a nonneuronal cell type to identify factors that regulate the activity of the c-src+ protein and the importance of the neuronal environment on this regulation. The c-src+ protein overexpressed in chicken embryo fibroblasts (CEFs) displayed higher kinase activity than did pp60c-src. The major sites of phosphorylation of the c-src+ protein were Ser-17 and Tyr-527. The unique site(s) of serine phosphorylation originally identified in pp60c-src+ expressed in neurons was not detected in the c-src+ protein overexpressed in CEFs. Therefore, the hexapeptide insert is sufficient to cause an elevation in the tyrosine protein kinase activity of pp60c-src+. Our data also indicate that CEFs infected with the Rous sarcoma virus (RSV)c-src+ display phenotypic changes that distinguish them from cultures producing pp60c-src and that pp60c-src+-expressing cells are better able to grow in an anchorage-independent manner. The level of total cellular tyrosine phosphorylation in RSVc-src+-infected cultures was moderately higher than the level observed in cultures infected with RSVc-src. This level was not as pronounced as that observed in cells infected with RSVv-src or oncogenic variants of RSVc-src. Thus, pp60c-src+ could be considered a partially activated c-src variant protein much like other c-src proteins that contain mutations in the amino-terminal domain.  相似文献   

18.
Platelets contain exceptionally high levels of pp60c-src and, thus, provide a convenient system for investigating the physiological function of this protein-tyrosine kinase. We have employed chemical cross-linking of myristylated amino-terminal peptides of pp60c-src to platelet membranes in order to identify platelet membrane components that interact with pp60c-src to regulate or mediate its activity. We detected specific binding of radioiodinated peptides to platelet membrane proteins of 32, 50, 92, and 105 kDa. The 32-kDa protein may be related to the putative src receptor component recently identified in fibroblast membranes. The most reactive platelet protein, however, is the 50-kDa protein, which is either absent or nonreactive in fibroblast membranes. Binding of src peptides to this protein was saturable, and we estimate the presence of approximately 1 x 10(6) of the 50-kDa binding sites per platelet. The specificity of the peptide binding to the 50- and 32-kDa platelet proteins was analyzed by competition with different peptides. The binding sites displayed an absolute requirement for an N-myristoyl moiety and a strong preference for pp60c-src amino-terminal sequences. The identification of these src-interacting proteins may help to decipher the biochemical pathways in which platelet pp60c-src is involved.  相似文献   

19.
The biological and biochemical properties of pp60c-src are regulated, in part, by phosphorylation at Tyr-416 and Tyr-527. The tyrosine kinase and transforming activities of pp60c-src are suppressed by phosphorylation at Tyr-527, whereas full activation of pp60c-src requires phosphorylation at Tyr-416. To test specifically the significance of the negatively charged phosphate moieties on these tyrosine residues, we have substituted the codons for both residues with codons for either Glu or Gln. A negatively charged Glu at position 527 was unable to mimic a phosphorylated Tyr at this position, and, in consequence, the mutated pp60c-src was activated and transforming. Similarly, substitution of Tyr-416 with Glu was unable to stimulate the activities of the enzyme. However, mutagenesis of Tyr-416 to Gln (to form the mutant 416Q) activated the kinase activity approximately twofold over that observed for wild-type pp60c-src. When introduced into the mutant 527F (containing Phe-527 instead of Tyr), the double mutant 416Q-527F exhibited weak transforming activity. This is in contrast to the other double mutants 416E-527F and 416F-527F, which were nontransforming. The biochemical basis by which 416Q activates pp60c-src is not understood but probably involves some local conformational perturbation. Deletion of residues 519 to 524 (RH5), a region previously shown to be necessary for association with middle-T antigen, led to loss of phosphorylation at Tyr-527 and activation of the enzymatic and focus-forming activities of pp60c-src. Hence, the sequences necessary for complex formation with middle-T antigen may also be required by the kinase(s) which phosphorylates Tyr-527 in vivo. This suggests that normal cells contain cellular proteins which are analogous to middle-T antigen and whose action regulates the activity of pp60c-src by controlling phosphorylation or dephosphorylation at residue 527.  相似文献   

20.
We have previously shown that overexpressed chicken pp60c-src has retarded mobility, novel serine/threonine phosphorylation, and enhanced kinase activity during NIH 3T3 cell mitosis. Here we show that novel mitotic phosphorylations occur at Thr 34, Thr 46, and Ser 72. The possibility, previously raised, that Ser 17 is dephosphorylated during mitosis is excluded. The phosphorylated sites lie in consensus sequences for phosphorylation by p34cdc2, the catalytic component of maturation promoting factor (MPF). Furthermore, highly purified MPF from metaphase-arrested Xenopus eggs phosphorylated both wild-type and kinase-defective pp60c-src at these sites. Altered phosphorylation alone is sufficient to account for the large retardation in mitotic pp60c-src electrophoretic mobility: phosphorylation of normal pp60c-src by MPF retarded mobility and dephosphorylation of mitotic pp60c-src restored normal mobility. These results suggest that pp60c-src is one of the targets for MPF action, which may account in part for the pleiotropic changes in protein phosphorylation and cellular architecture that occur during mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号