首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucansucrases from lactic acid bacteria convert sucrose into various alpha-glucans that differ greatly with respect to the glucosidic bonds present (e.g. dextran, mutan, alternan and reuteran). This study aimed to identify the structural features of the reuteransucrase from Lactobacillus reuteri 121 (GTFA) that determine its reaction specificity. We here report a detailed mutational analysis of a conserved region immediately next to the catalytic Asp1133 (putative transition-state stabilizing) residue in GTFA. The data show that Asn1134 is the main determinant of glucosidic bond product specificity in this reuteransucrase. Furthermore, mutations at this position greatly influenced the hydrolysis/transglycosylation ratio. Changes in this amino acid expands the range of glucan and gluco-oligosaccharide products synthesized from sucrose by mutant GTFA enzymes.  相似文献   

2.
Lactobacillus reuteri strain ATCC 55730 (LB BIO) was isolated as a pure culture from a Reuteri tablet purchased from the BioGaia company. This probiotic strain produces a soluble glucan (reuteran), in which the majority of the linkages are of the alpha-(1-->4) glucosidic type ( approximately 70%). This reuteran also contains alpha-(1-->6)- linked glucosyl units and 4,6-disubstituted alpha-glucosyl units at the branching points. The LB BIO glucansucrase gene (gtfO) was cloned and expressed in Escherichia coli, and the GTFO enzyme was purified. The recombinant GTFO enzyme and the LB BIO culture supernatants synthesized identical glucan polymers with respect to linkage type and size distribution. GTFO thus is a reuteransucrase, responsible for synthesis of this reuteran polymer in LB BIO. The preference of GTFO for synthesizing alpha-(1-->4) linkages is also evident from the oligosaccharides produced from sucrose with different acceptor substrates, e.g., isopanose from isomaltose. GTFO has a relatively high hydrolysis/transferase activity ratio. Complete conversion of 100 mM sucrose by GTFO nevertheless yielded large amounts of reuteran, although more than 50% of sucrose was converted into glucose. This is only the second example of the isolation and characterization of a reuteransucrase and its reuteran product, both found in different L. reuteri strains. GTFO synthesizes a reuteran with the highest amount of alpha-(1-->4) linkages reported to date.  相似文献   

3.
Two long-standing questions about glucansucrases (EC 2.4.1.5) are how they control oligosaccharide versus polysaccharide synthesis and how they direct their glycosidic linkage specificity. This information is required for the production of tailor-made saccharides. Mutagenesis promises to be an effective tool for enzyme engineering approaches for altering the regioselectivity and acceptor substrate specificity. Therefore, we chose the most conserved motif around the transition state stabilizer in glucansucrases for a random mutagenesis of the glucansucrase GTFR of Streptococcus oralis, yielding different variants with altered reaction specificity. Modifications at position S628 achieved by saturation mutagenesis guided the reaction toward the synthesis of short chain oligosaccharides with a drastically increased yield of isomaltose (47%) or leucrose (64%). Alternatively, GTFR variant R624G/V630I/D717A exhibited a drastic switch in regioselectivity from a dextran type with mainly alpha-1,6-glucosidic linkages to a mutan type polymer with predominantly alpha-1,3-glucosidic linkages. Targeted modifications demonstrated that both mutations near the transition state stabilizer, R624G and V630I, are contributing to this alteration. It is thus shown that mutagenesis can guide the transglycosylation reaction of glucansucrase enzymes toward the synthesis of (a) various short chain oligosaccharides or (b) novel polymers with completely altered linkages, without compromising their high transglycosylation activity and efficiency.  相似文献   

4.
α-Glucans produced by glucansucrase enzymes hold strong potential for industrial applications. The exact determinants of the linkage specificity of glucansucrase enzymes have remained largely unknown, even with the recent elucidation of glucansucrase crystal structures. Guided by the crystal structure of glucansucrase GTF180-ΔN from Lactobacillus reuteri 180 in complex with the acceptor substrate maltose, we identified several residues (Asp-1028 and Asn-1029 from domain A, as well as Leu-938, Ala-978, and Leu-981 from domain B) near subsite +1 that may be critical for linkage specificity determination, and we investigated these by random site-directed mutagenesis. First, mutants of Ala-978 (to Leu, Pro, Phe, or Tyr) and Asp-1028 (to Tyr or Trp) with larger side chains showed reduced degrees of branching, likely due to the steric hindrance by these bulky residues. Second, Leu-938 mutants (except L938F) and Asp-1028 mutants showed altered linkage specificity, mostly with increased (α1→6) linkage synthesis. Third, mutation of Leu-981 and Asn-1029 significantly affected the transglycosylation reaction, indicating their essential roles in acceptor substrate binding. In conclusion, glucansucrase product specificity is determined by an interplay of domain A and B residues surrounding the acceptor substrate binding groove. Residues surrounding the +1 subsite thus are critical for activity and specificity of the GTF180 enzyme and play different roles in the enzyme functions. This study provides novel insights into the structure-function relationships of glucansucrase enzymes and clearly shows the potential of enzyme engineering to produce tailor-made α-glucans.  相似文献   

5.
Lactobacillus reuteri strain ATCC 55730 (LB BIO) was isolated as a pure culture from a Reuteri tablet purchased from the BioGaia company. This probiotic strain produces a soluble glucan (reuteran), in which the majority of the linkages are of the α-(1→4) glucosidic type (~70%). This reuteran also contains α-(1→6)- linked glucosyl units and 4,6-disubstituted α-glucosyl units at the branching points. The LB BIO glucansucrase gene (gtfO) was cloned and expressed in Escherichia coli, and the GTFO enzyme was purified. The recombinant GTFO enzyme and the LB BIO culture supernatants synthesized identical glucan polymers with respect to linkage type and size distribution. GTFO thus is a reuteransucrase, responsible for synthesis of this reuteran polymer in LB BIO. The preference of GTFO for synthesizing α-(1→4) linkages is also evident from the oligosaccharides produced from sucrose with different acceptor substrates, e.g., isopanose from isomaltose. GTFO has a relatively high hydrolysis/transferase activity ratio. Complete conversion of 100 mM sucrose by GTFO nevertheless yielded large amounts of reuteran, although more than 50% of sucrose was converted into glucose. This is only the second example of the isolation and characterization of a reuteransucrase and its reuteran product, both found in different L. reuteri strains. GTFO synthesizes a reuteran with the highest amount of α-(1→4) linkages reported to date.  相似文献   

6.
The neutral exopolysaccharide EPS35-5 (reuteran) produced from sucrose by the glucansucrase GTFA enzyme from Lactobacillus reuteri 35-5 was found to be a (1-->4,1-->6)-alpha-D-glucan, with no repeating units present. Based on linkage analysis and 1D/2D 1H and 13C NMR spectroscopy of intact EPS35-5, as well as MS and NMR analysis of oligosaccharides obtained by partial acid hydrolysis and enzymatic hydrolysis, using pullulanase M1 (Klebsiella planticola), of EPS35-5, a composite model, that includes all identified structural elements, was formulated as follows: [Formula: see text].  相似文献   

7.
Lactobacillus reuteri strain 121 produces a unique, highly branched, soluble glucan in which the majority of the linkages are of the alpha-(1-->4) glucosidic type. The glucan also contains alpha-(1-->6)-linked glucosyl units and 4,6-disubstituted alpha-glucosyl units at the branching points. Using degenerate primers, based on the amino acid sequences of conserved regions from known glucosyltransferase (gtf) genes from lactic acid bacteria, the L. reuteri strain 121 glucosyltransferase gene (gtfA) was isolated. The gtfA open reading frame (ORF) was 5,343 bp, and it encodes a protein of 1,781 amino acids with a deduced M(r) of 198,637. The deduced amino acid sequence of GTFA revealed clear similarities with other glucosyltransferases. GTFA has a relatively large variable N-terminal domain (702 amino acids) with five unique repeats and a relatively short C-terminal domain (267 amino acids). The gtfA gene was expressed in Escherichia coli, yielding an active GTFA enzyme. With respect to binding type and size distribution, the recombinant GTFA enzyme and the L. reuteri strain 121 culture supernatants synthesized identical glucan polymers. Furthermore, the deduced amino acid sequence of the gtfA ORF and the N-terminal amino acid sequence of the glucosyltransferase isolated from culture supernatants of L. reuteri strain 121 were the same. GTFA is thus responsible for the synthesis of the unique glucan polymer in L. reuteri strain 121. This is the first report on the molecular characterization of a glucosyltransferase from a Lactobacillus strain.  相似文献   

8.
T Kuriki  H Takata  S Okada    T Imanaka 《Journal of bacteriology》1991,173(19):6147-6152
The active center of the neopullulanase from Bacillus stearothermophilus was analyzed by means of site-directed mutagenesis. The amino acid residues located in the active center of the neopullulanase were tentatively identified according to a molecular model of Taka-amylase A and homology analysis of the amino acid sequences of neopullulanse, Taka-amylase A, and other amylolytic enzymes. When amino acid residues Glu and Asp, corresponding to the putative catalytic sites, were replaced by the oppositely charged (His) or noncharged (Gln or Asn) amino acid residue, neopullulanase activities toward alpha-(1----4)- and alpha-(1----6)-glucosidic linkages disappeared. When the amino acids corresponding to the putative substrate-binding sites were replaced, the specificities of the mutated neopullulanases toward alpha-(1----4)- and alpha-(1----6)-glucosidic linkages were obviously different from that of the wild-type enzyme. This finding proves that one active center of neopullulanase participated in the dual activity toward alpha-(1----4)- and alpha-(1----6)-glucosidic linkages. Pullulan is a linear glucan of maltotriosyl units linked through alpha-(1----6)-glucosidic linkages. The production ratio of panose from pullulan was significantly increased by using the mutated neopullulanase which exhibited higher specificity toward the alpha-(1----4)-glucosidic linkage. In contrast, the production ratio of panose was obviously decreased by using the mutated neopullulanse which exhibited higher specificity toward the alpha-(1----6)-glucosidic linkage.  相似文献   

9.
Highly conserved glycoside hydrolase family 70 glucansucrases are able to catalyze the synthesis of α-glucans with different structure from sucrose. The structural determinants of glucansucrase specificity have remained unclear. Residue Leu940 in domain B of GTF180, the glucansucrase of the probiotic bacterium Lactobacillus reuteri 180, was shown to vary in different glucansucrases and is close to the +1 glucosyl unit in the crystal structure of GTF180-ΔN in complex with maltose. Herein, we show that mutations in Leu940 of wild-type GTF180-ΔN all caused an increased percentage of (α1→6) linkages and a decreased percentage of (α1→3) linkages in the products. α-Glucans with potential different physicochemical properties (containing 67–100% of (α1→6) linkages) were produced by GTF180 and its Leu940 mutants. Mutant L940W was unable to form (α1→3) linkages and synthesized a smaller and linear glucan polysaccharide with only (α1→6) linkages. Docking studies revealed that the introduction of the large aromatic amino acid residue tryptophan at position 940 partially blocked the binding groove, preventing the isomalto-oligosaccharide acceptor to bind in an favorable orientation for the formation of (α1→3) linkages. Our data showed that the reaction specificity of GTF180 mutant was shifted either to increased polysaccharide synthesis (L940A, L940S, L940E, and L940F) or increased oligosaccharide synthesis (L940W). The L940W mutant is capable of producing a large amount of isomalto-oligosaccharides using released glucose from sucrose as acceptors. Thus, residue Leu940 in domain B is crucial for linkage and reaction specificity of GTF180. This study provides clear and novel insights into the structure-function relationships of glucansucrase enzymes.  相似文献   

10.
The dsrE gene from Leuconostoc mesenteroides NRRL B-1299 was shown to encode a very large protein with two potentially active catalytic domains (CD1 and CD2) separated by a glucan binding domain (GBD). From sequence analysis, DSR-E was classified in glucoside hydrolase family 70, where it is the only enzyme to have two catalytic domains. The recombinant protein DSR-E synthesizes both alpha-1,6 and alpha-1,2 glucosidic linkages in transglucosylation reactions using sucrose as the donor and maltose as the acceptor. To investigate the specific roles of CD1 and CD2 in the catalytic mechanism, truncated forms of dsrE were cloned and expressed in Escherichia coli. Gene products were then small-scale purified to isolate the various corresponding enzymes. Dextran and oligosaccharide syntheses were performed. Structural characterization by (13)C nuclear magnetic resonance and/or high-performance liquid chromatography showed that enzymes devoid of CD2 synthesized products containing only alpha-1,6 linkages. On the other hand, enzymes devoid of CD1 modified alpha-1,6 linear oligosaccharides and dextran acceptors through the formation of alpha-1,2 linkages. Therefore, each domain is highly regiospecific, CD1 being specific for the synthesis of alpha-1,6 glucosidic bonds and CD2 only catalyzing the formation of alpha-1,2 linkages. This finding permitted us to elucidate the mechanism of alpha-1,2 branching formation and to engineer a novel transglucosidase specific for the formation of alpha-1,2 linkages. This enzyme will be very useful to control the rate of alpha-1,2 linkage synthesis in dextran or oligosaccharide production.  相似文献   

11.
The gene encoding alternansucrase (ASR) from Leuconostoc mesenteroides NRRL B-1355, an original sucrose glucosyltransferase (GTF) specific to alternating alpha-1,3 and alpha-1,6 glucosidic bond synthesis, was cloned, sequenced and expressed into Escherichia coli. Recombinant enzyme catalyzed oligoalternan synthesis from sucrose and maltose acceptor. From sequence comparison, it appears that ASR possesses the same domains as those described for GTFs specific to either contiguous alpha-1,3 osidic bond or contiguous alpha-1,6 osidic bond synthesis. However, the variable region and the glucan binding domain are longer than in other GTFs (by 100 and 200 amino acids respectively). The N-catalytic domain which presents 49% identity with the other GTFs from L. mesenteroides possesses the three determinants potentially involved in the glucosyl enzyme formation.  相似文献   

12.
S Sato  T Koga  T Yakushiji  S Nagasawa  M Inoue 《Microbios》1982,34(136):99-112
Production of water-insoluble glucan (ISG) from sucrose by cell-free Streptococcus mutans AHT glucosyltransferase (GTF) first rapidly increased, and then sharply declined, as the amounts of water-soluble Dextrans T20 approximately T500 present, were increased. The decline of ISG synthesis was accompanied by an increased synthesis of the water-soluble fraction (SG). Prolonged incubation, however, induced enhanced synthesis of ISG even at higher dextran concentrations. The concentration of dextran required to stimulate or suppress ISG synthesis depended on the amounts of GTF used, but the extent of the stimulation was almost identical for the same GTF/dextran ratio. Thus, ISG synthesis is stimulated by the presence of dextrans at relatively low concentrations, but retarded at higher concentrations by being shifted to SG synthesis. ISG produced in the presence of dextrans contained higher proportions of alpha-1,6 glucosidic linkage and lower molecular size fractions, and possessed lower viscosity. These ISG products did not exhibit the coalescence of two component fibrils as observed with control ISG. These changes combined may contribute to the reduction of ISG-dependent adherence to glass of S. mutans cells by the presence of soluble dextrans, irrespective of their molecular size and concentration.  相似文献   

13.
Weissella cibaria isolated from human saliva produces a soluble glucan that predominantly has α-1,6-glucosidic type linkages. Using degenerated primers that were selected based on the amino acid sequences of conserved regions from known glucansucrases, a single 2.7-kb fragment was isolated. In subsequent steps, a 4969-bp product was obtained using inverse PCR. The coding region for the glucansucrase gene ( dsrWC ) consisted of a 4419-bp ORF that encoded a 1472-amino acid protein with a calculated molecular mass of 161.998 Da. The produced DSRWC glucansucrases exhibited similarity with the enzymes of the glucosylhydrolase family 70, which includes the Lactobacillus fermentum glucansucrase. The expressed recombinant DSRWC (rDSRWC) synthesized oligosaccharides in the presence of maltose or isomaltose as an acceptor and the synthesized products included α-1,6-linked glucosyl residues in addition to the maltosyl or isomaltosyl residue. rDSRWC synthesized water-soluble polymers using sucrose as substrate. According to the 13C-nuclear magnetic resonance analysis, the polymer that was synthesized by rDSRWC was a linear dextran, which formed predominately α-1,6-glucosidic linkages. This is the first report on the molecular characterization of glucansucrase from a W. cibaria strain.  相似文献   

14.
The open reading frame of dsrE563, a dextransucrase gene obtained from a constitutive mutant (CB4-BF563) of Leuconostoc mesenteroides B-1299, consists of 8,511 bp encoding 2,836 amino acid residues. DsrE563 contains two catalytic domains (CD1 and CD2). Two truncated derivative mutants DsrE563ΔCD2ΔGBD (DsrE563-1) and DsrE563ΔCD2ΔVR (DsrE563-2) of DsrE563 were constructed and expressed using the pRSETC vector in Escherichia coli. The derivatives DsrE563-1 (deletion of 1,620 amino acids from the C-terminus) and DsrE563-2 (deletion of 1,258 amino acids from the C-terminus and 349 amino acids from the N-terminus) were expressed as active enzymes. Both enzymes synthesized less-soluble dextran, mainly containing α-1,6 glucosidic linkage. The synthesized less-soluble dextran also had a branched α-1,3 linkage. DsrE563-2 showed 4.5-fold higher dextransucrase activity than that of DsrE563-1 and showed higher acceptor reaction efficiency than that of dextransucrase from L. mesenteroides 512 FMCM when various mono or disaccharides were used as acceptors. Thus, the glucan-binding domain was important for both enzyme expression and dextransucrase activity.  相似文献   

15.
Leuconostoc mesenteroides LM34 was isolated from kimchi, a traditional fermented Korean food. L. mesenteroides LM34 produced extracellular glucansucrase (DSRLM34), which is responsible for the synthesis of soluble glucan using sucrose. The DSRLM34 gene consists of a 4,503 bp open reading frame (ORF) and encodes an enzyme of 1,500 amino acids with an apparent molecular mass of 165 kDa. The deduced amino-acid sequence showed the highest amino-acid sequence identity (98%) to that of glucansucrase of Lactobacillus lactis. The gene was over-expressed in Escherichia coli strain and the recombinant enzyme (rDSRLM34) was purified. Both DSRLM34 and rDSRLM34 synthesized glucan mainly containing α-1, 6 glucosidic linkage and branched α-1, 3 glucosidic linkages. The enzyme exhibited optimum activity at 30°C and pH 5.0. DSRLM34 has promising potential as a thickening agent in sucrose-supplemented milk.  相似文献   

16.
Kanai R  Haga K  Akiba T  Yamane K  Harata K 《Biochemistry》2004,43(44):14047-14056
Maltohexaose-producing amylase, called G6-amylase (EC 3.2.1.98), from alkalophilic Bacillus sp.707 predominantly produces maltohexaose (G6) from starch and related alpha-1,4-glucans. To elucidate the reaction mechanism of G6-amylase, the enzyme activities were evaluated and crystal structures were determined for the native enzyme and its complex with pseudo-maltononaose at 2.1 and 1.9 A resolutions, respectively. The optimal condition for starch-degrading reaction activity was found at 45 degrees C and pH 8.8, and the enzyme produced G6 in a yield of more than 30% of the total products from short-chain amylose (DP = 17). The crystal structures revealed that Asp236 is a nucleophilic catalyst and Glu266 is a proton donor/acceptor. Pseudo-maltononaose occupies subsites -6 to +3 and induces the conformational change of Glu266 and Asp333 to form a salt linkage with the N-glycosidic amino group and a hydrogen bond with secondary hydroxyl groups of the cyclitol residue bound to subsite -1, respectively. The indole moiety of Trp140 is stacked on the cyclitol and 4-amino-6-deoxyglucose residues located at subsites -6 and -5 within a 4 A distance. Such a face-to-face short contact may regulate the disposition of the glucosyl residue at subsite -6 and would govern the product specificity for G6 production.  相似文献   

17.
Abstract

Limited information is available about homopolysaccharide synthesis in the genus Lactobacillus. Using efficient screening techniques, extracellular glucosyltransferase (GTF) enzyme activity, resulting in α-glucan synthesis from sucrose, was detected in variouslactobacilli. PCR with degenerate primers based on homologous boxes of known glucosyltransferase (gtf) genes of lactic acid bacteria strains allowed cloning of fragments of 10 putative gtf genes, similar to what has been observed for Leuconostoc and Streptococcus strains. Homologs of GTFA of Lb. reuteri 121 (synthesizing reuteran, a unique glucan with α-(1→4) and α-(1→6) glycosidic bonds) (Krajl et al., 2002) were found in three of the four other Lb. reuteri strains tested. The other Lactobacillus GTF fragments showed the highest similarity with GTF enzymes of Leuconostoc spp.  相似文献   

18.
Glycoside hydrolase family 77 (GH77) belongs to the alpha-amylase superfamily (Clan H) together with GH13 and GH70. GH77 enzymes are amylomaltases or 4-alpha-glucanotransferases, involved in maltose metabolism in microorganisms and in starch biosynthesis in plants. Here we characterized the amylomaltase from the hyperthermophilic bacterium Thermus thermophilus HB8 (Tt AMase). Site-directed mutagenesis of the active site residues (Asp293, nucleophile; Glu340, general acid/base catalyst; Asp395, transition state stabilizer) shows that GH77 Tt AMase and GH13 enzymes share the same catalytic machinery. Quantification of the enzyme's transglycosylation and hydrolytic activities revealed that Tt AMase is among the most efficient 4-alpha-glucanotransferases in the alpha-amylase superfamily. The active site contains at least seven substrate binding sites, subsites -2 and +3 favoring substrate binding and subsites -3 and +2 not, in contrast to several GH13 enzymes in which subsite +2 contributes to oligosaccharide binding. A model of a maltoheptaose (G7) substrate bound to the enzyme was used to probe the details of the interactions of the substrate with the protein at acceptor subsites +2 and +3 by site-directed mutagenesis. Substitution of the fully conserved Asp249 with a Ser in subsite +2 reduced the activity 23-fold (for G7 as a substrate) to 385-fold (for maltotriose). Similar mutations reduced the activity of alpha-amylases only up to 10-fold. Thus, the characteristics of acceptor subsite +2 represent a main difference between GH13 amylases and GH77 amylomaltases.  相似文献   

19.
BackgroundOriginally the glycoside hydrolase (GH) family 70 only comprised glucansucrases of lactic acid bacteria which synthesize α-glucan polymers from sucrose. Recently we have identified 2 novel subfamilies of GH70 enzymes represented by the Lactobacillus reuteri 121 GtfB and the Exiguobacterium sibiricum 255-15 GtfC enzymes. Both enzymes catalyze the cleavage of (α1  4) linkages in maltodextrin/starch and the synthesis of consecutive (α1  6) linkages. Here we describe a novel GH70 enzyme from the nitrogen-fixing Gram-negative bacterium Azotobacter chroococcum, designated as GtfD.MethodsThe purified recombinant GtfD enzyme was biochemically characterized using the amylose-staining assay and its products were identified using profiling chromatographic techniques (TLC and HPAEC-PAD). Glucans produced by the GtfD enzyme were analyzed by HPSEC-MALLS-RI, methylation analysis, 1D/2D [1]H/[13]C NMR spectroscopy and enzymatic degradation studies.ResultsThe A. chroococcum GtfD is closely related to GtfC enzymes, sharing the same non-permuted domain organization also found in GH13 enzymes and displaying 4,6-α-glucanotransferase activity. However, the GtfD enzyme is unable to synthesize consecutive (α1  6) glucosidic bonds. Instead, it forms a high molecular mass and branched α-glucan with alternating (α1  4) and (α1  6) linkages from amylose/starch, highly similar to the reuteran polymer synthesized by the L. reuteri GtfA glucansucrase from sucrose.ConclusionsIn view of its origin and specificity, the GtfD enzyme represents a unique evolutionary intermediate between family GH13 (α-amylase) and GH70 (glucansucrase) enzymes.General significanceThis study expands the natural repertoire of starch-converting enzymes providing the first characterization of an enzyme that converts starch into a reuteran-like α-glucan polymer, regarded as a health promoting food ingredient.  相似文献   

20.
ΔN123-glucan-binding domain-catalytic domain 2 (ΔN123-GBD-CD2) is a truncated form of the bifunctional glucansucrase DSR-E from Leuconostoc mesenteroides NRRL B-1299. It was constructed by rational truncation of GBD-CD2, which harbors the second catalytic domain of DSR-E. Like GBD-CD2, this variant displays α-(1→2) branching activity when incubated with sucrose as glucosyl donor and (oligo-)dextran as acceptor, transferring glucosyl residues to the acceptor via a ping-pong bi-bi mechanism. This allows the formation of prebiotic molecules containing controlled amounts of α-(1→2) linkages. The crystal structure of the apo α-(1→2) branching sucrase ΔN123-GBD-CD2 was solved at 1.90 Å resolution. The protein adopts the unusual U-shape fold organized in five distinct domains, also found in GTF180-ΔN and GTF-SI glucansucrases of glycoside hydrolase family 70. Residues forming subsite −1, involved in binding the glucosyl residue of sucrose and catalysis, are strictly conserved in both GTF180-ΔN and ΔN123-GBD-CD2. Subsite +1 analysis revealed three residues (Ala-2249, Gly-2250, and Phe-2214) that are specific to ΔN123-GBD-CD2. Mutation of these residues to the corresponding residues found in GTF180-ΔN showed that Ala-2249 and Gly-2250 are not directly involved in substrate binding and regiospecificity. In contrast, mutant F2214N had lost its ability to branch dextran, although it was still active on sucrose alone. Furthermore, three loops belonging to domains A and B at the upper part of the catalytic gorge are also specific to ΔN123-GBD-CD2. These distinguishing features are also proposed to be involved in the correct positioning of dextran acceptor molecules allowing the formation of α-(1→2) branches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号