首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The researches were conducted on rodents from territories of the East Ural radioactive trace. The 90Sr activity of ground was 2 Ci/km2, 500 Ci/km2, 800 Ci/km2 (experimental plots) and on control territory--0.2 Ci/km2. In the liver of animals living on the polluted territories the activation of catalase and glutathionreductase, the increase in antioxidative activity and appropriate reduction of lipid peroxidation processes were observed. For 40 years after Kyshtym accident (70-100 generations of animals) the adaptive reaction have formed.  相似文献   

2.
The effects of lipid peroxidation on latent microsomal enzyme activities were examined in NADPH-reduced microsomes from phenobarbital-pretreated male rats. Lipid peroxidation, stimulated by iron or carbon tetrachloride, was assayed as malondialdehyde formation. Independent of the stimulating agent of lipid peroxidation, latency of microsomal nucleoside diphosphatase activity remained unaffected up to microsomal peroxidation equivalent to the formation of about 12 nmol malondialdehyde/mg microsomal protein. However, above this threshold a close correlation was found between lipid peroxidation and loss of latent enzyme activity. The loss of latency evoked by lipid peroxidation was comparable to the loss of latency attainable by disrupting the microsomal membrane by detergent. Loss of latent enzyme activity produced by lipid peroxidation was also observed for microsomal glucose-6-phosphatase and UDPglucuronyltransferase. In contrast to nucleoside diphosphatase, however, both enzymes were inactivated by lipid peroxidation, as indicated by pronounced decreases of their activities in detergent-treated microsomes. According to the respective optimal oxygen partial pressure (po2) for lipid peroxidation, the iron-mediated effects on enzyme activities were maximal at a po2 of 80 mmHg and the one mediated by carbon tetrachloride at a po2 of 5 mmHg. Under anaerobic conditions no alterations of enzyme activities were detected. These results demonstrate that loss of microsomal latency only occurs when peroxidation of the microsomal membrane has reached a certain extent, and that beyond this threshold lipid peroxidation leads to severe disintegration of the microsomal membrane resulting in a loss of its selective permeability, a damage which should be of pathological consequences for the liver cell. Because of its resistance against lipid peroxidation nucleoside diphosphatase is a well-suited intrinsic microsomal parameter to estimate this effect of lipid peroxidation on the microsomal membrane.  相似文献   

3.
The influence long-term soil drought and potato plants treatment by synthetic analog of cytokinin--polystimulin K on intensity of lipid peroxidation processes and enzymatic antioxidative activity have been investigated. It has been found, that the drought induced the shift of prooxidative-antioxidative balance in respect of lipid peroxidation activation in the potato leaves. It was accompanied by the increase of the ethylene output, membrane permeability, as well as decrease of the lipids content and increase in the enzymatic antioxidative activity (catalase and peroxidase). It is shown, that the intensity of peroxidation processes was higher in budding phases, while enzymatic antioxidative activity was higher in flowering phases in potato plants. Plant exogenous treatment by polystimulin K induced both the decrease in peroxidate oxidation processes, stabilization of catalase and peroxidase activity, as well as the increase in potato resistance to drought.  相似文献   

4.
The effects of three anthrapyrazoles and an aminoacridine derivative on doxorubicin- and iron-stimulated lipid peroxidation in rabbit hepatic microsomes have been characterized. Two anthrapyrazoles, CI-937 and CI-942, were potent inhibitors of lipid peroxidation with 15 microM drug inhibiting the rate of peroxidation 70 to 90%. In contrast CI-941 was relatively ineffective in inhibiting lipid peroxidation with only 35% inhibition occurring at 100 microM drug. CI-921, an aminoacridine derivative, diminished lipid peroxidation by 65% at 15 microM. All four drugs failed to decrease the rate of doxorubicin-stimulated NADPH oxidation at concentrations less than 50 microM, suggesting that inhibition of lipid peroxidation was not the result of diminished enzyme activity. CI-937 formed a 2:1 complex with ferric ion, KD = 47 microM, which was reversible with EDTA.  相似文献   

5.
The interaction of lipid peroxidation products with nuclear macromolecules was investigated in rat liver nuclei labelled with [3H]arachidonic acid. Lipid peroxidation reactions were driven both non-enzymatically and enzymatically by the addition of ascorbate-Fe2+ or NADPH-ADP-Fe3+, respectively, to the incubation mixtures. The extent of peroxidation was evaluated by the formation of thiobarbituric acid chromophore and of radioactive hydrophilic peroxidation products. The results obtained show that: (1) nuclear membrane lipid peroxidation products formed during incubation interact with DNA and total nuclear proteins; (2) non-enzymatic lipid peroxidation processes induced a 40% larger association of peroxidation products to DNA compared to processes driven enzymatically, whereas the corresponding interaction with total nuclear proteins was similar in both peroxidation systems; (3) the radioactivity associated with histones decreased during incubation in the presence of ascorbate-Fe2+ or NADPH-ADP-Fe3+, and increased in control samples (no additions); (4) inhibition of lipid peroxidation by the iron chelator Desferrioxamine B prevented the association of peroxidation products to nuclear macromolecules; (5) the levels of radioactivity found in DNA after 180 min of incubation would represent the formation of 0.6-1.0 adducts per 10(6) DNA bases. The results obtained provide evidence for an interaction between lipid peroxidation products and chromatin in the interior of the cell nucleus.  相似文献   

6.
To study the role of glutathione reductase in lipid peroxidation, bean leaves (Phaseolus vulgaris) cv Fori were treated with the herbicide acifluorfen-sodium (sodium 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid). Acifluorfen is a potent inducer of lipid peroxidation. In beans, decrease of acid-soluble SH-compounds and lipid peroxidation, measured as ethane evolution, were the toxic events after treatment of leaves with acifluorfen. As a primary response to peroxidation, increased production of antioxidants, such as vitamin C and glutathione, was found. This was followed by elevation of glutathione reductase activity. Enhanced activity of the enzyme prevented both further decline of acid-soluble SH-compounds and lipid peroxidation. Increased production of antioxidants and elevated activity of antioxidative enzymes, like glutathione reductase, seem to be a general strategy to limit toxic peroxidation in plants.  相似文献   

7.
The damaging effects of ADP/Fe/NADPH-induced lipid peroxidation were studied on the enzymes and membranes of rat liver mitochondria. Succinate, an inhibitor of mitochondrial lipid peroxidation, prevented or delayed most of the damage caused by the peroxidation on different mitochondrial structures and functions. There were marked abnormalities on the electrophoretic pattern of mitochondrial proteins during the course of lipid peroxidation. The disappearance of particular polypeptide bands and the accumulation of high-molecular-weight aggregates could be observed. Succinate was found to delay these effects. As a consequence of lipid peroxidation the succinate oxidase activity of mitochondria was decreased. The succinate dehydrogenase enzyme and the component(s) of the respiratory chain were inactivated. Succinate prevented the inactivation of succinate dehydrogenase but did not protect the other components of terminal oxidation chain. From the matrix enzymes the glutamate dehydrogenase retained its full activity but the NADP-linked isocitrate dehydrogenase was inactivated. The mitochondrial membranes became permeable to large protein molecules. Succinate prevented the inactivation of isocitrate dehydrogenase and delayed the release of protein molecules from mitochondria.  相似文献   

8.
Exposure of red blood cells to oxygen radicals can induce hemoglobin damage and stimulate protein degradation, lipid peroxidation, and hemolysis. To determine if these events are linked, rabbit erythrocytes were incubated at 37 degrees C with various oxygen radical-generating systems and antioxidants. Protein degradation, measured by the production of free alanine, increased more than 11-fold in response to xanthine (X) + xanthine oxidase (XO). A similar increase in proteolysis occurred when the cells were incubated with acetaldehyde plus XO, with ascorbic acid plus iron (Asc + Fe), or with hydrogen peroxide (H2O2) alone. Upon addition of XO, increased proteolysis was evident within 5 min and was linear for up to 5 h. In contrast, lipid peroxidation, as shown by the production of malonyldialdehyde, conjugated dienes, or lipid hydroperoxides was observed only after 2 h of incubation with X + XO, acetaldehyde + XO, or H2O2. Ascorbate plus Fe2+ induced both protein degradation and lipid peroxidation; however, the addition of various antioxidants (urate, xanthine, glucose, or butylated hydroxytoluene) decreased lipid peroxidation without affecting proteolysis. Thus, these processes seem to occur by distinct mechanisms. Furthermore, at low concentrations of XO, protein degradation was clearly increased in the absence of detectable lipid peroxidation products. Hemolysis occurred only in a small number of cells (9%) and followed the appearance of lipid peroxidation products. Thus, an important response of red cells to oxygen radicals is rapid degradation of damaged cell proteins. Increased proteolysis seems to occur independently of membrane damage and to be a more sensitive indicator of cell exposure to oxygen radicals than is lipid peroxidation.  相似文献   

9.
Proteasome inactivation upon aging and on oxidation-effect of HSP 90   总被引:2,自引:0,他引:2  
Increases of oxidatively modified protein in the cell have been associated with the aging process. Such an accumulation of damaged protein may be the result of increase in the rate of protein oxidation and/or decrease in the rate of degradation of oxidized protein. The multicatalytic proteinase or proteasome is known to be the major proteolytic system involved in the removal of oxidized protein. We have reported that, after isolation of the 20S proteasome from the liver of young and old male Fischer 344 rat, out of the three peptidase activities (chymotrypsin-like, trypsin-like and peptidyl-glutamyl peptide hydrolase) we assayed with fluorogenic peptides, the peptidyl-glutamyl peptide hydrolase activity was declining with age to a value approximately 50% of that observed for protease purified from young rats. The proteasome was subjected to metal catalyzed oxidation to determine the susceptibility of the different peptidase activities to oxidative inactivation. Both trypsin-like and peptidyl-glutamyl peptide hydrolase activities were found sensitive to oxidation. Treatment of the proteasome with 4-hydroxy-2-nonenal, a major lipid peroxidation product, was also found to inactivate the trypsin-like activity. However, the trypsin-like activity was protected from inactivation by metal catalyzed oxidation in proteasome preparations contaminated with HSP 90, a protein that often copurifies with the proteasome. Upon addition of HSP 90 to pure 20S active proteasome, the trypsin-like activity was protected from inactivation by metal catalyzed oxidation and from inactivation by treatment with 4-hydroxy-2-nonenal. These results suggest a possible intervention of HSP 90 in response to oxidative stress in preventing the inactivation of the proteasome by oxidative damage. Abbreviations: AAF-amc – Ala-Ala-Phe-7-amido-4-methylcoumarin; LSTR-amc – N-t-Boc-Leu-Ser-Thr-Arg-7-amido-4-methylcoumarin; LLE-na – Leu-Leu-Glu-b-naphthylamide; HSP 90: heat shock protein 90, MCP – multicatalytic proteinase or 20S proteasome.  相似文献   

10.
Lipids which enter the composition of actively transcribed and repressed chromatin fractions are found to undergo a peroxidation. The peroxidation induction results in a depression of the endogenous DNA polymerase activity of these fractions. Tetrachloromethane increases the intensity of lipid peroxidation processes and induces a more marked depression of the DNA polymerase activity in all repressed chromatin fractions. It is assumed that selective action of tetrachloromethane on the studied indices of this chromatin fraction may be related to the differences of lipid composition of actively transcribed and repressed chromatin.  相似文献   

11.
Dey A  Parmar D  Dhawan A  Dash D  Seth PK 《Life sciences》2002,71(21):2509-2519
To investigate the similarities in the catalytic activity of blood lymphocyte P450 2E1 in blood lymphocyte with the liver isoenzyme, NADPH dependent lipid peroxidation and activity of N-nitrosodimethyamine demethylase (NDMA-d) was studied in rat blood lymphocytes. Blood lymphocytes were found to catalyse NADPH dependent (basal) lipid peroxidation and demethylation of N-nitrosodimethylamine (NDMA). Pretreatment with ethanol or pyrazole or acetone resulted in significant increase in the NADPH dependent lipid peroxidation and the activity of NDMA-d in blood lymphocytes and liver microsomes. In vitro addition of CCl(4) to the blood lymphocytes isolated from control or ethanol pretreated rats resulted in an increase in the NADPH dependent lipid peroxidation. Significant inhibition of the basal and CCl(4) supported NADPH dependent lipid peroxidation and NDMA-d activity in blood lymphocytes isolated from control or ethanol pretreated rats by dimethyl formamide or dimethyl sulfoxide or hexane, solvents known to inhibit P450 2E1 catalysed reactions in liver and anti- P450 2E1, have indicated the role of P450 2E1 in the NADPH dependent lipid peroxidation in rat blood lymphocytes. The data indicating similarities in the NADPH dependent lipid peroxidation and NDMA-d activity in blood lymphocyte with the liver microsome have provided evidence that blood lymphocyte P450 2E1 could be used as a surrogate to monitor and predict hepatic levels of the enzyme.  相似文献   

12.
采取大鼠晶体体外培养的方法,动态观察了在三硝基甲苯作用下,晶体中脂类过氧化、维生素C含量及超氧化物歧化酶活性的改变,并与对照组进行比较。发现随着三硝基甲苯作用时间的增加,晶体中脂类过氧化增高;维生素C含量呈下降趋势;超氧化物歧化酶活性在第1天升高,第5天下降。  相似文献   

13.
Dystrophin is a protein found at the plasmatic membrane in muscle and postsynaptic membrane of some neurons, where it plays an important role on synaptic transmission and plasticity. Its absence is associated with Duchenne's muscular dystrophy (DMD), in which cognitive impairment is found. Oxidative stress appears to be involved in the physiopathology of DMD and its cognitive dysfunction. In this regard, the present study investigated oxidative parameters (lipid and protein peroxidation) and antioxidant enzymes activities (superoxide dismutase and catalase) in prefrontal cortex, cerebellum, hippocampus, striatum and cortex tissues from male dystrophic mdx and normal C57BL10 mice. We observed (1) reduced lipid peroxidation in striatum and protein peroxidation in cerebellum and prefrontal cortex; (2) increased superoxide dismutase activity in cerebellum, prefrontal cortex, hippocampus and striatum; and (3) reduced catalase activity in striatum. It seems by our results, that the superoxide dismutase antioxidant mechanism is playing a protective role against lipid and protein peroxidation in mdx mouse brain.  相似文献   

14.
Dystrophin is a protein found at the plasmatic membrane in muscle and postsynaptic membrane of some neurons, where it plays an important role on synaptic transmission and plasticity. Its absence is associated with Duchenne's muscular dystrophy (DMD), in which cognitive impairment is found. Oxidative stress appears to be involved in the physiopathology of DMD and its cognitive dysfunction. In this regard, the present study investigated oxidative parameters (lipid and protein peroxidation) and antioxidant enzymes activities (superoxide dismutase and catalase) in prefrontal cortex, cerebellum, hippocampus, striatum and cortex tissues from male dystrophic mdx and normal C57BL10 mice. We observed (1) reduced lipid peroxidation in striatum and protein peroxidation in cerebellum and prefrontal cortex; (2) increased superoxide dismutase activity in cerebellum, prefrontal cortex, hippocampus and striatum; and (3) reduced catalase activity in striatum. It seems by our results, that the superoxide dismutase antioxidant mechanism is playing a protective role against lipid and protein peroxidation in mdx mouse brain.  相似文献   

15.
Ferroptosis is a newly identified form of regulated cell death (RCD) characterized by the iron-dependent lipid reactive oxygen species (ROS) accumulation, but its mechanism in gliomas remains elusive. Acyl–coenzyme A (CoA) synthetase long-chain family member 4 (Acsl4), a pivotal enzyme in the regulation of lipid biosynthesis, benefits the initiation of ferroptosis, but its role in gliomas needs further clarification. Erastin, a classic inducer of ferroptosis, has recently been found to regulate lipid peroxidation by regulating Acsl4 other than glutathione peroxidase 4 (GPX4) in ferroptosis. In this study, we demonstrated that heat shock protein 90 (Hsp90) and dynamin-related protein 1 (Drp1) actively regulated and stabilized Acsl4 expression in erastin-induced ferroptosis in gliomas. Hsp90 overexpression and calcineurin (CN)–mediated Drp1 dephosphorylation at serine 637 (Ser637) promoted ferroptosis by altering mitochondrial morphology and increasing Acsl4-mediated lipid peroxidation. Importantly, promotion of the Hsp90–Acsl4 pathway augmented anticancer activity of erastin in vitro and in vivo. Our discovery reveals a novel and efficient approach to ferroptosis-mediated glioma therapy. Subject terms: Drug development, Drug discovery  相似文献   

16.
The interaction of hydrogen peroxide (H2O2) with metmyoglobin (MetMb) led very rapidly to the generation of an active species which could initiate lipid peroxidation. The activity of this prooxidant decreased rapidly during the first minutes, but 50% of its activity remained stable for more than 30 min. In this model system, it was found that small amounts of H2O2 (1-10 microM) could activate MetMb for significant lipid peroxidation. The incubation of the sarcosomal lipids with activated MetMb caused oxygen absorption. No absorption of oxygen was determined in the presence of membrane with MetMb or H2O2 alone. Methemoglobin (MetHb) was also found to be activated by H2O2 and to initiate lipid peroxidation. Membranal lipid peroxidation initiated by activated MetMb was inhibited by several reducing compounds and antioxidants. However, several hydroxyl radical scavengers and catalase failed to inhibit this reaction.  相似文献   

17.
Brain homogenate was used as a model system to study antioxidant properties of several natural and synthetic antioxidants under oxidative stress. Oxidative stress was induced by Fe/ascorbate system and lipid peroxidation as well as protein modification were studied. Thiobarbituric acid reactive substances (TBARS) were used as a marker of lipid peroxidation. The preventive effect concerning lipid peroxidation decreased in the order: buthylated hydroxytoluene (BHT) (3.5), stobadine (ST) (35), serotonin (54), trolox (98), U 74389G (160), melatonin (3100), (the numbers in the brackets represent IC50 in micromol/l). Methylprednisolone had no effect, and spin traps interfered with TBARS determination. Concerning creatine kinase (CK) activity as a selected marker of oxidative modification of proteins, the preventive effect of antioxidants (30 micromol/l) decreased in the order: BHT (30), trolox (75), stobadine (ST) (77), alpha-phenyl-N-tert-buthylnitrone (PBN) (87), sodium salt of N-tert-buthyl-C-(phenyl-2-sulfone) nitrone (SPBN) (90), (the numbers in the brackets represent the loss of CK activity in percentages, when 100% was the loss of CK activity in the absence of any antioxidant). The nonglucocorticoid steroid U 74389G, methylprednisolone and serotonin had no preventive effects, while melatonin had antioxidant effect only in a higher concentration (1 mmol/l).  相似文献   

18.
Microsomal lipid peroxidation induced by NADPH, but not by ascorbate, was found to be inhibited by liver cytosol. This inhibition was not dependent on glutathione and was enhanced by ADP in presence of Fe2+ at a concentration of 50 microM or higher. ATP was also effective, but not AMP or cyclic AMP. The cytosolic factor appeared to be a protein as it was heat-labile (greater than 70 degrees C), was non-dialyzable and was precipitated by ammonium sulfate and acetone. It was stable for several months in frozen state and also when heated at 50 degrees C for 10 min. The inhibition by the cytosolic protein was obtained by producing a lag in the activity of lipid peroxidation and was reversed by ceruloplasmin but not by catalase, cytochrome c, hemoglobin or superoxide dismutase. This inhibitory effect by cytosol was limited to formation of lipid peroxides whereas oxygen uptake and NADPH oxidation remained unaffected. Regulation of lipid peroxidation by nucleotide-Fe complexes and cytosolic proteins is indicated by these studies.  相似文献   

19.
The effect of the low dose gamma-irradiation (270 cGy--one-fold; 90 cGy per day during 3 days) on oxidative phosphorylation, lipid peroxidation, microviscosity of the annular and free lipids membrane, and membrane protein structural state was studied. The post-radiation influence on membrane functional activity and structural state in accordance with the irradiation regimes was established.  相似文献   

20.
The efficiency of hydroperoxides (tert-butyl hydroperoxide, hydrogen peroxide) and sulfhydryl reagents (iodoacetamide, p-chloromercuribenzene sulfonic acid) as glyceollin elicitors was examined in relation to sulfhydryl oxidation, or alteration, and to lipid peroxidation, in 3-d-old soybean hypocotyl/radicle, Glycine max. These oxidative events were investigated as possible early steps in the transduction mechanisms leading to phytoalexin synthesis. Free protein sulfhydryl groups were not modified after any of the eliciting treatments, thus indicating that immediate massive protein oxidation or modification cannot be considered a signal transduction step. Unlike sulfhydryl reagents, which led to a decrease of the free nonprotein sulfhydryl group (free np-SH) pool under all of the eliciting conditions, the results obtained with hydroperoxides indicated that immediate oxidation of the np-SH is not required for the signal transduction. Moreover, elicitation with 10 mM tertbutyl hydroperoxide did not lead to further oxidation or to changes in np-SH level during the critical phase of phenylalanine ammonialyase activation (the first 20 h), suggesting that np-SH modifications are probably not involved in hydroperoxide-induced elicitation. On the other hand, all treatments leading to significant glyceollin accumulation were able to trigger a rapid (within 2 h) lipid peroxidation process, whereas noneliciting treatments did not. In addition, transition metals, such as Fe2+ and Cu+, were shown to stimulate both hydrogen peroxide-induced lipid peroxidation and glyceollin accumulation, again emphasizing that the two processes are at least closely linked in soybean. Among the oxidative processes triggered by activated oxygen species, oxidation of sulfhydryl compounds, or lipid peroxidation, our results suggest that lipid peroxidation is sufficient to initiate glyceollin accumulation in soybean. This further supports the hypothesis that lipid peroxidation could be involved as a step in the signal cascade that leads to induction of plant defenses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号