首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human KIN17 protein is an essential nuclear protein conserved from yeast to human and expressed ubiquitously in mammals. Suppression of Rts2, the yeast equivalent of gene KIN17, renders the cells unviable, and silencing the human KIN17 gene slows cell growth dramatically. Moreover, the human gene KIN17 is up-regulated following exposure to ionizing radiations and UV light, depending on the integrity of the human global genome repair machinery. Its ectopic over-expression blocks S-phase progression by inhibiting DNA synthesis. The C-terminal region of human KIN17 is crucial for this anti-proliferation effect. Its high-resolution structure, presented here, reveals a tandem of SH3-like subdomains. This domain binds to ribonucleotide homopolymers with the same preferences as the whole protein. Analysis of its structure complexed with tungstate shows structural variability within the domain. The interaction with tungstate is mediated by several lysine residues located within a positively charged groove at the interface between the two subdomains. This groove could be the site of interaction with RNA, since mutagenesis of two of these highly conserved lysine residue weakens RNA binding.  相似文献   

2.
If a ribosome shifts to an alternative reading frame during translation, the information in the message is usually lost. We have selected mutants of Salmonella typhimurium with alterations in tRNAcmo5UGGPro that cause increased frameshifting when present in the ribosomal P-site. In 108 such mutants, two parts of the tRNA molecule are altered: the anticodon stem and the D-arm, including its tertiary interactions with the variable arm. Some of these alterations in tRNAcmo5UGGPro are in close proximity to ribosomal components in the P-site. The crystal structure of the 30S subunit suggests that the C-terminal end of ribosomal protein S9 contacts nucleotides 32-34 of peptidyl-tRNA. We have isolated mutants with defects in the C-terminus of S9 that induce + 1 frameshifting. Combinations of changes in tRNAcmo5UGGPro and S9 suggest that an interaction occurs between position 32 of the peptidyl-tRNA and the C-terminal end of S9. Together, our results suggest that the cause of frameshifting is an aberrant interaction between the peptidyl-tRNA and the P-site environment. We suggest that the “ribosomal grip” of the peptidyl-tRNA is pivotal for maintaining the reading frame.  相似文献   

3.
Cleavage fragments of de novo synthesized vimentin were recently reported to interact with phosphorylated Erk1 and Erk2 MAP kinases (pErk) in injured sciatic nerve, thus linking pErk to a signaling complex retrogradely transported on importins and dynein. Here we clarify the structural basis for this interaction, which explains how pErk is protected from dephosphorylation while bound to vimentin. Pull-down and ELISA experiments revealed robust calcium-dependent binding of pErk to the second coiled-coil domain of vimentin, with observed affinities of binding increasing from 180 nM at 0.1 microM calcium to 15 nM at 10 microM calcium. In contrast there was little or no binding of non-phosphorylated Erk to vimentin under these conditions. Geometric and electrostatic complementarity docking generated a number of solutions wherein vimentin binding to pErk occludes the lip containing the phosphorylated residues in the kinase. Binding competition experiments with Erk peptides confirmed a solution in which vimentin covers the phosphorylation lip in pErk, interacting with residues above and below the lip. The same peptides inhibited pErk binding to the dynein complex in sciatic nerve axoplasm, and interfered with protection from phosphatases by vimentin. Thus, a soluble intermediate filament fragment interacts with a signaling kinase and protects it from dephosphorylation by calcium-dependent steric hindrance.  相似文献   

4.
5.
The lectin limulin from the serum of the horseshoe crab Limulus polyphemus binds to N-acetylneuraminic acid and 2-keto-3-deoxyoctonate residues. These interactions were examined using capsular polysaccharides from strains of Neisseria meningitidis and Escherichia coli. Our findings indicate that limulin has greatest reactivity with homopolymers of N-acetylneuraminic acid as compared with heteropolymers of either sugar. Polysaccharides with α(2→9) ketosidic linkages were most efficient in precipitating this lectin. Finally, O-acetylated homopolymers of N-acetylneuraminic acid were more reactive than their O-acetyl-negative counterparts.  相似文献   

6.
N-Acetylglucosamine (GlcNAc), a major component of complex carbohydrates, is synthesized de novo or salvaged from lysosomally degraded glycoconjugates and from nutritional sources. The salvage pathway requires that GlcNAc kinase converts GlcNAc to GlcNAc-6-phosphate, a component utilized in UDP-GlcNAc biosynthesis or energy metabolism. GlcNAc kinase belongs to the sugar kinase/Hsp70/actin superfamily that catalyze phosphoryl transfer from ATP to their respective substrates, and in most cases catalysis is associated with a large conformational change in which the N-terminal small and C-terminal large domains enclose the substrates. Here we report two crystal structures of homodimeric human GlcNAc kinase, one in complex with GlcNAc and the other in complex with ADP and glucose. The active site of GlcNAc kinase is located in a deep cleft between the two domains of the V-shaped monomer. The enzyme adopts a "closed" configuration in the GlcNAc-bound complex and GlcNAc interacts with residues of both domains. In addition, the N-acetyl methyl group contacts residues of the other monomer in the homodimer, a unique feature compared to other members of the sugar kinase/Hsp70/actin superfamily. This contrasts an "open" configuration in the ADP/glucose-bound structure, where glucose cannot form these interactions, explaining its low binding affinity for GlcNAc kinase. Our results support functional implications derived from apo crystal structures of GlcNAc kinases from Chromobacter violaceum and Porphyromonas gingivalis and show that Tyr205, which is phosphorylated in thrombin-activated platelets, lines the GlcNAc binding pocket. This suggests that phosphorylation of Tyr205 may modulate GlcNAc kinase activity and/or specificity.  相似文献   

7.
In previous work we showed that Abl interactor 1 (Abi-1), by linking enzyme and substrate, promotes the phosphorylation of Mammalian Enabled (Mena) by c-Abl. To determine whether this mechanism extends to other c-Abl substrates, we used the yeast two-hybrid system to search for proteins that interact with Abi-1. By screening a human leukocyte cDNA library, we identified BCAP (B-cell adaptor for phosphoinositide 3-kinase) as another Abi-1-interacting protein. Binding experiments revealed that the SH3 domain of Abi-1 and the C-terminal polyproline structure of BCAP are involved in interactions between the two. In cultured cells, Abi-1 promoted phosphorylation of BCAP not only by c-Abl but also by v-Abl. The phosphorylation sites of BCAP by c-Abl were mapped to five tyrosine residues in the C-terminal region that are well conserved in mammals. These results show that Abi-1 promotes Abl-mediated BCAP phosphorylation and suggest that Abi-1 in general coordinates kinase-substrate interactions.  相似文献   

8.
KMT2/Set1 is the catalytic subunit of the complex of proteins associated with Set1 (COMPASS) that is responsible for the methylation of lysine 4 of histone H3 (H3K4) in Saccharomyces cerevisiae. Whereas monomethylated H3K4 (H3K4me1) is found throughout the genome, di- (H3K4me2) and tri- (H3K4me3) methylated H3K4 are enriched at specific loci, which correlates with the promoter and 5′-ends of actively transcribed genes in the case of H3K4me3. The COMPASS subunits contain a number of domains that are conserved in homologous complexes in higher eukaryotes and are reported to interact with modified histones. However, the exact organization of these subunits and their role within the complex have not been elucidated. In this study we showed that: (1) subunits Swd1 and Swd3 form a stable heterodimer that dissociates upon binding to a modified H3K4me2 tail peptide, suggesting a regulatory role in COMPASS; (2) the affinity of the subunit Spp1 for modified histone H3 substrates is much higher than that of Swd1 and Swd3; (3) Spp1 has a preference for H3K4me2/3 methylation state; and (4) Spp1 contains a high-affinity DNA-binding domain in the previously uncharacterised C-terminal region. These data allow us to suggest a mechanism for the regulation of COMPASS activity at an actively transcribed gene.  相似文献   

9.
10.
It was already known that both mind bomb (mib) and mind bomb-2 (mib2) encode E3 ubiquitin ligases that target Delta in Notch activation. Here we further demonstrated that zebrafish Mib and Mib2, similar to their mouse orthologs, have a C-terminal-most RING finger-dependent E3 ubiquitin ligase activity. Mib and Mib2 are reciprocal E3 ubiquitin ligases and substrates. They function similarly in Notch signaling by using DeltaC as a common substrate. However, Mib2 behaves differently from Mib in DeltaD internalization. In addition, Mib and Mib2 bind differently to extracellular and intracellular parts of DeltaA and DeltaC. Finally, mutant Mibs, Mib(ta52b) with a missense mutation in the C-terminal-most RING finger (M1013R) and Mib(m132) with a premature stop codon that leads to a deletion of three RING fingers (C785stop), act dominant-negatively and compete with Mib2 in DeltaC ubiquitylation and internalization, suggesting a molecular basis for the antimorphic phenotypes (stronger than the null phenotypes) observed in zebrafish mib(ta52b) and mib(m132) alleles.  相似文献   

11.
Lamin A/C is a major component of the nuclear lamina. An intact nuclear lamina has been proposed to be necessary for muscle differentiation. Cyclin D3 is known to be upregulated in differentiated muscle cells and to form insoluble complexes with cell-cycle regulatory factors in these cells. We have examined the possibility of direct binding interactions between lamin A/C and cyclin D3 by in vitro binding assays and co-immunoprecipitation studies with muscle cells. Our results indicate that cyclin D3 binds specifically to amino acid residues 383-474 of lamin A/C and associates with lamin A/C in muscle cells. The identification of cyclin D3 as a novel binding partner of lamin A/C has important implications for a role for lamin A/C in muscle differentiation.  相似文献   

12.
Dystrophin Dp71 is the main product of the Duchenne muscular dystrophy gene in the brain; however, its function is unknown. To study the role of Dp71 in neuronal cells, we previously generated by antisense treatment PC12 neuronal cell clones with decreased Dp71 expression (antisense-Dp71 cells). PC12 cells express two different splicing isoforms of Dp71, a cytoplasmic variant called Dp71f and a nuclear isoform called Dp71d. We previously reported that antisense-Dp71 cells display deficient adhesion to substrate and reduced immunostaining of beta1-integrin in the cell area contacting the substrate. In this study, we isolated additional antisense-Dp71 clones to analyze in detail the potential involvement of Dp71f isoform with the beta1-integrin adhesion system of PC12 cells. Immunofluorescence analyses as well as immunoprecipitation assays demonstrated that the PC12 cell beta1-integrin adhesion complex is composed of beta1-integrin, talin, paxillin, alpha-actinin, FAK and actin. In addition, our results showed that Dp71f associates with most of the beta1-integrin complex components (beta1-integrin, FAK, alpha-actinin, talin and actin). In the antisense-Dp71 cells, the deficiency of Dp71 provokes a significant reduction of the beta1-integrin adhesion complex and, consequently, the deficient adhesion of these cells to laminin. In vitro binding experiments confirmed the interaction of Dp71f with FAK and beta1-integrin. Our data indicate that Dp71f is a structural component of the beta1-integrin adhesion complex of PC12 cells that modulates PC12 cell adhesion by conferring proper complex assembly and/or maintenance.  相似文献   

13.
The sialic acid binding loctin carcinoscorpin agglutinates Escharichiacoli K12 andSalmonellaminnesots R595 cells. This interaction can be inhibited by the saccharides namely 2-keto-3-deoxyoctonate and the disaccharide D-(N-acetylneuraminyl) (2→6)2-acetamide-2-deoxy-D-galactitol. N-acetylneuraminic acid is shown to be a poor inhibitor. The same behaviour is seen when purified lipopolysaccharides from these two Gram negative bacteria are used. Vibriocholerae, a Grum negative bectarium devoid of 2-keto-3-deoxyoctonate and Staphylococcussureus a typical Gram positive bacterium failed to agglutinate in the presence of the lectin. The results suggest that the 2-keto-3-deoxyoctonate residues might represent the physiological substrate for the sialic acid binding lectin from the horseshoa crab.  相似文献   

14.
Yeast Ubp3 and its co-factor Bre5 form a deubiquitylation complex to regulate protein transport between the endoplasmic reticulum and Golgi compartments of the cell. A novel N-terminal domain of the Ubp3 catalytic subunit forms a complex with the NTF2-like domain of the Bre5 regulatory subunit. Here, we report the X-ray crystal structure of an Ubp3-Bre5 complex and show that it forms a symmetric hetero-tetrameric complex in which the Bre5 NTF2-like domain dimer interacts with two L-shaped beta-strand-turn-alpha-helix motifs of Ubp3. The Ubp3 N-terminal domain binds within a hydrophobic cavity on the surface of the Bre5 NTF2-like domain subunit with conserved residues within both proteins interacting predominantly through antiparallel beta-sheet hydrogen bonds and van der Waals contacts. Structure-based mutagenesis and functional studies confirm the significance of the observed interactions for Ubp3-Bre5 association in vitro and Ubp3 function in vivo. Comparison of the structure to other protein complexes with NTF2-like domains shows that the Ubp3-Bre5 interface is novel. Together, these studies provide new insights into Ubp3 recognition by Bre5 and into protein recognition by NTF2-like domains.  相似文献   

15.
2-Keto-3-deoxygluconate kinase (KDGK) catalyzes the phosphorylation of 2-keto-3-deoxygluconate (KDG) to 2-keto-3-deoxy-6-phosphogluconate (KDGP). The genome sequence of Thermus thermophilus HB8 contains an open reading frame that has a 30% identity to Escherichia coli KDGK. The KDGK activity of T.thermophilus protein (TtKDGK) has been confirmed, and its crystal structure has been determined by the molecular replacement method and refined with two crystal forms to 2.3 angstroms and 3.2 angstroms, respectively. The enzyme is a hexamer organized as a trimer of dimers. Each subunit is composed of two domains, a larger alpha/beta domain and a smaller beta-sheet domain, similar to that of ribokinase and adenosine kinase, members of the PfkB family of carbohydrate kinases. Furthermore, the TtKDGK structure with its KDG and ATP analogue was determined and refined at 2.1 angstroms. The bound KDG was observed predominantly as an open chain structure. The positioning of ligands and the conservation of important catalytic residues suggest that the reaction mechanism is likely to be similar to that of other members of the PfkB family, including ribokinase. In particular, the Asp251 is postulated to have a role in transferring the gamma-phosphate of ATP to the 5'-hydroxyl group of KDG.  相似文献   

16.
17.
The neuronal protein FE65 functions in brain development and amyloid precursor protein (APP) signaling through its interaction with the mammalian enabled (Mena) protein and APP, respectively. The recognition of short polyproline sequences in Mena by the FE65 WW domain has a central role in axon guidance and neuronal positioning in the developing brain. We have determined the crystal structures of the human FE65 WW domain (residues 253-289) in the apo form and bound to the peptides PPPPPPLPP and PPPPPPPPPL, which correspond to human Mena residues 313-321 and 347-356, respectively. The FE65 WW domain contains two parallel ligand-binding grooves, XP (formed by residues Y269 and W280) and XP2 (formed by Y269 and W271). Both Mena peptides adopt a polyproline helical II conformation and bind to the WW domain in a forward (N-C) orientation through selection of the PPPPP motif by the XP and XP2 grooves. This mode of ligand recognition is strikingly similar to polyproline interaction with SH3 domains. Importantly, comparison of the FE65 WW structures in the apo and liganded forms shows that the XP2 groove is formed by an induced-fit mechanism that involves movements of the W271 and Y269 side-chains upon ligand binding. These structures elucidate the molecular determinants underlying polyproline ligand selection by the FE65 WW domain and provide a framework for the design of small molecules that would interfere with FE65 WW-ligand interaction and modulate neuronal development and APP signaling.  相似文献   

18.
The assembly into supramolecular complexes of proteins having complementary activities is central to cellular function. One such complex of considerable biological and industrial significance is the plant cell wall-degrading apparatus of anaerobic microorganisms, termed the cellulosome. A central feature of bacterial cellulosomes is a large non-catalytic protein, the scaffoldin, which contains multiple cohesin domains. An array of digestive enzymes is incorporated into the cellulosome through the interaction of the dockerin domains, present in the catalytic subunits, with the cohesin domains that are present in the scaffoldin. By contrast, in anaerobic fungi, such as Piromyces equi, the dockerins of cellulosomal enzymes are often present in tandem copies; however, the identity of the cognate cohesin domains in these organisms is unclear, hindering further biotechnological development of the fungal cellulosome. Here, we characterise the solution structure and function of a double-dockerin construct from the P. equi endoglucanase Cel45A. We show that the two domains are connected by a flexible linker that is short enough to keep the binding sites of the two domains on adjacent surfaces, and allows the double-dockerin construct to bind more tightly to cellulosomes than a single domain and with greater coverage. The double dockerin binds to the GH3 beta-glucosidase component of the fungal cellulosome, which is thereby identified as a potential scaffoldin.  相似文献   

19.
A MAPKK-like mitotic kinase, TOPK, implies the formation of mitotic spindles and spindle midzone and accomplishing cytokinesis, however, its underlying mechanism remains unclear. A microtubule bundling protein, PRC1, plays a pivotal role in the formation of mitotic spindles and spindle midzone. Because of their functional resemblance, we attempted to clarify the links between these two molecules. TOPK supported mitotic advance via the cdk1/cyclin B1-dependent phosphorylation of PRC1. TOPK induced the phosphorylation of PRC1 at T481 in vivo, however, TOPK did not phosphorylate PRC1 in vitro. TOPK induced the phosphorylation of PRC1 at T481 only when the cdk1/cyclin B1 existed simultaneously in vitro. Both the enzymatic activity of TOPK and association competence of TOPK with PRC1 were mandatory for this phosphorylation. TOPK binds to cdk1/cyclin B1, microtubules and PRC1 via its unique region near the C terminus. TOPK co-localized closely with cdk1 throughout the cell cycle in vivo. Collectively, these data indicate that TOPK, which makes a kinase-substrate complex with cdk1/cyclin B1 and PRC1 on microtubules during mitosis, enhances the cdk1/cyclin B1-dependent phosphorylation of PRC1 and thereby strongly promotes cytokinesis.  相似文献   

20.
Chagasin is a protein produced by Trypanosoma cruzi, the parasite that causes Chagas' disease. This small protein belongs to a recently defined family of cysteine protease inhibitors. Although resembling well-known inhibitors like the cystatins in size (110 amino acid residues) and function (they all inhibit papain-like (C1 family) proteases), it has a unique amino acid sequence and structure. We have crystallized and solved the structure of chagasin in complex with the host cysteine protease, cathepsin L, at 1.75 A resolution. An inhibitory wedge composed of three loops (L2, L4, and L6) forms a number of contacts responsible for high-affinity binding (K(i), 39 pM) to the enzyme. All three loops interact with the catalytic groove, with the central loop L2 inserted directly into the catalytic center. Loops L4 and L6 embrace the enzyme molecule from both sides and exhibit distinctly different patterns of protein-protein recognition. Comparison with a 1.7 A structure of uncomplexed chagasin, also determined in this study, demonstrates that a conformational change of the first binding loop (L4) allows extended binding to the non-primed substrate pockets of the enzyme active site cleft, thereby providing a substantial part of the inhibitory surface. The mode of chagasin binding is generally similar, albeit distinctly different in detail, when compared to those displayed by cystatins and the cysteine protease inhibitory p41 fragment of the invariant chain. The chagasin-cathepsin L complex structure provides details of how the parasite protein inhibits a host enzyme of possible importance in host defense. The high level of structural and functional similarity between cathepsin L and the T. cruzi enzyme cruzipain gives clues to how the cysteine protease activity of the parasite can be targeted. This information will aid in the development of synthetic inhibitors for use as potential drugs for the treatment of Chagas disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号