首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The streptozotocin-induced short-term (2 week) diabetic rats showed an increase in susceptibility to carbon tetrachloride (CCl4)-induced hepatocellular damage. This diabetes-induced change was associated with a marked impairment in the hepatic glutathione antioxidant/detoxification response to CCl4 challenge, as indicated by the abrogation of the increases in hepatic reduced glutathione (GSH) level, glucose-6-phosphate dehydrogenase and microsomal glutathione S-transferases (GST) activities upon challenge with increasing doses of CCl4. While the hepatic GSH level was increased in diabetic rats, the hepatic mitochondrial GSH level and Se-glutathione peroxidase activity were significantly reduced. Insulin treatment could reverse most of the biochemical alterations induced by diabetes. Both insulin and schisandrin B (Sch B) pretreatments protected against the CCl4 hepatotoxicity in diabetic rats. The hepatoprotection was associated with improvement in hepatic glutathione redox status in both cytosolic and mitochondrial compartments, as well as the increases in hepatic ascorbic acid level and microsomal GST activity. The ensemble of results suggests that the diabetes-induced impairment in hepatic mitochondrial glutathione redox status may at least in part be attributed to the enhanced susceptibility to CCl4 hepatotoxicity. Sch B may be a useful hepatoprotective agent against xenobiotics-induced toxicity under the diabetic conditions. (Mol Cell Biochem 175: 225–232, 1997)  相似文献   

2.
In the present study, we investigated the differential role of the mitochondrial glutathione status and induction of heat shock proteins (HSPs) 25/70 in protecting against carbon tetrachloride (CCl_4) hepatotoxicity in schisandrin B (Sch B)-pretreated mice. The time-course of Sch B-induced changes in these hepatic parameters were examined. Dimethyl diphenyl bicarboxylate (DDB), a non-hepatoprotective analog of Sch B, was studied for comparison. Sch B treatment (2 mmol/kg) produced maximal enhancement in hepatic mitochondrial glutathione status as well as increases in hepatic HSP 25/70 levels at 24 h post-dosing. The stimulatory effect of Sch B then gradually subsided, but the activities of hepatic mitochondrial glutathione reductase (GR) and glutathione S-transferases (GST) as well as the level of HSP 25 remained relatively high even at 72 h post-dosing. CCl_4 challenge caused significant impairment in mitochondrial glutathione status and a decrease in HSP 70 level, but the HSP 25 level was significantly elevated. While the extent of hepatoprotection afforded by Sch B pretreatment against CCl_4 was found to inversely correlate with the time elapsed after the dosing, the protective effect was associated with the ability of Sch B to maintain the mitochondrial glutathione status and/or induce further production of HSP 25 in CCl_4-intoxicated condition. On the other hand, DDB treatment (2 mmol/kg), which did not increase mitochondrial GSH level and GST activity or induce further production of HSP 25 after CCl_4 challenge, could not protect against CCl_4 toxicity. The results suggest that the enhancement of mitochondrial glutathione status and induction of HSP 25/70 may contribute independently to the hepatoprotection afforded by Sch B pretreatment.  相似文献   

3.
Using an ex vivo model of isolated–perfused rat hearts and cultured H9c2 cells, the structure–activity relationships of schisandrin B (Sch B), and analogs lacking either the methylendioxy group or cyclooctadiene ring, schisandrin A (Sch A) and dimethyl diphenyl bicarboxylate (DDB), respectively, were investigated. Pretreatment with Sch B, but not with Sch A or DDB, protected against myocardial ischemia–reperfusion (I-R) injury in rats. Although Sch B pretreatment largely prevented H9c2 cells from menadione-induced cytotoxicity, Sch A pretreatment produced only a marginal protection. However, DDB pretreatment did not cause any detectable effect. The myocardial and cellular protection afforded by Sch B pretreatment correlated with increases in mitochondrial ATP generation capacity and/or reduced glutathione level as well as heat shock protein (Hsp)25/70 expression, under both control and oxidative stress conditions. The results indicate that the methylenedioxy group and the cyclooctadiene ring are important structural determinants of Sch B in enhancing mitochondrial functional ability and glutathione status, as well as tissue Hsp25/70 expression, thereby protecting the myocardium against I-R injury.  相似文献   

4.
In this study, the time course of schisandrin B- (Sch B-) induced changes in hepatic mitochondrial glutathione antioxidant status (mtGAS) and heat shock protein (HSP) 25/70 induction was examined to study their differential roles in the hepatoprotection afforded by Sch B pretreatment against carbon tetrachloride (CCl(4)) toxicity in mice. Dimethyl diphenyl bicarboxylate (DDB), a nonhepatoprotective analog of Sch B, was also included for comparison. The results indicate that Sch B treatment (2 mmol/kg) produced maximum enhancement in hepatic mtGAS and increases in both hepatic HSP 25 and HSP 70 levels at 24 h after dosing. While the extent of hepatoprotection afforded by Sch B pretreatment against CCl(4) was found to correlate inversely with the elapsed time postdosing, the protective effect was associated with the ability to sustain mtGAS and/or HSP 70 levels in a CCl(4)-intoxicated condition. On the other hand, DDB (2 mmol/kg) treatment, which did not sustain mtGAS and HSP 70 level, could not protect against CCl(4) toxicity. Abolition of the Sch B-mediated enhancement of mtGAS by buthionine sulfoximine/phorone did not completely abrogate the hepatoprotective action of Sch B. The results indicate that Sch B pretreatment independently enhances mtGAS and induces HSP 25/70 production, particularly under conditions of oxidative stress, thereby protecting against CCl(4) hepatotoxicity.  相似文献   

5.
Pretreating mice with schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, at a daily dose of 1 mmol/kg for 3 days protected against menadione-induced hepatic oxidative damage in mice, as evidenced by decreases in plasma alanine aminotransferase activity (78%) and hepatic malondialdehyde level (70%), when compared with the menadione intoxicated control. In order to define the biochemical mechanism involved in the hepatoprotection afforded by Sch B pretreatment, we examined the activity of DT-diaphorase (DTD) in hepatocytes isolated from Sch B pretreated rats. Hepatocytes isolated from Sch B pretreated (a daily dose of 1 mmol/kg for 3 days) rats showed a significant increase (25%) in DTD activity. The increase in DTD activity was associated with the enhanced rate of menadione elimination in the hepatocyte culture. The ensemble of results suggests that the ability of Sch B pretreatment to enhance hepatocellular DTD activity may at least in part be attributed to the protection against menadione hepatotoxicity.  相似文献   

6.
In order to explore the role of cytochrome P-450 (CYP) 2E1 in schisandrin B (Sch B)-induced antioxidant and heat shock responses, the effects of Sch B treatment on hepatic mitochondrial glutathione antioxidant status (mtGAS) and heat shock protein (Hsp)25/70 expression were compared between wild-type and cyp2e1 knock-out C57B/6N mice. Cyp2e1 knock-out mice exhibited a significantly smaller degree of Sch B-induced enhancement in hepatic mtGAS when compared with the wild-type counterpart. But Hsp25/70 expression induced by Sch B was not affected. Sch B-induced enhancement of mtGAS was corroborated by the increase in hepatic mitochondrial antioxidant capacity, as assessed by in vitro measurement of oxidant production, with the enhancing effect being slightly reduced in the knock-out mice. Using liver microsomes prepared from wild-type and knock-out mice as a source of CYP, Sch B was found to be a good co-substrate for the CYP-catalyzed reaction, with the rate of NADPH oxidation observable in microsomes prepared from knock-out mice being slower. The CYP-catalyzed reaction with Sch B was associated with a concomitant production of oxidant species, with the extent of oxidant production being reduced in cyp2e1 knock-out mouse microsomes. Taken together, the results indicate that CYP2E1 is partly responsible for the hepatic metabolism of Sch B that may trigger the antioxidant response in vivo.  相似文献   

7.
Schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from Fructus Schisandrae, has been shown to produce antioxidant effect on rodent liver and heart. A mouse model of tert-butylhydroperoxide (t-BHP) induced cerebral toxicity was adopted for examining the antioxidant potential of Sch B in the brain. Intracerebroventricular injection of t-BHP caused a time-dependent increase in mortality rate in mice. The t-BHP toxicity was associated with an increase in the extent of cerebral lipid peroxidation and an impairment in cerebral glutathione antioxidant status, as evidenced by the abrupt decrease in reduced glutathione (GSH) level and the inhibition of Se-glutathione peroxidase activity at 5 min following t-BHP challenge. Sch B pretreatment (1 or 2 mmol/kg/day × 3) produced a dose-dependent protection against t-BHP induced mortality. The protection was associated with a decrease in the extent of lipid peroxidation and an enhancement in glutathione antioxidant status in brain tissue detectable at 5 min post t-BHP challenge, with the assessed biochemical parameters being returned to normal values at 60 min in Sch B pretreated mice at a dose of 2 mmol/kg. The ensemble of results suggests the antioxidant potential of Sch B pretreatment in protecting against cerebral oxidative stress.  相似文献   

8.
Chiu PY  Mak DH  Poon MK  Ko KM 《Life sciences》2005,77(23):2887-2895
In order to explore the role of cytochrome P-450 (P-450) in schisandrin B (Sch B)-induced antioxidant and heat shock responses, the effect of 1-aminobenzotriazole (ABT, a broad spectrum inhibitor of P-450) on hepatic mitochondrial glutathione antioxidant status (mtGAS) and heat shock protein (Hsp)25/70 expression was examined in Sch B-treated mice. The non-specific and partial inhibition of cytochrome P-450 (P-450) by ABT pretreatment significantly caused a protraction in the time-course of Sch B-induced enhancement in hepatic mitGAS and Hsp25/70 expression in mice. Using mouse liver microsomes as a source of P-450, Sch B, but not dimethyl diphenyl bicarboxylate (a non-hepatoprotective analog of Sch B), was found to serve as a co-substrate for the P-450-catalyzed NADPH oxidation reaction, with a concomitant production of oxidant species. Taken together, the results suggest that oxidant species generated from P-450-catalyzed reaction with Sch B may trigger the antioxidant and heat shock responses in mouse liver.  相似文献   

9.
The study was evaluated to investigate the efficacy of selenocystine (CysSeSeCys), a well-known organoselenium compound, on the prevention of carbon tetrachloride (CCl4)-induced acute hepatic injury in Wistar rats. Forty healthy male Wistar rats were utilized in this study. Acute hepatotoxicity was induced by CCl4 intoxication in rats. Serum biological analysis, oxidative stress, immune parameters, and gene expression of COX-2 and CYP2E1 were carried out. Pretreatment of CysSeSeCys prior to CCl4 administration significantly prevented an increase in serum hepatic enzymatic activities. In addition, pretreatment of CysSeSeCys significantly prevented the formation of ROS, MDA, depletion of glutathione, and alteration of antioxidant enzyme activities in the liver of CCl4-intoxicated rats. This study also revealed that pretreatment with CysSeSeCys normalized the levels of interleukin 6 and10, IgG, and CD4 cell count. Pretreatment of CysSeSeCys significantly reversed COX-2 inflammatory response and the upregulation of CYP2E1 expression as well. Histopathological changes induced by CCl4 were also significantly attenuated by CysSeSeCys pretreatment. CysSeSeCys has a potent hepatoprotective effect on CCl4-induced liver injury in rats through its antioxidative, immunomodulatory and anti-inflammatory activity.  相似文献   

10.
Fructus Schizandrae, a traditional Chinese tonic, has been shown to lower the elevated serum glutamic pyruvic transaminase (SGPT) levels of patients with chronic viral hepatitis and several of its components decrease the hepatotoxicity of carbon tetrachloride (CCl4) in animals. This paper deals with the mechanism of protection against CCl4-hepatotoxicity of these compounds as well as of DDB, a synthetic analogue of Schizandrin (Sin) C. Of the seven components, Sin B and C, Schizandrol (Sol) B, Schizandrer (Ser) A and B, as well as dimethyl-4,4′-dimethoxy-5,6,5′,6′-dimethylenedioxy-biphenyl-2,2′-dicarboxylate (DDB) were shown to inhibit CCl4-induced lipid peroxidation and [14C]Cl4 covalent binding to lipids of liver microsomes from phenobarbital(PB)-treated mice. The compounds also decreased carbon monoxide (CO) production and cofactor (NADPH, oxygen) utilization during CCl4 metabolization by liver microsomes. It may be postulated, therefore, that the hepatoprotective effect of certain components isolated from Fructus Schizandrae as well as DDB is due to their inhibitory effect on CCl4-induced lipid peroxidation and the binding of CCl4-metabolites to lipids of liver microsomes.  相似文献   

11.
In the present study, we examined the time-dependent changes in the mitochondrial glutathione status and ATP generation capacity in the myocardium as well as the susceptibility of the myocardium to ischemia-reperfusion (IR) injury in female Sprague Dawley rats treated with a single pharmacological dose (1.2 mmol/kg) of schisandrin B (Sch B). Sch B treatment produced a time-dependent enhancement in myocardial mitochondrial glutathione status, as evidenced by increases in myocardial mitochondrial reduced glutathione (GSH) level and activities of glutathione reductase, Se-glutathione peroxidase (GPX) and glutathione S-transferases, with the response reaching maximum at 48 h post-dosing and then declining gradually to the control level at 96 h post-dosing. The enhancement of mitochondrial glutathione status was associated with an increase in myocardial ATP generation capacity, with the value peaking at 72 h post-dosing. These beneficial effects of Sch B on the myocardium was paralleled by a time-dependent decrease in the susceptibility to IR injury, with the maximum protection demonstrable at 48 h post-dosing. The cardioprotection was associated with increases in myocardial GSH level and activities of glutathione antioxidant enzymes (except for GPX whose activity was suppressed) as well as tissue ATP level/ATP generation capacity. The results suggest that Sch B treatment can precondition the myocardium by enhancing the mitochondrial glutathione status and ATP generation capacity, thereby protecting against IR injury.  相似文献   

12.
Huntington's disease (HD) is characterized by the dysfunction of mitochondrial energy metabolism, which is associated with the functional impairment of succinate dehydrogenase (mitochondrial complex II), and pyruvate dehydrogenase (PDH). Treatment with 3-nitropropionic acid (3-NP), a potent irreversible inhibitor of succinate dehydrogenase, replicates most of the pathophysiological features of HD. In the present study, we investigated the effect of (-)schisandrin B [(-)Sch B, a potent enantiomer of schisandrin B] on 3-NP-induced cell injury in rat differentiated neuronal PC12 cells. The 3-NP caused cell necrosis, as assessed by lactate dehydrogenase (LDH) leakage, and mitochondrion-dependent cell apoptosis, as assessed by caspase-3 and caspase-9 activation, in differentiated PC12 cells. The cytotoxicity induced by 3-NP was associated with a depletion of cellular reduced glutathione (GSH) as well as the activation of redox-sensitive c-Jun N-terminal kinase (JNK) pathway and the inhibition of PDH. (-)Sch B pretreatment (5 and 15 μM) significantly reduced the extent of necrotic and apoptotic cell death in 3-NP-challenged cells. The cytoprotection afforded by (-)Sch B pretreatment was associated with the attenuation of 3-NP-induced GSH depletion as well as JNK activation and PDH inhibition. (-)Sch B pretreatment enhanced cellular glutathione redox status and ameliorated the 3-NP-induced cellular energy crisis, presumably by suppressing the activated JNK-mediated PDH inhibition, thereby protecting against necrotic and apoptotic cell death in differentiated PC12 cells.  相似文献   

13.
Polydatin is one of main compounds in Polygonum cuspidatum, a plant with both medicinal and nutritional value. The possible hepatoprotective effects of polydatin on acute liver injury mice induced by carbon tetrachloride (CCl4) and the mechanisms involved were investigated. Intraperitoneal injection of CCl4 (50 µl/kg) resulted in a significant increase in the levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and hepatic malondialdehyde (MDA), also a marked enhancement in the expression of hepatic tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and nuclearfactor-kappa B (NF-κB). On the other hand, decreased glutathione (GSH) content and activities of glutathione transferase (GST), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were observed following CCl4 exposure. Nevertheless, all of these phenotypes were evidently reversed by preadministration of polydatin for 5 continuous days. The mRNA and protein expression levels of hepatic growth factor-beta1 (TGF-β1) were enhanced further by polydatin. These results suggest that polydatin protects mice against CCl4-induced liver injury through antioxidant stress and antiinflammatory effects. Polydatin may be an effective hepatoprotective agent and a promising candidate for the treatment of oxidative stress- and inflammation-related diseases.  相似文献   

14.
Z Liu  B Zhang  K Liu  Z Ding  X Hu 《PloS one》2012,7(7):e40480

Background

Metastasis is the major cause of cancer related death and targeting the process of metastasis has been proposed as a strategy to combat cancer. Therefore, to develop candidate drugs that target the process of metastasis is very important. In the preliminary studies, we found that schisandrin B (Sch B), a naturally-occurring dibenzocyclooctadiene lignan with very low toxicity, could suppress cancer metastasis.

Methodology

BALB/c mice were inoculated subcutaneously or injected via tail vein with murine breast cancer 4T1 cells. Mice were divided into Sch B-treated and control groups. The primary tumor growth, local invasion, lung and bone metastasis, and survival time were monitored. Tumor biopsies were examined immuno- and histo-pathologically. The inhibitory activity of Sch B on TGF-β induced epithelial-mesenchymal transition (EMT) of 4T1 and primary human breast cancer cells was assayed.

Principal Findings

Sch B significantly suppressed the spontaneous lung and bone metastasis of 4T1 cells inoculated s.c. without significant effect on primary tumor growth and significantly extended the survival time of these mice. Sch B did not inhibit lung metastasis of 4T1 cells that were injected via tail vein. Delayed start of treatment with Sch B in mice with pre-existing tumors did not reduce lung metastasis. These results suggested that Sch B acted at the step of local invasion. Histopathological evidences demonstrated that the primary tumors in Sch B group were significantly less locally invasive than control tumors. In vitro assays demonstrated that Sch B could inhibit TGF-β induced EMT of 4T1 cells and of primary human breast cancer cells.

Conclusions

Sch B significantly suppresses the lung and bone metastasis of 4T1 cells via inhibiting EMT, suggesting its potential application in targeting the process of cancer metastasis.  相似文献   

15.
Sch B (schisandrin B), the most abundant dibenzocyclooctadiene lignan in Fructus schisandrae, can induce glutathione antioxidant and heat shock responses, as well as protect against oxidant-induced injury in various tissues, including the liver in rodents and AML12 (alpha mouse liver 12) hepatocytes. (-)Sch B is the most potent stereoisomer of Sch B in its cytoprotective action on AML12 hepatocytes. To define the role of ROS (reactive oxygen species) arising from CYP (cytochrome P450)-catalysed metabolism of (-)Sch B in triggering glutathione antioxidant and heat shock responses, the effects of a CYP inhibitor [ABT (aminobenzotriazole)] and antioxidants [DMTU (dimethylthiouracil) and TRX (trolox)] on (-)Sch B-induced ROS production and associated increases in cellular GSH level, as well as Hsp25/70 (heat-shock protein 25/70) production, were investigated in AML12 hepatocytes. The results indicated that (-)Sch B causes a dose dependent and sustained increase in ROS production over 6 h in AML12 hepatocytes, which was completely suppressed by pre-/co-treatment with ABT or DTMU/TRX. Incubation with (-)Sch B for 6 h caused optimal and dose-dependent increases in cellular GSH level and Hsp25/70 production at 16 h post-drug exposure in AML12 hepatocytes. These cellular responses were associated with protection against menadione-induced apoptosis. Pre-/co-treatment with ABT or antioxidants completely abrogated the (-)Sch B-induced glutathione antioxidant and heat shock responses, as well as protection against menadione-induced apoptosis. Experimental evidence obtained thus far supports the causal role of ROS arising from the CYP-catalysed metabolism of (-)Sch B in eliciting glutathione antioxidant and heat shock responses in AML12 hepatocytes.  相似文献   

16.
Summary.  The results regarding taurine pretreatment on CCl4-induced hepatic injury are controversial. To assess the therapeutic efficacy of taurine on rat liver injury, hepatic malondialdehyde, glutathione, and hydroxyproline levels together with morphologic alterations in the liver following CCl4 administration were investigated. The rats were divided into three groups. Taurine-treated animals received 15 ml/kg/day of a 5% taurine solution by a gastric tube for 5 days before administering CCl4 (2 ml/kg, intraperitoneally, in a single dose). CCl4-treated rats received the same amount of saline solution. Control animals received no treatment. The increase of hepatic malondialdehyde formation in the CCl4-treated group was partially prevented by taurine pretreatment, but taurine had no significant effect on the glutathione and hydroxyproline content in the CCl4-treated rats. Taurine pretreatment induced a marked beneficial effect regarding the prevention of hepatocellular necrosis and atrophy as demonstrated morphologically. In conclusion, these results suggest that taurine pretreatment might not significantly change the biochemical parameters, but prevents the morphologic damage caused by CCl4 in the early stages. Received March 17, 2001 Accepted July 18, 2001  相似文献   

17.
Effects of Schisandrin B (Sch B) and -tocopherol (-TOC) on ferric chloride (Fe3+) induced oxidation of erythrocyte membrane lipids in vitro and carbon tetrachloride (CCl4) induced lipid peroxidation in vivo were examined. While -TOC could produce prooxidant and antioxidant effect on Fe3+-induced lipid peroxidation, Sch B only inhibited the peroxidation reaction. Pretreatment with -TOC (3 mmol/kg/day × 3) did not protect against CCl4-induced lipid peroxidation and hepatocellular damage in mice, whereas Sch B pretreatment (0.3 mmol/3.0 mmol/kg/day × 3) produced a dose-dependent protective effect on the CCl4-induced hepatotoxicity. The ensemble of results suggests that the ability of Sch B to inhibit lipid peroxidation, while in the absence of pro-oxidant activity, may at least in part contribute to its hepatoprotective action.Abbreviations ALT alanine aminotransferase - CCl4 carbon tetrachloride - Fe3+ ferric chloride - MDA malondialdehyde - Sch B Schisandrin B - TBA 2-thiobarbituric acid - TBARS thiobarbituric acid reactive substances - -TOC dl--tocopherol  相似文献   

18.
Antrodia cinnamomea (A. cinnamomea) is an indigenous medical fungus in Taiwan and has multiple biological functions, including hepatoprotective and immune-modulatory effects. Currently, the commercially available A. cinnamomea are mainly liquid- and solid-state fermented A. cinnamomea. However, the hepatoprotective effect of solid-state fermented A. cinnamomea has never been reported. Here we evaluate the ability of air-dried, ground and non-extracted wheat-based solid-state fermented A. cinnamomea (WFAC) to protect against carbon tetrachloride (CCl4)-induced hepatic injury in vivo. The results showed that oral administration of WFAC dose dependently (180, 540 and 1080 mg/kg) ameliorated the increase in plasma aspartate aminotransferase and alanine aminotransferase levels caused by chronic repeated CCl4 intoxication in rats. WFAC significantly reduced the CCl4-induced increase in hepatic lipid peroxidation levels and hydroxyproline contents, as well as reducing the spleen weight and water content of the liver. WFAC also restored the hepatic soluble protein synthesis and plasma albumin concentration in CCl4-intoxicated rats, but it did not affect the activities of superoxide dismutase, catalase, or glutathione peroxidase. In addition, a hepatic morphological analysis showed that the hepatic fibrosis and necrosis induced by CCl4 were significantly ameliorated by WFAC. Furthermore, the body weights of control rats and WFAC-administered rats were not significantly different, and no adverse effects were observed in WFAC-administered rats. These results indicate that WFAC is a nontoxic hepatoprotective agent against chronic CCl4-induced hepatic injury.  相似文献   

19.
The protective effect of a fermented substance from Saccharomyces cerevisiae (FSSC) on liver injury caused by acetaminophen (AAP) was studied in mice. Mice were pretreated with FSSC (0.5–2.0 g/kg, p.o.) for 4 d, and on the fourth day, the mice received an overdose of AAP (500 mg/kg, i.p.). Subsequently, they were sacrificed at 7 h, and blood was drawn from the abdominal vein and liver samples were collected. Histological and biochemical examinations revealed that the administration of AAP caused liver injury in the mice, including increases in plasma alanine aminotransferase and asparate aminotransferase activities and decreases in the hepatic reduced form of glutathione (GSH) content and antioxidant enzyme activities. Prior to AAP treatment, the mice pretreated with FSSC showed significantly reduced levels of alanine aminotransferase (ALT) and aspirate aminotransferase (AST) activity. Liver histology in the FSSC-pretreated mice was significant. In these mice, pretreatment with FSSC also served to reduce hepatic GSH depletion and the inhibition of antioxidant enzyme activity caused by AAP overdose. In conclusion, oral administration of FSSC significantly reduced AAP-induced hepatic injury in the mice.  相似文献   

20.
Xu Y  Liu Z  Sun J  Pan Q  Sun F  Yan Z  Hu X 《PloS one》2011,6(12):e28335

Background

To mitigate the cardiotoxicity of anthracycline antibiotics without compromising their anticancer activities is still an issue to be solved. We previously demonstrated that schisandrin B (Sch B) could protect against doxorubicin (Dox)-induced acute cardiotoxicity via enhancing cardiomyocytic glutathione redox cycling that could attenuate oxidative stress generated from Dox. In this study, we attempted to prove if Sch B could also protect against Dox-induced chronic cardiotoxicity, a more clinically relevant issue, without compromising its anticancer activity.

Methodology

Rat was given intragastrically either vehicle or Sch B (50 mg/kg) two hours prior to i.p. Dox (2.5 mg/kg) weekly over a 5-week period with a cumulative dose of Dox 12.5 mg/kg. At the 6th and 12th week after last dosing, rats were subjected to cardiac function measurement, and left ventricles were processed for histological and ultrastructural examination. Dox anticancer activity enhanced by Sch B was evaluated by growth inhibition of 4T1, a breast cancer cell line, and S180, a sarcoma cell line, in vitro and in vivo.

Principal Findings

Pretreatment with Sch B significantly attenuated Dox-induced loss of cardiac function and damage of cardiomyocytic structure. Sch B substantially enhanced Dox cytotoxicities toward S180 in vitro and in vivo in mice, and increased Dox cytotoxcity against 4T1 in vitro. Although we did not observe this enhancement against the implanted 4T1 primary tumor, the spontaneous metastasis to lung was significantly reduced in combined treatment group than Dox alone group.

Conclusion

Sch B is capable of protecting Dox-induced chronic cardiotoxicity and enhancing its anticancer activity. To the best of our knowledge, Sch B is the only molecule ever proved to function as a cardioprotective agent as well as a chemotherapeutic sensitizer, which is potentially applicable for cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号