首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that Bacillus subtilis SMC (structural maintenance of chromosome protein) localizes to discrete foci in a cell cycle-dependent manner. Early in the cell cycle, SMC moves from the middle of the cell toward opposite cell poles in a rapid and dynamic manner and appears to interact with different regions on the chromosomes during the cell cycle. SMC colocalizes with its interacting partners, ScpA and ScpB, and the specific localization of SMC depends on both Scp proteins, showing that all three components of the SMC complex are required for proper localization. Cytological and biochemical experiments showed that dimeric ScpB stabilized the binding of ScpA to the SMC head domains. Purified SMC showed nonspecific binding to double-stranded DNA, independent of Scp proteins or ATP, and was retained on DNA after binding to closed DNA but not to linear DNA. The SMC head domains and hinge region did not show strong DNA binding activity, suggesting that the coiled-coil regions in SMC mediate an association with DNA and that SMC binds to DNA as a ring-like structure. The overproduction of SMC resulted in global chromosome compaction, while SMC was largely retained in bipolar foci, suggesting that the SMC complex forms condensation centers that actively affect global chromosome compaction from a defined position on the nucleoid.  相似文献   

2.
3.
泛素化修饰是蛋白质的一种重要的翻译后水平修饰,而且有着多种不同的生物学功能,对蛋白质的结构与功能、基因表达调控以及蛋白质-蛋白质/其它分子相互作用等多个方面有着重要的调控作用。Rad6即是酵母中的一种重要的泛素载体蛋白。Rad6通过泛素化修饰多种靶蛋白在DNA的损伤修复中发挥着重要作用。文章重点讨论了Rad6在DNA损伤修复方面的功能以及在正常情况下对染色质结构和基因表达调控的影响。  相似文献   

4.
The DNA mismatch repair (MMR) proteins are essential for the maintenance of genomic stability of human cells. Compared with hereditary or even sporadic carcinomas, MMR gene mutations are very uncommon in leukemia. However, genetic instability, attested by either loss of heterozygosity or microsatellite instability, has been extensively documented in chronic or acute malignant myeloid disorders. This observation suggests that in leukemia some internal or external signals may interfere with MMR protein expression and/or function. We investigated the effects of protein kinase C (PKC) stimulation by 12-O-tetradecanoylphorbol-13-acetate (TPA) on MMR protein expression and activity in human myeloid leukemia cell lines. First, we show here that unstimulated U937 cells displayed low level of PKC activity as well as MMR protein expression and activity compared with a panel of myeloid cell lines. Second, treatment of U937 cells with TPA significantly increased (3-5-fold) hMSH2 expression and, to a lesser extent, hMSH6 and hPMS2 expression, correlated to a restoration of MMR function. In addition, diacylglycerol, a physiological PKC agonist, induced a significant increase in hMSH2 expression, whereas chelerythrine or calphostin C, two PKC inhibitors, significantly decreased TPA-induced hMSH2 expression. Reciprocally, treatment of HEL and KG1a cells that exhibited a high level of PKC expression, with chelerythrine significantly decreased hMSH2 and hMSH6 expression. Moreover, the alteration of MMR protein expression paralleled the difference in microsatellite instability and cell sensitivity to 6-thioguanine. Our results suggest that PKC could play a role in regulating MMR protein expression and function in some myeloid leukemia cells.  相似文献   

5.
6.
The AMP-activated protein kinase (AMPK) controls energy homeostasis in eukaryotic cells. Here we expressed hetero-trimeric mammalian AMPK complexes in a Saccharomycescerevisiae mutant lacking all five genes encoding yeast AMPK/SNF1 components. Certain mammalian complexes complemented the growth defect of the yeast mutant on non-fermentable carbon sources. Phosphorylation of the AMPK α1-subunit was glucose-regulated, albeit not by the Glc7-Reg1/2 phosphatase, which performs this function on yeast AMPK/SNF1. AMPK could take over SNF1 function in glucose derepression. While indirectly acting anti-diabetic drugs had no effect on AMPK in yeast, compound 991 stimulated α1-subunit phosphorylation. Our results demonstrate a remarkable functional conservation of AMPK and that glucose regulation of AMPK may not be mediated by regulatory features of a specific phosphatase.  相似文献   

7.
8.
Familial dysautonomia(FD), a hereditary sensory and autonomic neuropathy, is caused by a mutation in the Elongator complex protein 1(ELP1) gene that leads to a tissue-specific reduction of ELP1 protein. Our work to generate a phenotypic mouse model for FD headed to the discovery that homozygous deletion of the mouse Elp1 gene leads to embryonic lethality prior to mid-gestation. Given that FD is caused by a reduction, not loss, of ELP1, we generated two new mouse models by introducing different c...  相似文献   

9.
Structural maintenance of chromosome (SMC) proteins comprise the core of several specialized complexes that stabilize the global architecture of the chromosomes by dynamically linking distant DNA fragments. This reaction however remains poorly understood giving rise to numerous proposed mechanisms of the proteins. Using two novel assays, we investigated real‐time formation of DNA bridges by bacterial condensin MukBEF. We report that MukBEF can efficiently bridge two DNAs and that this reaction involves multiple steps. The reaction begins with the formation of a stable MukB–DNA complex, which can further capture another protein‐free DNA fragment. The initial tether is unstable but is quickly strengthened by additional MukBs. DNA bridging is modulated but is not strictly dependent on ATP and MukEF. The reaction revealed high preference for right‐handed DNA crossings indicating that bridging involves physical association of MukB with both DNAs. Our data establish a comprehensive view of DNA bridging by MukBEF, which could explain how SMCs establish both intra‐ and interchromosomal links inside the cell and indicate that DNA binding and bridging could be separately regulated.  相似文献   

10.
11.
The cohesin complex, named for its key role in sister chromatid cohesion, also plays critical roles in gene regulation and DNA repair. It performs all three functions in single cell eukaryotes such as yeasts, and in higher organisms such as man. Minor disruption of cohesin function has significant consequences for human development, even in the absence of measurable effects on chromatid cohesion or chromosome segregation. Here we survey the roles of cohesin in gene regulation and DNA repair, and how these functions vary from yeast to man.  相似文献   

12.
13.
14.
A technique that can direct the repair of a genetic mutation in a human chromosome using the DNA repair machinery of the cell is under development. Although this approach is not as mature as other forms of gene therapy and fundamental problems continue to arise, it promises to be the ultimate therapy for many inherited disorders. There is a continuing effort to understand the potential and the limitations of this controversial approach.  相似文献   

15.
16.
A defective ratio between DNA damage and repair may result in the occurrence of a malignant phenotype. Previous studies have found that many genetic alterations in DNA repair genes occur frequently in lung cancer. However, the epigenetic mechanisms underlying this tumorigenesis are not clear. Herein, we have used a chemical-induced rat lung carcinogenesis model to study the evolution of methylation alterations of DNA repair genes BRCA1, ERCC1, XRCC1, and MLH1. Methylation-specific PCR and immunohistochemistry were used to analyze gene methylation status and protein expression during the progression of lung carcinogenesis. Promoter hypermethylation of BRCA1 was only detected in three samples of infiltrating carcinoma. CpG island hypermethylation of ERCC1, XRCC1, and MLH1 was found to increase gradually throughout lung carcinogenesis progression. Both the prevalence of at least one methylated gene and the average number of methylated genes were heightened in squamous metaplasia and dysplasia compared with normal tissue and hyperplasia, and was further increased in carcinoma in situ (CIS) and infiltrating carcinoma. Immunohistochemical analysis showed that BRCA1 and MLH1 protein expression decreased progressively during the stages of lung carcinogenesis, whereas ERCC1 and XRCC1 expression were only found in later stages. Although methylation levels were elevated for ERCC1 and XRCC1 during carcinogenesis, an inverse correlation with protein expression was found only for BRCA1 and MLH1. These results suggest that a continuous accumulation of DNA repair gene hypermethylation and the consequent protein alterations might be a vital molecular mechanism during the process of multistep chemical-induced rat lung carcinogenesis.  相似文献   

17.
18.
19.
The regulation of DNA repair during development   总被引:3,自引:0,他引:3  
DNA repair is important in such phenomena as carcinogenesis and aging. While much is known about DNA repair in single-cell systems such as bacteria, yeast, and cultured mammalian cells, it is necessary to examine DNA repair in a developmental context in order to completely understand its processes in complex metazoa such as man. We present data to support the notion that proliferating cells from organ systems, tumors, and embryos have a greater DNA repair capacity than terminally differentiated, nonproliferating cells. Differential expression of repair genes and accessibility of chromatin to repair enzymes are considered as determinants in the developmental regulation of DNA repair.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号