首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Krampe S  Boles E 《FEBS letters》2002,513(2-3):193-196
The yeast high-affinity glucose transporters Hxt6p and Hxt7p are rapidly degraded during nitrogen starvation in the presence of high concentrations of fermentable carbon sources. Our results suggest that degradation is mainly due to the stimulation of general protein turnover and not caused by a mechanism specifically triggered by glucose. Analysis of Hxt6p/7p stability and cellular distribution in end4, aut2 and apg1 mutants indicates that Hxt7p is internalized by endocytosis, and autophagy is involved in the final delivery of Hxt7p to the vacuole for proteolytic degradation. Internalization and degradation of Hxt7p were blocked after truncation of its N-terminal hydrophilic domain. Nevertheless, this fully functional and stabilized hexose transporter could not maintain fermentation capacity of the yeast cells under starvation conditions, indicating a regulatory constraint on glucose uptake.  相似文献   

3.
BACKGROUND INFORMATION: Hxt5p is a member of a multigene family of hexose transporter proteins which translocate glucose across the plasma membrane of the yeast Saccharomyces cerevisiae. In contrast with other major hexose transporters of this family, Hxt5p expression is regulated by the growth rate of the cells and not by the external glucose concentration. Furthermore, Hxt5p is the only glucose transporter expressed during stationary phase. These observations suggest a different role for Hxt5p in S. cerevisiae. Therefore we studied the metabolism and localization of Hxt5p in more detail. RESULTS AND CONCLUSIONS: Inhibition of HXT5 expression in stationary-phase cells by the addition of glucose, which increases the growth rate, led to a decrease in the amount of Hxt5 protein within a few hours. Addition of glucose to stationary-phase cells resulted in a transient phosphorylation of Hxt5p on serine residues, but no ubiquitination was detected. The decrease in Hxt5p levels is caused by internalization of the protein, as observed by immunofluorescence microscopy. In stationary-phase cells, Hxt5p was localized predominantly at the cell periphery and upon addition of glucose to the cells the protein translocated to the cell interior. Electron microscopy demonstrated that the internalized Hxt5p-HA (haemagglutinin) protein was localized to small vesicles, multivesicular bodies and the vacuole. These results suggest that internalization and degradation of Hxt5p in the vacuole occur in an ubiquitination-independent manner via the endocytic pathway.  相似文献   

4.
Fructose utilization by wine yeasts is critically important for the maintenance of a high fermentation rate at the end of alcoholic fermentation. A Saccharomyces cerevisiae wine yeast able to ferment grape must sugars to dryness was found to have a high fructose utilization capacity. We investigated the molecular basis of this enhanced fructose utilization capacity by studying the properties of several hexose transporter (HXT) genes. We found that this wine yeast harbored a mutated HXT3 allele. A functional analysis of this mutated allele was performed by examining expression in an hxt1-7Delta strain. Expression of the mutated allele alone was found to be sufficient for producing an increase in fructose utilization during fermentation similar to that observed in the commercial wine yeast. This work provides the first demonstration that the pattern of fructose utilization during wine fermentation can be altered by expression of a mutated hexose transporter in a wine yeast. We also found that the glycolytic flux could be increased by overexpression of the mutant transporter gene, with no effect on fructose utilization. Our data demonstrate that the Hxt3 hexose transporter plays a key role in determining the glucose/fructose utilization ratio during fermentation.  相似文献   

5.
6.
We have investigated the role and the kinetic properties of the Hxt5 glucose transporter of Saccharomyces cerevisiae. The HXT5 gene was not expressed during growth of the yeast cells in rich medium with glucose or raffinose. However, it became strongly induced during nitrogen or carbon starvation. We have constructed yeast strains constitutively expressing only Hxt5, Hxt1 (low affinity) or Hxt7 (high affinity), but no other glucose transporters. Aerobic fed-batch cultures at quasi steady-state conditions, and aerobic and anaerobic chemostat cultures at steady-state conditions of these strains were used for estimation of the kinetic properties of the individual transporters under in vivo conditions, by investigating the dynamic responses of the strains to changes in extracellular glucose concentration. The K(m) value and the growth properties of the HXT5 single expression strain indicate that Hxt5 is a transporter with intermediate affinity.  相似文献   

7.
In this study, genome-wide expression analyses were used to study the response of Saccharomyces cerevisiae to stress throughout a 15-day wine fermentation. Forty per cent of the yeast genome significantly changed expression levels to mediate long-term adaptation to fermenting grape must. Among the genes that changed expression levels, a group of 223 genes was identified, which was designated as fermentation stress response (FSR) genes that were dramatically induced at various points during fermentation. FSR genes sustain high levels of induction up to the final time point and exhibited changes in expression levels ranging from four- to 80-fold. The FSR is novel; 62% of the genes involved have not been implicated in global stress responses and 28% of the FSR genes have no functional annotation. Genes involved in respiratory metabolism and gluconeogenesis were expressed during fermentation despite the presence of high concentrations of glucose. Ethanol, rather than nutrient depletion, seems to be responsible for entry of yeast cells into the stationary phase.  相似文献   

8.
Fructose utilization by wine yeasts is critically important for the maintenance of a high fermentation rate at the end of alcoholic fermentation. A Saccharomyces cerevisiae wine yeast able to ferment grape must sugars to dryness was found to have a high fructose utilization capacity. We investigated the molecular basis of this enhanced fructose utilization capacity by studying the properties of several hexose transporter (HXT) genes. We found that this wine yeast harbored a mutated HXT3 allele. A functional analysis of this mutated allele was performed by examining expression in an hxt1-7Δ strain. Expression of the mutated allele alone was found to be sufficient for producing an increase in fructose utilization during fermentation similar to that observed in the commercial wine yeast. This work provides the first demonstration that the pattern of fructose utilization during wine fermentation can be altered by expression of a mutated hexose transporter in a wine yeast. We also found that the glycolytic flux could be increased by overexpression of the mutant transporter gene, with no effect on fructose utilization. Our data demonstrate that the Hxt3 hexose transporter plays a key role in determining the glucose/fructose utilization ratio during fermentation.  相似文献   

9.
10.
Characterization and quantification of the Hxt2 (hexose transport) protein of Saccharomyces cerevisiae indicate that it is one of a set of differentially expressed high-affinity glucose transporters. The protein product of the HXT2 gene was specifically detected by antibodies raised against a synthetic peptide encompassing the 13 carboxyl-terminal amino acids predicted by the HXT2 gene sequence. Hxt2 migrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a broad band or closely spaced doublet with an average M(r) of 47,000. Hxt2 cofractionated with the plasma membrane ATPase, Pma1, indicating that it is a plasma membrane protein. Hxt2 was not solubilized by high pH or urea but was solublized by detergents, which is characteristic of an integral membrane protein. Expression of the Hxt2 protein was measured under two different conditions that produce expression of high-affinity glucose transport: a medium shift from a high (2.0%) to a low (0.05%) glucose concentration (referred to below as high and low glucose) and growth from high to low glucose. Hxt2 as measured by immunoblotting increased 20-fold upon a shift from high-glucose to low-glucose medium, and the high-affinity glucose transport expressed had a strong HXT2-dependent component. Surprisingly, Hxt2 was not detectable when S. cerevisiae growing in high glucose approached glucose exhaustion, and the high-affinity glucose transport expressed under these conditions did not have an HXT2-dependent component. The role of Hxt2 in growth during aerobic batch culture in low-glucose medium was examined. An hxt2 null mutant grew and consumed glucose significantly more slowly than the wild type, and this phenotype correlated directly with appearance of the Hxt2 protein.  相似文献   

11.
12.
The transport of glucose across the plasma membrane is mediated by members of the glucose transporter family. In this study, we investigated glucose uptake through the yeast hexose transporter 1 (Hxt1) by measuring incorporation of 2-NBDG, a non-metabolizable, fluorescent glucose analog, into the yeast Saccharomyces cerevisiae. We find that 2-NBDG is not incorporated into the hxt null strain lacking all glucose transporter genes and that this defect is rescued by expression of wild type Hxt1, but not of Hxt1 with mutations at the putative glucose-binding residues, inferred from the alignment of yeast and human glucose transporter sequences. Similarly, the growth defect of the hxt null strain on glucose is fully complemented by expression of wild type Hxt1, but not of the mutant Hxt1 proteins. Thus, 2-NBDG, like glucose, is likely to be transported into the yeast cells through the glucose transport system. Hxt1 is internalized and targeted to the vacuole for degradation in response to glucose starvation. Among the mutant Hxt1 proteins, Hxt1N370A and HXT1W473A are resistant to such degradation. Hxt1N370A, in particular, is able to neither uptake 2-NBDG nor restore the growth defect of the hxt null strain on glucose. These results demonstrate 2-NBDG as a fluorescent probe for glucose uptake in the yeast cells and identify N370 as a critical residue for the stability and function of Hxt1.  相似文献   

13.
The yeast Saccharomyces cerevisiae predominantly ferments glucose to ethanol at high external glucose concentrations, irrespective of the presence of oxygen. In contrast, at low external glucose concentrations and in the presence of oxygen, as in a glucose-limited chemostat, no ethanol is produced. The importance of the external glucose concentration suggests a central role for the affinity and maximal transport rates of yeast's glucose transporters in the control of ethanol production. Here we present a series of strains producing functional chimeras between the hexose transporters Hxt1 and Hxt7, each of which has distinct glucose transport characteristics. The strains display a range of decreasing glycolytic rates resulting in a proportional decrease in ethanol production. Using these strains, we show for the first time that at high glucose levels, the glucose uptake capacity of wild-type S. cerevisiae does not control glycolytic flux during exponential batch growth. In contrast, our chimeric Hxt transporters control the rate of glycolysis to a high degree. Strains whose glucose uptake is mediated by these chimeric transporters will undoubtedly provide a powerful tool with which to examine in detail the mechanism underlying the switch between fermentation and respiration in S. cerevisiae and will provide new tools for the control of industrial fermentations.  相似文献   

14.
Hxt2 is a glucose repressed, high affinity glucose transporter of the yeast Saccharomyces cerevisiae and is subjected to high glucose induced degradation. Hxt11 is a sugar transporter that is stably expressed at the membrane irrespective the sugar concentration. To transfer this property to Hxt2, the N‐terminal tail of Hxt2 was replaced by the corresponding region of Hxt11 yielding a chimeric Hxt11/2 transporter. This resulted in the stable expression of Hxt2 at the membrane and improved the growth on 8% d ‐glucose and 4% d ‐xylose. Mutation of N361 of Hxt11/2 into threonine reversed the specificity for d ‐xylose over d ‐glucose with high d ‐xylose transport rates. This mutant supported efficient sugar fermentation of both d ‐glucose and d ‐xylose at industrially relevant sugar concentrations even in the presence of the inhibitor acetic acid which is normally present in lignocellulosic hydrolysates. Biotechnol. Bioeng. 2017;114: 1937–1945. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

15.
The yeast Saccharomyces cerevisiae predominantly ferments glucose to ethanol at high external glucose concentrations, irrespective of the presence of oxygen. In contrast, at low external glucose concentrations and in the presence of oxygen, as in a glucose-limited chemostat, no ethanol is produced. The importance of the external glucose concentration suggests a central role for the affinity and maximal transport rates of yeast's glucose transporters in the control of ethanol production. Here we present a series of strains producing functional chimeras between the hexose transporters Hxt1 and Hxt7, each of which has distinct glucose transport characteristics. The strains display a range of decreasing glycolytic rates resulting in a proportional decrease in ethanol production. Using these strains, we show for the first time that at high glucose levels, the glucose uptake capacity of wild-type S. cerevisiae does not control glycolytic flux during exponential batch growth. In contrast, our chimeric Hxt transporters control the rate of glycolysis to a high degree. Strains whose glucose uptake is mediated by these chimeric transporters will undoubtedly provide a powerful tool with which to examine in detail the mechanism underlying the switch between fermentation and respiration in S. cerevisiae and will provide new tools for the control of industrial fermentations.  相似文献   

16.
Expression of kinase-dependent glucose uptake in Saccharomyces cerevisiae   总被引:30,自引:14,他引:16  
There are both low- and high-affinity mechanisms for uptake of glucose in Saccharomyces cerevisiae; high-affinity uptake somehow depends on the presence of hexose kinases (L. F. Bisson and D. G. Fraenkel, Proc. Natl. Acad. Sci. U.S.A. 80:1730-1734, 1983; L. F. Bisson and D. G. Fraenkel, J. Bacteriol. 155:995-1000, 1983). We report here on the effect of culture conditions on the level of high-affinity uptake. The high-affinity component was low during growth in high concentrations of glucose (100 mM), increased as glucose was exhausted from the medium, and decreased again during prolonged incubation in the stationary phase. The higher level of uptake was found in growth on low concentrations of glucose (0.5 mM) and in growth on normal concentrations of galactose, lactate plus glycerol, or ethanol. These results suggest that some component of high-affinity uptake is repressible by glucose. A shift from medium with 100 mM glucose to medium with 5 mM glucose resulted in up to a 10-fold increase in the level of high-affinity uptake within 90 min; the increase did not occur in the presence of cycloheximide or 2,4-dinitrophenol or in buffer alone with low glucose, suggesting that protein synthesis or energy metabolism (or both) was required. Reimposition of the high glucose concentration caused loss of high-affinity uptake, a process not prevented by cycloheximide. The use of hexokinase single-gene mutants showed that the derepression of high-affinity uptake was not clearly correlated with changes in levels of the kinases themselves. These results place the phenomenon of high- and low-affinity uptake in a physiological context, in that high-affinity uptake seems to be expressed best in conditions where it might be needed. Apparent similarities between glucose uptake in yeast and animal cells are noted.  相似文献   

17.
Asn331 in transmembrane segment 7 of the yeast Saccharomyces cerevisiae transporter Hxt2 has been identified as a single key residue for high-affinity glucose transport by comprehensive chimera approach. The glucose transporter GLUT1 of mammals belongs to the same major facilitator superfamily as Hxt2 and may therefore show a similar mechanism of substrate recognition. The functional role of Ile287 in human GLUT1, which corresponds to Asn331 in Hxt2, was studied by its replacement with each of the other 19 amino acids. The mutant transporters were individually expressed in a recently developed yeast expression system for GLUT1. Replacement of Ile287 generated transporters with various affinities for glucose that correlated well with those of the corresponding mutants of the yeast transporter. Residues exhibiting high affinity for glucose were medium-sized, non-aromatic, uncharged and irrelevant to hydrogen-bond capability, suggesting an important role of van der Waals interaction. Sensitivity to phloretin, a specific inhibitor for the presumed exofacial glucose binding site, was decreased in two mutants, whereas that to cytochalasin B, a specific inhibitor for the presumed endofacial glucose binding site, was unchanged in the mutants. These results suggest that Ile287 is a key residue for maintaining high glucose affinity in GLUT1 as revealed in Hxt2 and is located at or near the exofacial glucose binding site.  相似文献   

18.
We show that cells deleted for SNF3, HXT1, HXT2, HXT3, HXT4, HXT6, and HXT7 do not take up glucose and cannot grow on media containing glucose as a sole carbon source. The expression of Hxt1, Hxt2, Hxt3, Hxt6, or Gal2 in these cells resulted in glucose transport and allowed growth on glucose media. In contrast, the expression of Snf3 failed to confer glucose uptake or growth on glucose. HXT6 is highly expressed on raffinose, low glucose, or nonfermentable carbon sources but is repressed in the presence of high concentrations of glucose. The maintenance of HXT6 glucose repression is strictly dependent on Snf3 and not on intracellular glucose. In snf3 delta cells expression of HXT6 is constitutive even when the entire repertoire of HXT genes is present and glucose uptake is abundant. In addition, glucose repression of HXT6 does not require glucose uptake by HXT1, HXT2, HXT3 or HXT4. We show that a signal transduction pathway defined by the Snf3-dependent hexose regulation of HXT6 is distinct from but also overlaps with general glucose regulation pathways in Saccharomyces cerevisiae. Finally, glucose repression of ADH2 and SUC2 is intact in snf3 delta hxt1 delta hxt2 delta hxt3 delta hxt4 delta hxt6 delta hxt7 delta gal2 cells, suggesting that the sensing and signaling mechanism for general glucose repression is independent from glucose uptake.  相似文献   

19.
The yeast glucose transporters Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 and Gal2, individually expressed in an hxt1-7 null mutant strain, demonstrate the phenomenon of countertransport. Thus, these transporters, which are the most important glucose transporters in Saccharomyces cerevisiae, are facilitated diffusion transporters. Apparent K(m)-values from high to low affinity, determined from countertransport and initial-uptake experiments, respectively, are: Hxt6 0.9+/-0.2 and 1.4+/-0.1 mM, Hxt7 1.3+/-0.3 and 1.9+/-0.1 mM, Gal2 1.5 and 1.6+/-0.1 mM, Hxt2 2.9+/-0.3 and 4.6+/-0.3 mM, Hxt4 6.2+/-0.5 and 6.2+/-0.3 mM, Hxt3 28.6+/-6.8 and 34.2+/-3.2 mM, and Hxt1 107+/-49 and 129+/-9 mM. From both independent methods, countertransport and initial uptake, the same range of apparent K(m)-values was obtained for each transporter. In contrast to that in human erythrocytes, the facilitated diffusion transport mechanism of glucose in yeast was symmetric. Besides facilitated diffusion there existed in all single glucose transport mutants, except for the HXT1 strain, significant first-order behaviour.  相似文献   

20.
The expression of high-affinity glucose uptake in Saccharomyces cerevisiae strains carrying conditional mutations conferring a block of secretion and cell surface growth (sec) revealed a requirement for a functional secretory pathway for derepression of carrier activity. Thus, in strains carrying the sec1-1, sec4-2, sec7-1, sec14-3, or sec17-1 mutation, no high-affinity carrier activity was expressed after a shift to derepressing glucose concentrations at the nonpermissive temperature. In the case of sec18-1, however, derepression of carrier activity did occur at both the permissive and nonpermissive temperature, but not to the same extent as found in the wild-type strain, suggesting that SEC18 function may not be essential for expression of carrier activity. In sec1-1, accumulation of high-affinity carrier activity (or a component thereof) in presecretory vesicles during incubation at the nonpermissive temperature was demonstrated. The presence of a high glucose concentration in the medium did not affect transfer of that accumulated carrier function to the cell surface. Carrier function did not accumulate in strains carrying the other sec mutations. Analysis of the stability of high-affinity carrier activity at 37 degrees C demonstrated rapid and unexpected loss of carrier activity not affected by the presence of glucose in the medium. Thus, blockage of cell surface growth seems to affect turnover rates of hexose carrier activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号