首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The phylogeography of Hymenaea courbaril var. stilbocarpa from Atlantic Forest and riverine forests of the Cerrado biome in central and southeastern Brazil was investigated. The data were compared with those of its congeneric Hymenaea stigonocarpa, a typical tree from savanna. In the Cerrado, H. courbaril var. stilbocarpa is found in sites contiguous with those of H. stigonocarpa, and they share common life-history attributes. The psbC/trnS3 region of the chloroplast DNA was sequenced in 149 individuals of H. courbaril var. stilbocarpa. High genetic variation was found in this species, with the identification of 18 haplotypes, similarly to what was found in H. stigonocarpa with 23 haplotypes in the same geographic region. Populations of H. courbaril var. stilbocarpa could be structured in 3 phylogeographic groups. Spatial analysis of molecular variation indicated that 46.4% of the genetic variation was due to differences among these groups. Three haplotypes were shared by H. courbaril var. stilbocarpa and H. stigonocarpa, and only 10.5% of the total genetic variation could be attributed to between-species difference. We surmise that during the glacial times, H. courbaril var. stilbocarpa populations must have gone extinct in most parts of the southern of its present-day occurrence area. After climate amelioration, these areas were probably recolonized from northern and eastern. The relatively similar phylogeographic structure of vicariant Hymenaea species suggests that they were subjected to the same impacts during the Quaternary climatic fluctuations. The sharing of haplotypes and the genetic similarity between the 2 Hymenaea species suggest the existence of ancestral polymorphism and/or hybridization.  相似文献   

2.
[目的]明确双斑乙蠊Sigmella biguttata种群间遗传分化程度,并揭示该种地理分布格局成因.[方法]PCR扩增双斑乙蠊19个地理种群284头个体的线粒体基因COⅠ,COⅡ和ND1以及核基因ITS的序列;使用MEGA v.7.0,DnaSP v.5.0和Arlequin v.3.5软件分析双斑乙蠊地理种群的遗...  相似文献   

3.
基于叶绿体DNA trnT-trnF序列研究祁连圆柏的谱系地理学   总被引:4,自引:0,他引:4  
由于青藏高原的地貌效应,第四纪冰期气候的反复变化应对现今该地区生物的地理分布及其居群遗传结构产生重大影响。本文对这一地区特有分布物种祁连圆柏Juniperus przewalskii Kom.整个分布区内20居群392个个体的trnT-trnF序列变化进行了研究;共发现3种单倍型(haplotype),构成两种地理区域:高原台面上的居群主要固定Hap A,而Hap A、Hap B和Hap C在高原边缘居群均有分布。所有居群总的遗传多样性HT = 0.511,GST= 0.847。在低海拔的高原边缘,Hap A、Hap B和Hap C高频率固定在不同的居群中,表明可能存在多个不同的避难所,居群反复缩小和扩张的瓶颈效应造成了遗传多样性的丢失。而边缘的一个居群含有两种相似单倍型频率则可能是冰期后迁移融合而成或者该居群在冰期经受的瓶颈作用更弱。高原台面东部间断分布的居群只固定Hap A,表明它们可能经历了冰期后共同的回迁过程和由此产生的奠基者效应。我们的研究结果表明祁连圆柏在冰期可能存在多个避难所,瓶颈效应和奠基者效应造成了这些居群现在的遗传多样性分布式样。  相似文献   

4.
The aim of this study was to investigate whether Pleistocene climatic instability influenced the phylogeographic structure and historical demography of an endemic Atlantic Forest (AF) orchid bee, Euglossa iopoecila Dressler, which shows two main patterns of integument colors over of its geographical distribution. We based our analysis on the concatenated sequence of four mtDNA segments belonging to genes 16S (357 bp), Cytb (651 bp) and COI (1206 bp), totaling 2234 bp. Samples of E. iopoecila populations were collected in 14 AF remnants along its geographic distribution. Median-Joining haplotype networks, SAMOVA and BAPS results indicated three lineages (southern, central and northern clusters) for E. iopoecila, with two important phylogeographic ruptures. We found higher genetic diversity among samples collected in the central region of the AF, which coincides with predicted areas of climatic stability, according to recent AF stability–extinction model. The demographic analysis suggests that only the southern cluster had undergone recent population expansion, which probably started after the last glacial maximum (LGM). Our data suggest that the differentiation observed in the three mitochondrial lineages of E. iopoecila is the result of past disconnections and multiple extinction/recolonization events involving climate fluctuations. In terms of conservation, we would emphasize the importance of considering: (1) the region of the central clade as the location of the highest genetic diversity of mtDNA of E. iopoecila populations; (2) the philopatric behavior of females that tends to restrict mtDNA gene flow in particular, with direct implications for the conservation of the total genetic diversity in euglossine populations.  相似文献   

5.
Mitochondrial genetic variability among populations of the blackfish genus Dallia (Esociformes) across Beringia was examined. Levels of divergence and patterns of geographic distribution of mitochondrial DNA lineages were characterized using phylogenetic inference, median‐joining haplotype networks, Bayesian skyline plots, mismatch analysis and spatial analysis of molecular variance (SAMOVA) to infer genealogical relationships and to assess patterns of phylogeography among extant mitochondrial lineages in populations of species of Dallia. The observed variation includes extensive standing mitochondrial genetic diversity and patterns of distinct spatial segregation corresponding to historical and contemporary barriers with minimal or no mixing of mitochondrial haplotypes between geographic areas. Mitochondrial diversity is highest in the common delta formed by the Yukon and Kuskokwim Rivers where they meet the Bering Sea. Other regions sampled in this study host comparatively low levels of mitochondrial diversity. The observed levels of mitochondrial diversity and the spatial distribution of that diversity are consistent with persistence of mitochondrial lineages in multiple refugia through the last glacial maximum.  相似文献   

6.
To examine temporal changes in population genetic structure, we compared the mitochondrial DNA (mtDNA) sequences of three populations that lived in the same location, Linzi, China, in different periods: 2,500 years ago (the Spring-Autumn era), 2,000 years ago (the Han era), and the present day. Two indices were used to compare the genetic differences: the frequency distributions of the radiating haplotype groups and the genetic distances among the populations. The results indicate that the genetic backgrounds of the three populations are distinct from each other. Inconsistent with the geographical distribution, the 2,500-year-old Linzi population showed greater genetic similarity to present-day European populations than to present-day east Asian populations. The 2, 000-year-old Linzi population had features that were intermediate between the present-day European/2,500-year-old Linzi populations and the present-day east Asian populations. These relationships suggest the occurrence of drastic spatiotemporal changes in the genetic structure of Chinese people during the past 2,500 years.  相似文献   

7.
The females of Haplogonatopus (Hymenoptera: Dryinidae) are wingless. Thus, the migration ability of adult wasps should be highly restricted. However, passive dispersal of larvae parasitizing their hosts may be possible. In this study we discuss the genetic variation of H. apicalis Perkins and H. oratorius (Westwood) in East Asia, from the perspective of the geographical distribution and the long-distance migration ability of their hosts, using 807 bp of mitochondrial COI gene sequences. Genetic variation of H. apicalis parasitizing Sogatella furcifera (Horváth) was examined on the basis of individuals from western Japan, southern China, and northern Vietnam. High genetic diversity was observed but geographical populations were not recognized. For H. oratorius parasitizing Laodelphax striatellus (Fallén), individuals from the northern and southern coasts of eastern Japan, western Japan, eastern China, and Taiwan were examined. The southern coast of eastern Japan population was discriminated from the other populations, and three core haplotype groups moderately associated with geographical distribution were apparent. However, the population sampled at Hokuriku, located on the northern coast of eastern Japan, was composed of a mixture of haplotypes dominant in other locations, even geographically far separated from China. This may imply the occurrence of the migration pathway of L. striatellus from continental China toward eastern Japan. The results for two parasitoid species can be explained on the basis of the migration ability of the host species.  相似文献   

8.
Chloroplast DNA variation in the Arctic plant species Dryas integrifolia (Rosaceae) was analysed in relation to both the present-day geographical distribution of populations and to Pleistocene fossil records of this species. The phylogeographical structure was weak but the analysis of haplotype diversity revealed several groups of haplotypes having present-day geographical ranges that overlap locations postulated from geographical and fossil evidence to have been glacial refugia. Based on this information we infer that two important refugial sources of Arctic recolonization by this species were Beringia and the High Arctic. Two other putative refugia, located southeast of the ice sheet and along coastal regions of the eastern Arctic may have served as sources for recolonization of smaller portions of the Arctic. The genetic substructure in the species is mostly due to variation among populations regardless of the ecogeographical region in which they are found. Spatial autocorrelation at the regional scale was also detected. High levels of diversity both within populations and ecogeographical regions are probably indicative of population establishment from several sources possibly combined with recent gene flow.  相似文献   

9.
The genetic diversity of 12 populations in the present range of the common hamster Cricetus cricetus (Linnaeus, 1758) in Poland was established. The 366 bp of the mtDNA control region was sequenced for 195 individuals. As few as seven haplotypes were found and their distribution was geographically structured. The large geographic areas were fixed or almost fixed for a single haplotype and three groups of populations, that do not share any haplotypes, have been defined. Proportions of genetic diversity attributable to variation between groups of populations, between populations within groups and within populations were 93.64, 1.92 and 4.45% (SAMOVA: p < 0.001 for all estimates), respectively. Such pattern of variation is most probably the result of historical, postglacial bottlenecks and present genetic drift after the population decline in the last few decades.  相似文献   

10.
Phylogeographic studies are often focused on temperate European species with relict footholds in the Mediterranean region. Past climatic oscillations usually induced range contractions and expansions from refugial areas located in southern Europe, and spatial distribution of genetic diversity show that northward expansions were usually pioneer-like. Actually, few studies have focused on circum-Mediterranean species, which probably were not influenced in the same way by climatic oscillations. We present the phylogeography of the bark beetle Tomicus destruens, which is restricted to the whole Mediterranean basin and the Atlantic coasts of North Africa and Portugal. We systematically sequenced 617 bp of the mitochondrial genes COI and COII for 42 populations (N = 219). Analysis revealed 53 haplotypes geographically structured in two clades, namely eastern and western clades, that diverged during the Pleistocene. A contact zone was identified along the Adriatic coast of Italy. Interestingly, we found contrasting levels of genetic structure within each clade. The eastern group was characterized by a significant phylogeographic pattern and low levels of gene flow, whereas the western group barely showed a spatial structure in haplotype distribution. Moreover, the main pine hosts were different between groups, with the Aleppo-brutia complex in the east and the maritime pine in the west. Potential roles of host species, climatic parameters and geographical barriers are discussed and the phylogeographic patterns are compared to classical models of postglacial recolonization in Europe.  相似文献   

11.
Aim To characterize the genetic structure and diversity of Pinus cembra L. populations native to two disjunct geographical areas, the Alps and the Carpathians, and to evaluate the rate of genetic differentiation among populations. Location The Swiss Alps and the Carpathians. Methods We screened 28 populations at three paternally inherited chloroplast simple sequence repeats (cpSSRs) for length variation in their mononucleotide repeats. Statistical analysis assessed haplotypic variation and fixation indices. Hierarchical analysis of molecular variance (AMOVA), Mantel test, spatial analysis of molecular variance (SAMOVA) and barrier analyses were applied to evaluate the geographical partitioning of genetic diversity across the species’ range. Results Haplotypic diversity was generally high throughout the natural range of P. cembra, with the mean value substantially higher in the Carpathians (H = 0.53) than in the Alps (H = 0.35). The isolated Carpathian populations showed the highest haplotype diversity among the populations originating from the High Tatras (Velka Studena Dolina) and South Carpathians (Retezat Mountains). AMOVA revealed that only 3% of the total genetic variation derived from genetic differentiation between the two mountain ranges. Differentiation among Carpathian populations was higher (FST = 0.19) than among Alpine populations (FST = 0.04). Low, but significant, correlation was found between the geographical and genetic distances among pairs of populations (r = 0.286, P < 0.001). SAMOVA results revealed no evident geographical structure of populations. barrier analysis showed the strongest differentiation in the eastern part of the species’ range, i.e. in the Carpathians. Main conclusions The populations of P. cembra within the two parts of the species’ range still share many cpDNA haplotypes, suggesting a common gene pool conserved from a previously large, continuous distribution range. Carpathian populations have maintained high haplotypic variation, even higher than Alpine populations, despite their small population sizes and spatial isolation. Based on our results, we emphasize the importance of the Carpathian populations of Swiss stone pine for conservation. These populations comprise private haplotypes and they may represent a particular legacy of the species’ evolutionary history.  相似文献   

12.
Ailanthus altissima (Mill.) Swingle, a temperate tree species, has a wide distribution in China. To infer its refugia and patterns of migration during past climatic changes in China, genetic variations among different populations were studied. Gene sequences of three chloroplast DNA spacer regions, psbA-trnH, trnL-trnF, andtrnD-trnT, were obtained from 440 individuals of 44 populations. The distribution of haplotype and the relationships among them were investigated by haplotype network. In addition, the genetic diversity of the sampled regions was inferred, and the biogeographic history was also reconstructed. Twelve haplotypes were identified, among which, five were unique. The phylogenetic analysis and geographical distribution of haplotypes indicate that multiple glacial refugia existed in mainland China during the Quaternary oscillations. Due to the combined effects of contiguous range expansion and allopatric fragmentation, significant genetic structure was not found in this study. Based on biogeographic and demographic analysis, three main dispersal routes were identified for the major haplotypes, whereas others were more likely localized demographic expansion.  相似文献   

13.
This study investigated the phylogeographic structure of Cistus ladanifer, in order to locate its Quaternary refugia, reconstruct its recolonisation patterns and assess the role of geographical features (mountain ranges, rivers and the Strait of Gibraltar) as barriers to its seed flow and expansion through the Western Mediterranean. Thirty-eight populations were screened for length variation of polymorphic chloroplast simple sequence repeats (cpSSRs). Statistical analyses included estimation of haplotypic diversity, hierarchical analysis of molecular variation (amova) and fixation indices. Mantel tests, SAMOVA and BARRIER analyses were applied to evaluate the geographical partitioning of genetic diversity across the entire species range. Pollen data from bibliography were used to complement molecular inferences. Chlorotype diversity within populations was similar throughout the natural range of C. ladanifer (mean haplotypic diversity=0.32). High differentiation among populations was estimated (G(ST)=0.60). Our data suggest that the barriers of the Strait of Gibraltar and the Betic ranges may have favoured the divergence during glacial periods of four different lineages of populations inferred with SAMOVA. The main northward colonisation of in the Iberian Peninsula occurred from refugia in southwest Iberia. This process may have been influenced by human activities (forest clearance, livestock grazing and even commerce) in the Iberian Peninsula. In contrast, populations in the Betic area have conserved a specific haplotype.  相似文献   

14.
Aim An integrative study of the endemic, yet ubiquitous, Patagonian shrub Mulinum spinosum (Apiaceae) was performed: (1) to assess the historical processes that influenced its geographical pattern of genetic variation; (2) to test hypotheses of its survival in situ or in glacial refugia during glacial cycles; and (3) to model its extant and palaeoclimatic distributions to assess support for the phylogeographical patterns recovered. Location Chilean and Argentinian Andean region and Patagonian steppe. Methods Chloroplast DNA sequences, trnH–psbA, trnS–trnG and 3′trnV–ndhC, were obtained for 314 individuals of M. spinosum from 71 populations. The haplotype data matrix was analysed using nested clade analysis (NCA) to construct a network. Analysis of molecular variance (AMOVA), spatial analysis of molecular variance (SAMOVA) and neutrality tests were also used to test for genetic structure and range expansion in the species. The present potential geographical distribution of M. spinosum was modelled and projected onto a Last Glacial Maximum (LGM) model. Results Amongst the 29 haplotypes observed, one was widely distributed, but most were restricted to either northern or southern regions. The populations with highest haplotype diversity were found in southern Patagonia, the high Andean region, and northern Patagonia. AMOVA and SAMOVA showed latitudinal structure for Argentinian populations. NCA implied patterns of restricted gene flow or dispersal but with some long‐distance dispersal and also long‐distance colonization and/or past fragmentation. Neutrality tests did not support range expansions. The current distribution model was a fairly good representation of the extant geographical distribution of the species, and the distribution model for the LGM did not show important shifts of the extant range to lower latitudes, except for a shift towards the palaeoseashore. Main conclusions Based on agreement amongst phylogeographical patterns, distribution of genetic variability, equivocal evidence of putative refugia and palaeodistribution modelling, it is probable that glaciations did not greatly affect the distribution of Mulinum spinosum. Our results are consistent with the in situ survival hypothesis, and not with the latitudinal migration of plant communities to avoid adverse climate conditions during Pleistocene glaciations. It is possible that populations of northern Patagonia may have been isolated from the southern ones by the Chubut and Deseado basins.  相似文献   

15.
We conducted a phylogeographical and niche modelling study of the tree Ficus bonijesulapensis, endemic to Brazilian seasonally dry tropical forests (SDTFs), in order to evaluate the effects of Quaternary climatic fluctuations on population dynamics. The trnQ–5′rps16 region of plastid DNA was sequenced from 15 populations. Three phylogeographical groups were identified by the median‐joining algorithm network and spatial analysis of molecular variance (SAMOVA) (FCT = 0.591): a central‐west, a central‐east and a scattered group. The central groups had higher total haplotype and nucleotide diversities than the scattered group. Ecological niche modelling suggested that, since the Last Interglacial (130 kyr bp ), the central and north regions have been relatively stable, whereas the southern region of the species distribution has been less stable. The phylogeographical groups showed concordance with the floristic units described for SDTFs. The low genetic diversity, unimodal mismatch distribution and unfavourable climatic conditions in the southern region suggest a recent southward expansion of the range of the species during the Holocene, supporting the hypothesis of the southward expansion of SDTFs during this period. The central and northern regions of the current distribution of F. bonijesulapensis, which are consistent with arboreal caatinga and rock outcrop floristic units, were potential refugia during Quaternary climatic fluctuations. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 189–201.  相似文献   

16.
The spatial genetic structure of common hamsters (Cricetus cricetus) was investigated using three partial mitochondrial (mt) genes and 11 nuclear microsatellite loci. All marker systems revealed significant population differentiation across Europe. Hamsters in central and western Europe belong largely to two allopatric mitochondrial lineages south and northwest of the Carpathian and Sudetes. The southern group, 'Pannonia', comprises populations inside the Carpathian basin (Czech Republic, Hungary) while the second group, 'North', includes hamsters from Belgium, the Netherlands, France, and Germany. Isolation of the lineages is maintained by a combination of geographical and ecological barriers. Both main phylogeographical groups show signs of further subdivision. North is separated into highly polymorphic central German and less polymorphic western populations, which most likely split during late glacial expansion (15,000-10,000 bp). Clock estimates based on haplotype distributions predict a divergence of the two major lineages 85,000-147,000 bp. Expansion times fall during the last glaciation (115,000-10,000 bp) corroborating fossil data, which identify Cricetus cricetus as characteristic of colder climatic phases. Despite the allopatry of mt haplotypes, there is an overlap of nuclear microsatellite alleles between phylogeographical units. Although there are strong evidence that Pannonian hamsters have persisted inside the Carpathian basin over the last 50,000 years, genetic differentiation among European hamsters has mainly been caused by immigration from different eastern refugia. Possible source populations are likely to be found in the Ukrainian and the southern Russian plains--core areas of hamster distribution. From there, hamsters have repeatedly expanded during the Quaternary.  相似文献   

17.
We characterized the pattern and magnitude of phylogeographical variation among breeding populations of a long-distance migratory bird, the Wilson's warbler (Wilsonia pusilla), and used this information to assess the utility of mtDNA markers for assaying demographic connectivity between breeding and overwintering regions. We found a complex pattern of population differentiation in mitochondrial DNA (mtDNA) variation among populations across the breeding range. Individuals from eastern North America were differentiated from western individuals and the eastern haplotypes formed a distinct, well-supported cluster. The more diverse western group contained haplotype clusters with significant geographical structuring, but there was also broad mixing of haplotype groups such that no haplotype groups were population specific and the predominance of rare haplotypes limited the utility of frequency-based assignment techniques. Nonetheless, the existence of geographically diagnosable eastern vs. western haplotypes enabled us to characterize the distribution of these two groups across 14 overwintering locations. Western haplotypes were present at much higher frequencies than eastern haplotypes at most overwintering sites. Application of this mtDNA-based method of linking breeding and overwintering populations on a finer geographical scale was precluded by the absence of population-specific markers and by insufficient haplotype sorting among western breeding populations. Our results suggest that because migratory species such as the Wilson's warbler likely experienced extensive gene flow among regional breeding populations, molecular markers will have the greatest utility for characterizing breeding-overwintering connectivity at a broad geographical scale.  相似文献   

18.
利用径级法和方差/均值法对我国不同地理区域上栓皮栎种群年龄结构及其空间分布格局进行分析.结果表明: 在水平梯度上,中部、北部、南部和西部栓皮栎种群均呈倒J型分布,而东部种群呈衰退型分布.成年树在中部和南部均呈集群分布,而北部区域呈现随机分布;幼树在在北、中和西部区域均为集群分布,而在南部和东部均呈随机分布.在纬向梯度上,幼树聚集强度的纬向趋势为中>北>南,而成年树聚集强度为中>南>北,经向梯度上幼树和成年树的聚集强度均为中>西>东.在垂直梯度上,中、低海拔种群呈倒J型分布,高海拔呈现衰退型.幼树在不同海拔均呈集群分布;成年树在低海拔为随机分布,而在高海拔和中海拔均为集群分布.幼树和成年树的聚集强度均为中海拔>高海拔和低海拔.在不同地理区域上,幼树的聚集强度均高于成年树.因此,栓皮栋种群结构及其分布格局主要是由环境梯度变化及其自身生物学特性决定,证实了“中心-边缘”种群假说.  相似文献   

19.
Populations occurring at species' range edges can be locally adapted to unique environmental conditions. From a species' perspective, range‐edge environments generally have higher severity and frequency of extreme climatic events relative to the range core. Under future climates, extreme climatic events are predicted to become increasingly important in defining species' distributions. Therefore, range‐edge genotypes that are better adapted to extreme climates relative to core populations may be essential to species' persistence during periods of rapid climate change. We use relatively simple conceptual models to highlight the importance of locally adapted range‐edge populations (leading and trailing edges) for determining the ability of species to persist under future climates. Using trees as an example, we show how locally adapted populations at species' range edges may expand under future climate change and become more common relative to range‐core populations. We also highlight how large‐scale habitat destruction occurring in some geographic areas where many species range edge converge, such as biome boundaries and ecotones (e.g., the arc of deforestation along the rainforest‐cerrado ecotone in the southern Amazonia), can have major implications for global biodiversity. As climate changes, range‐edge populations will play key roles in helping species to maintain or expand their geographic distributions. The loss of these locally adapted range‐edge populations through anthropogenic disturbance is therefore hypothesized to reduce the ability of species to persist in the face of rapid future climate change.  相似文献   

20.
The genetic variation and structure of Sladenia celastrifolia Kurz, a species of conservation concern, were investigated. Analyses of two chloroplast DNA loci (trnS-trnGand atpB-rbcL intergenic regions) were carried out for 24 populations of S. celastrifolia and five haplotypes were identified. High levels of genetic differentiation (GST = 1, FST = 1) were detected, which may be a result of limited gene flow caused by geographic isolation. Analysis of molecular variance suggests that the existence of marked phylogeographical structure within the haplotype distribution is probably due to geographic barriers among populations. The haplotype network and mismatch distribution analyses did not detect any signals for recent population expansions in S. celastrifolia. Thus, it can be inferred that the species likely persistedin situ during climatic oscillations. Considering its genetic diversity and uniqueness, conservation strategies are further discussed for this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号