首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the expression of a novel glycophospholipid, phosphatidylglucoside (PtdGlc), in adult mouse brains. Immunohistochemical analysis with DIM21 antibody, a monoclonal anti-PtdGlc antibody, revealed robust PtdGlc staining in the two primary neurogenic regions of the adult rodent brain, the subventricular zone (SVZ) lining the lateral ventricle and the subgranular zone of the dentate gyrus. Intriguingly, the staining pattern of PtdGlc appeared to overlap that of glial fibrillary acidic protein, an adult neural stem cell marker in these regions. Further immunohistochemical analysis revealed that PtdGlc expression on the cell membranes of adult SVZ neural stem cells significantly overlapped with other proposed adult neural stem cell markers. Moreover, PtdGlc(+) cells isolated from adult mouse SVZs by fluorescence-activated cell sorting with anti-PtdGlc antibody efficiently generated neurospheres in cell culture. These cells differentiated into neurons, astrocytes, and oligodendrocytes in vitro, directly demonstrating that PtdGlc-expressing cells possessed multipotency. Our data suggest that PtdGlc could be a useful adult stem cell marker.  相似文献   

2.
Engagement of immune receptors by antigen may lead to activation, cell proliferation, differentiation and effector functions. It has recently been proposed that the initiation and propagation of the signaling events taking place in immune cells occur in specialized membrane regions called lipid rafts. These detergent-insoluble glycolipid domains are specialized membrane compartments enriched in cholesterol and glycolipids. They also contain many lipid-modified signaling proteins such as tyrosine kinases of the Src family, GPI (glycosylphosphatidylinositol)-linked proteins as well as adaptor proteins. The confinement of signaling molecules in membrane subdomains suggests that lipid rafts function as platforms for the formation of multicomponent transduction complexes. Indeed, upon receptor binding, immune receptors become raft-associated and additional components of the signaling pathways are recruited to rafts in order to form signaling complexes. It has been speculated that the entry of immune receptors into rafts can regulate cell activation. Accordingly, numerous experiments have provided substantial evidence that raft integrity is crucial for the initiation and maintenance of intracellular signals. Recent studies have also shown that the access and translocation of immune receptors to lipid rafts are developmentally regulated (immature versus mature cells, Th1 versus Th2 lymphocytes) and sensitive to pharmacological agents. The aim of the present review is to summarize the current knowledge of immune receptor signal transduction with particular emphasis on the role of membrane compartments in immune activation. Finally, experimental evidences indicating that these membrane structures may represent clinically relevant potential targets for immune regulation, will be discussed.  相似文献   

3.
4.
PURPOSE OF REVIEW: Lipid rafts on monocytes/macrophages provide a dynamic microenvironment for an integrated lipopolysaccharide receptor (CD14)-dependent clustering of a set of receptors involved in innate immunity and clearance of atherogenic lipoproteins. The purpose of this review is to summarize the recent advances in our understanding of CD14-dependent receptor clustering and its relevance in atherogenesis. RECENT FINDINGS: Upon binding of various ligands, CD14 as a multiligand pattern recognition receptor induces specific coassembly of additional receptors present on circulating monocytes. SUMMARY: The composition of the receptor cluster and thus the associated signalling pathways defines a ligand specific cellular response, linking endogenous and exogenous host defense to a common recognition platform in rafts.  相似文献   

5.
6.
Lipid rafts are plasma membrane microdomains enriched in sphingolipids and cholesterol. These domains have been suggested to serve as platforms for various cellular events, such as signaling and membrane trafficking. However, little is known about the distribution and dynamics of lipids in these microdomains. Here we report investigations carried out using recently developed probes for the lipid components of lipid rafts: lysenin, a sphingomyelin-binding protein obtained from the coelomic fluid of the earthworm Eisenia foetida; and the fluorescein ester of poly(ethyleneglycol) cholesteryl ether (fPEG-Chol), which partitions into cholesterol-rich membranes. Lysenin reveals that the organization of sphingomyelin differs between different cell types and even between different membrane domains within the same cell. When added to live cells, fPEG-Chol is distributed exclusively on the outer leaflet of the plasma membrane and is clustered dynamically upon activation of receptor signaling. The surface-bound fPEG-Chol is slowly internalized via a clathrin-independent pathway into endosomes with lipid raft markers.  相似文献   

7.
8.
9.
10.
11.
12.
Accumulating reports document the use by pathogens of cholesterol‐enriched lipid microdomains, often called lipid rafts, as cell surface platforms to interact, bind and possibly enter into host cells. The challenge is now to understand what could be the functional role of these domains during pathogen invasion. Are they hijacked as general clustering devices for cellular binding sites and/or do they have other roles? In particular, is their cell signalling capacity activated and used by pathogens? In reverse, could lipid rafts activate bacterial mechanisms required for invasion? These issues will be discussed after an introduction on the current view on lipid rafts.  相似文献   

13.
Cell membranes are composed of a lipid bilayer, containing proteins that span the bilayer and/or interact with the lipids on either side of the two leaflets. Although recent advances in lipid analytics show that membranes in eukaryotic cells contain hundreds of different lipid species, the function of this lipid diversity remains enigmatic. The basic structure of cell membranes is the lipid bilayer, composed of two apposing leaflets, forming a two-dimensional liquid with fascinating properties designed to perform the functions cells require. To coordinate these functions, the bilayer has evolved the propensity to segregate its constituents laterally. This capability is based on dynamic liquid-liquid immiscibility and underlies the raft concept of membrane subcompartmentalization. This principle combines the potential for sphingolipid-cholesterol self-assembly with protein specificity to focus and regulate membrane bioactivity. Here we will review the emerging principles of membrane architecture with special emphasis on lipid organization and domain formation.  相似文献   

14.
GPI-anchored proteins and lipid rafts   总被引:2,自引:0,他引:2  
Several proteins are anchored to membranes via a post-translational lipid modification, the glycosylphosphatidylinositol (GPI) anchor. In mammals and other vertebrates, GPI-anchored proteins have been found in almost all tissues and cells examined. Several studies have provided significant insight into the functions of this ubiquitous modification. An intriguing relevant feature of GPI-anchored proteins is their association with lipid rafts, specialized regions of elevated cholesterol and sphingolipid content, that are present within most cell membranes. In addition to the structure and biosynthesis of the GPI-anchor, recent researches have focused on its molecular interaction with lipid rafts and the biological meaning of such interaction. The aim of this review is to examine the emerging evidences of association between lipid rafts and GPI-anchored proteins, and their relationship with the modulation of important cellular functions such as protein/lipid sorting, signaling mechanisms and with human disease.  相似文献   

15.
Bacteria rely on numerous basic cellular functions of their target cells to reach successful infection. The recent discovery that the plasma membrane contains specialized microdomains, called lipid rafts, with many specific functions but in particular with the ability to concentrate signaling molecules, has therefore attracted the attention of cellular microbiologists. Since then an increasing number of bacteria and their products have been shown to interact with lipid rafts to promote infection or intoxication. Here we review why certain bacteria and/or their products are attracted toward these lipid microdomains.  相似文献   

16.
17.
Membrane rafts enriched in cholesterol and sphingolipids have been hypothesized to be key mediators of sorting and signaling functions of associated molecules. Apart from a limited number of biophysical studies in living cell membranes, raft-association has been defined by a simple biochemical criterion, namely the ability to partition with detergent-resistant membranes (DRMs). Here we examine the evidence for the specification of internalization mechanisms and endocytic pathways by rafts as defined by this criterion. We have surveyed the endocytic trafficking of a variety of molecules such as lipids, toxins, glycosylphosphatidylinositol (GPI)-anchored proteins, and DRM-associated transmembrane proteins.  相似文献   

18.
The route of initial entry influences how host cells respond to intracellular pathogens. Recent studies have demonstrated that a wide variety of pathogens target lipid microdomains in host cell membranes, known as lipid rafts, to enter host cells as an infectious strategy.  相似文献   

19.
Leaky guts and lipid rafts   总被引:2,自引:0,他引:2  
The intestinal epithelium functions as a physical barrier separating luminal microorganisms from the underlying immune system. There is compelling evidence that several intestinal diseases are associated with the translocation of commensal bacteria across the epithelial barrier. Recent work has identified a novel mechanism by which normally non-invasive enteric bacteria breach the intestinal epithelium during periods of inflammation.  相似文献   

20.
Ethanol (EtOH) is the most widely abused substance in the United States, and it contributes to well-documented harmful (at high dosages) and beneficial (at low dosages) changes in inflammatory and immune responses. Lipid rafts have been implicated in the regulation and activation of several important receptor complexes in the immune system, including the TLR4 complex. Many questions remain about the precise mechanisms by which rafts regulate the assembly of these receptor complexes. Results summarized in this review indicate that EtOH acts by altering the LPS-induced redistribution of components of the TLR4 complex within the lipid raft and that this is related to changes in actin cytoskeleton rearrangement, receptor clustering, and subsequent signaling. EtOH provides an example of an immunomodulatory drug that acts at least in part by modifying lipid rafts, and it could represent a model to probe the relationships between rafts, receptor complexes, and signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号