首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biosynthesis of peptidoglycan and teichoic acid by reverting protoplasts of Bacillus licheniformis 6346 His-, in cubated at 35 C on medium containing 2.5% agar, is detectable after 40 min. The amount of N-acetyl-[1-14C]glucosamine incorporated into peptidoglycan and teichoic acid on continued incubation doubles at the same rate as the incorporation of [3H]tryptophan into protein. At the early stages of reversion the average glycan chain length, measured by the ratio of free reducing groups of muramic acid and glucosamine to total muramic acid present, is very short. As reversion proceeds, the average chain length increases to a value similar to the found in the wall of the parent bacillus. The extent of cross-linkage found in the peptide side chains of the peptidoglycan also increases as reversion proceeds. At the completion of reversion the wall material synthesized has similar characteristics to those of the walls of the parent bacilli, containing peptidoglycan and teichoic and teichuronic acids in about the same proportions. Soluble peptidoglycan can be isolated from the reversion medium, amounting to 30% of the total formed after 3 h of incubation and 8% after 12 h. This amount was reduced by the presence in the medium of the walls of an autolysin-deficient mutant; they were not formed at all by reverting protoplasts of the autolysin-deficient mutant itself. Analysis of the soluble material provided additional evidence for their being autolytic products rather than small unchanged molecules. When protoplasts were incubated on medium containing only 0.8% agar, 53 to 67% of the peptidoglycan formed after 3 h of incubation was soluble, and 21% after 12 h. Fibers that appeared to be sheared from the protoplasts at intermediate stages of reversion on medium containing 2.5% agar were similar in composition to the bacillary walls.  相似文献   

2.
Benzylpenicillin-induced filament formation of Clostridium perfringens   总被引:3,自引:0,他引:3  
Growth of Clostridium perfringens with low concentrations of benzylpenicillin inhibited septum formation and division of the organisms. This resulted in continued growth of the organisms as aseptate filaments. The effect was reversed on removal of the antibiotic. The composition of walls isolated from organisms grown with the antibiotic was similar to that of walls from untreated bacteria. In addition, both contained non-N-acetylated glucosamine residues in their peptidoglycan. No differences were detected in the degree of cross-linkage of peptidoglycan. Clostridium perfringens contains six membrane-associated penicillin-binding proteins (PBPs) which have different affinities for [3H]benzylpenicillin. Concentrations of the antibiotic which were sufficient to cause filamentation of apparently all organisms in a culture caused almost complete saturation of PBPs 3, 4, 5 and 6. At these concentrations there was no measurable interaction with PBPs 1 and 2. Thus interaction of the antibiotic with the lower molecular weight PBPs is correlated with the inhibition of septum formation in C. perfringens.  相似文献   

3.
A group of Escherichia coli mutants which are ampicillin resistant at 32 C and which either are unable to grow or lyse at 42 C has been selected. These mutants have been classified by a number of characteristics: total peptidoglycan synthesis measured by [(14)C]diaminopimelic acid incorporation, extent of cross-linking of the peptidoglycan which is synthesized, growth characteristics at the two temperatures, and morphology. Two especially interesting groups of mutants have been described. In one of these, a hypo-cross-linked peptidoglycan was synthesized at the nonpermissive temperature. Most of these organisms lysed at 42 C. In another group, the peptidoglycan synthesized at 42 C was hyper-cross-linked. Many of these organisms were spherical. Studies of revertants indicated that ampicillin resistance, temperature sensitivity, cross-linking, growth characteristics, and morphological changes may be related to a single mutational event in both of these groups.  相似文献   

4.
Products obtained from lysis in the cell wall of group A streptococcus have been studied in different growth phases: at the end of the exponential phase and in the stationary one. Endo-beta-N-acetylmuramidase extracted from the culture liquid of Streptomyces levoris 96 has been used for lysis of streptococcus. It is stated that streptococcus cell walls isolated at different growth stages differ in the protein and polysaccharide content. High content of protein in the cell wall of a young culture makes lower the initial rate of the walls' hydrolysis by endo-beta-N-acetylmuramidase. However, with the enzyme penetration into peptidoglycan the rate of hydrolysis of cell walls gets higher and after four-hour incubation the lysis degree of walls of the 16- and 8-hour cultures reaches the equal value (63%). Studies in the protein composition of lysates of the streptococcus cell walls have shown that they contain at least 12 proteins most of which are acid and neutral ones.  相似文献   

5.
The inactivation of FemB by insertion of Tn551 in the central part of the femB open reading frame was shown to increase susceptibility of methicillin-resistant Staphylococcus aureus strains toward beta-lactam antibiotics to the same extent as did inactivation of femA. Strains carrying the methicillin resistance determinant (mec) and expressing PBP 2' were affected to the same extent as were strains selected for in vitro resistance, which did not express PBP 2'. Both femA and femB, which form an operon, are involved in a yet unknown manner in the glycine interpeptide bridge formation of the S. aureus peptidoglycan. FemB inactivation was shown to reduce the glycine content of peptidoglycan by approximately 40%, depending on the S. aureus strain. The reduction of the interpeptide bridge glycine content led to significant reduction in peptidoglycan cross-linking, as measured by gel permeation high-pressure liquid chromatography of muramidase-digested cell walls. Maximum peptide chain length was reduced by approximately 40%. It is shown that the complete pentaglycine interpeptide bridge is important for the sensitivity against beta-lactam antibiotics and for the undisturbed activity of the staphylococcal cell wall-synthesizing and hydrolyzing enzymes, as was also apparent from electron microscopic examinations, which revealed aberrant placement of cross walls and retarded cell separation, leading to a pseudomulticellular phenotype of the cells for both femA and femB mutants.  相似文献   

6.
Cell walls isolated from 29 strains of 24 gram-positive bacterial species, whose peptidoglycans belong to the group A type of Schleifer and Kandler's classification, with one exception (Arthrobacter sp.), were shown to activate the complement cascade in pooled fresh human serum mainly through the alternative pathway and partly through the classical one. The complement-activating effect of cell walls (5 species) possessing group B type peptidoglycan, except those of Corynebacterium insidiosum, was weaker than that of the walls with group A type peptidoglycan. Preparations of peptidoglycan isolated from cell walls of Staphylococcus aureus, Streptococcus pyogenes, and Lactobacillus plantarum also activated the alternative pathway of the complement cascade, but less effectively than the respective parent cell walls. A water-soluble "polymer" of peptidoglycan subunits (SEPS), which was prepared from Staphylococcus epidermidis peptidoglycans by treatment with a cross-bridge degrading endopeptidase, retained most of the complement-activating ability of the parent cell walls. A peptidoglycan "monomer," SEPS-M, which was obtained by hydrolysis of the glycan chain of SEPS with endo-N-acetylmuramidase to disaccharide units did not activate complement. In conformity with this finding, neither synthetic N-acetylmuramyl-L-alanyl-D-isoglutamine (MDP) nor MDP-L-Lys-D-Ala activated the complement cascade. Among several lipophilic derivatives of MDP, 6-O-(3-hydroxy-3-docosylhexacosanoyl)-MDP-L-Lys-D-Ala (BH48-MDP-L-Lys-D-Ala) and 6-O-(2-tetradecylhexadecanoyl)-MDP (B30-MDP) were shown to activate complement through the alternative as well as the classical pathway and exclusively through the classical pathway, respectively. The finding that a D-isoasparagine analog of B30-MDP caused the same effect as the parent molecule strongly suggests that the activation of complement by B30-MDP is different from that caused by cell wall peptidoglycans and a water-soluble "polymer" of peptidoglycan subunits.  相似文献   

7.
Lysis of modified walls from Lactobacillus fermentum.   总被引:6,自引:0,他引:6       下载免费PDF全文
The N and O substitution in wall peptidoglycan from Lactobacillus fermentum was studied in relation to growth phase, as well as the lytic activities and the effect of trypsin on them. The N-nonsubstituted sites were determined by dinitrophenylation techniques. The results indicate that an extensive substitution at the O groups takes place as cells go into the stationary growth phase, concomitant with a decrease in their lysozyme sensitivity. N-nonsubstituted residues, mainly glucosamine, occurred in both exponential-phase and stationary-phase walls but not in the corresponding peptidoglycans. Small amounts of N-nonsubstituted muramic acid were detected in walls and peptidoglycan from cells in the stationary growth phase only. N acetylation of isolated walls did not increase their lysozyme sensitivity but rather decreased it. Autolysis of walls was completely inhibited by the chemical modifications used. Trypsin stimulates the lysozyme sensitivity of native walls but has no effect on walls that had been O deacetylated and N acetylated. It is suggested that the effect of trypsin is due to its action as an esterase removing the O acetylation in lysozyme-resistant walls.  相似文献   

8.
It has been known for more than 30 years that Lipid II is an intermediate in peptidoglycan synthesis. Recently, it has become apparent that it is also an important target of numerous antibiotics, including the glycopeptides, the lantibiotics and ramoplanin. It is also utilized by sortases in the construction of Gram-positive cell walls. Recent progress has been made in the synthesis of peptidoglycan intermediates that can be used to study enzymes which make peptidoglycan. These intermediates also enable studies to probe the mechanism of action of a variety of substrate-binding antibiotics.  相似文献   

9.
A determination of the relative affinity of vancomycin and ristocetin for isolated cell walls and for a peptidoglycan precursor was made. These antibiotics had previously been shown to adsorb to cell walls and to complex with peptides containing a d-alanyl-d-alanine C-terminus. By using (14)C-uridine diphosphate (UDP)-N-acetylmuramyl pentapeptide, it was shown that the complex which is formed between this peptidoglycan precursor and either vancomycin or ristocetin does not preclude adsorption of the antibiotics to cell walls of Micrococcus lysodeikticus. Complex formation between ristocetin and UDP-N-acetylmuramyl pentapeptide was assured by differential absorption spectra. However, when the complex was mixed with cell walls, the antibiotic was sedimented with the walls, and the radioactivity remained in the supernatant solution. This indication that ristocetin and vancomycin have a greater affinity for walls than for UDP-N-acetylmuramyl pentapeptide and that the complex per se does not bind to cell walls suggests that adsorption of these antibiotics to cell walls is probably responsible for the inhibition of peptidoglycan synthesis. This proposal is strengthened by the observation that complexed antibiotic is no less inhibitory for growth of Bacillus subtilis than free vancomycin or ristocetin.  相似文献   

10.
nov-12, a novobiocin-resistant mutant of Bacillus licheniformis ATCC 9945, grows as long chains of cells, a characteristic of autolytic-deficient (Lyt-) mutants. Isolated walls from nov-12 autolyzed at a rate equal to 5% of that displayed by wild-type walls, thus confirming the Lyt- phenotype. Protein-free nov-12 walls displayed marked resistance to, and also failure to bind, added autolysin solubilized from wild-type walls. Comparison of isolated cell walls revealed a deficiency in teichuronic acid in the mutant. Lesser differences were observed in walls of this strain, including a reduction in galactose, an increase in the proportion of peptidoglycan, and small quantitative differences in peptidoglycan composition though the proportions of protein and teichoic acid were similar in walls of both strains. Autolytic sensitivity was studied in walls in which protein, teichoic acid, and teichuronic acid were removed successively by selective extraction procedures. Autolysis of wild-type walls was unaffected by removal or protein or teichoic acid, but teichuronic acid removal rendered wild-type walls as insensitive to autolysis as mutant walls had been throughout. Therefore, in this mutant, deficiency in teichuronic acid alone leads to the Lyt- phenotype and, hence, activity and binding of autolysin(s) are dependent upon teichuronic acid but not teichoic acid. Also, the potential rate of autolysis of cell walls in this organism was correlated with the proportion of teichuronic acid in the wall. The possible significance of these findings with respect to control of autolysis and cell separation is discussed.  相似文献   

11.
The morphological appearance of deproteinized Group A and C streptococcal walls after treatment by different procedures extracting teichoic acids and polysaccharides (formamide, hydrochloric acid, nitrous acid, trichloroacetic acid, sulphuric acid, sodium hydroxide and sodium deoxycholate) was compared with the content of teichoic acids and polysaccharides remaining in the treated walls. All procedures extracted teichoic acids almost completely, but polysaccharides were extracted to various degrees. The ultrastructural appearance of walls after these extractions still exhibited the triple-layered wall profile; only a reduction of thickness of the wall and of electron density of the layers occurred. There was no direct correlation between the reduction of rhamnose content and thickness of walls. The ultrastructural localization of peptidoglycan in the streptococcal walls was explored by means of the indirect immunoferritin technique using anti-peptidoglycan antibodies isolated from anti-Group A-variant antisera. Ferritin particles were bound predominantly to filamentous structures which protruded from both surfaces of peptidoglycan fragments and isolated walls. Peptidoglycan was also detected on the filamentous protrusions of whole cocci. These results contradict models of the streptococcal wall in which peptidoglycan forms the innermost layer and support a mosaic structure in which peptidoglycan forms a network of the peptidoglycan-polysaccharide complex.  相似文献   

12.
Bromophenol red (BPR) binds to lysozyme and inhibits its activity against bacterial cell walls, but not against the polysaccharide component of peptidoglycan. The binding site of BPR in the enzyme has been characterised by X-ray analysis of the complex at 5.5A resolution. The new binding site, which is outside the cleft close to subsite F, is presumably involved in interactions with the peptide component of peptidoglycan, in the action of lysozyme against bacterial cell walls.  相似文献   

13.
The reversion of protoplasts of Bacillus licheniformis 6346 His- on a medium containing 2.5% agar has been studied in sectioned material after reaction with a ferritin-conjugated antibody specific to the peptidoglycan isolated from the walls of the bacilli. Freeze etching has also been used. Fibrils of material reacting with the antibody have been detected emerging from isolated areas of the protoplasts after 3 h of incubation. This material gradually covers the cell and can eventually (at 6 h) be seen in freeze-etched preparations as a fringe of up to 400 nm around the cells and covering the surfaces with particles that can be removed by lysozyme. At later stages the wall begins to take on a compact, well-defined appearance that can be seen in sections; however, the cells are still grossly deformed. A transitory emergence, beyond the wall of long fibers of 6 nm in diameter, takes place after about 12 h of incubation. These fibers react with the conjugated antibody and after freeze etching show a regular banded structure. They are probably indentical with the fibers isolated elsewhere (Elliott et al., 1975) and shown to contain all the wall constituents (i.e., peptidoglycan, teichoic acid, and teichuronic acid). These fibers are not detectable in the final stages of reversion.  相似文献   

14.
The effect of the beta-lactam antibiotics penicillin G and mecillinam on the incorporation of peptidoglycan into pre-formed cell wall peptidoglycan was studied with wall membrane enzyme preparations from Gaffkya homari. Using UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylmuramyl-pentapeptide (UDP-MurNAc-pentapeptide) as precursors the incorporation of peptidoglycan into the pre-existing cell wall of G. homari was inhibited to an extent of 50% (ID50 value) at a concentration of 0.25 mug of penicillin G/ml. With UDP-GlcNAc and UDP-MurNAc-tetrapeptide as precursors the ID50 value was about 2500-fold greater (630 mug/ml). The inhibition by penicillin G of the incorporation of peptidoglycan from UDP-MurNAc-[14C]Lys-pentapeptide could be overcome by addition of non-radioactive UDP-MurNAc-tetrapeptide to the incubation mixture. In the presence of 5 mug of penicillin G/ml the incorporation of peptidoglycan formed from the mixture of UDP-MurNAc-Ala-DGlu-Lys-D-[14C]Ala-D[14C]Ala and non-radioactive UDP-MurNAc-tetrapeptide proceeded virtually without release of D-[14C]alanine by transpeptidase activity. The enzyme preparation also exhibited DD-carboxypeptidase activity which was only slightly more sensitive to penicillin G and mecillinam than was the incorporation of peptidoglycan into the cell wall. Since the ID50 values for the beta-lactam antibiotics are similar to the concentrations required to inhibit the growth of G. homari to an extent of 50%, the DD-carboxypeptidase must be the killing site of both penicillin G and mecillinam.  相似文献   

15.
The results of studies on the influence of staphylococcal peptidoglycan and cell walls on the cooperative interaction of T- and B-lymphocytes in the process of immune response to thymus-dependent antigen are presented. Peptidoglycan has been found to produce, depending on its dose, a suppressive and stimulating effect on the interaction of T- and B-cells. Cell walls exhibit only stimulating action under the same experimental conditions. The suppressive action of peptidoglycan is mediated by T-lymphocytes.  相似文献   

16.
Spheroplasts of the unstable l-form of Proteus mirabilis with fragile, shape defective cell walls grown in medium containing 120 mg/l penicillin G and then killed and permeabilized by ether treatment, were capable of in vitro synthesis of peptidoglycan from the precursors UDP-GlcNAc and UDP-MurNAc-l-Ala-d-Glu(ms-A2pm-d-Ala-d-Ala). The in vitro peptidoglycan was extensively peptide-crosslinked, indicating a continuing function of peptidoglycan transpeptidase in the spheroplasts. The seven penicillin-binding proteins (PBPs) of P. mirabilis with their functions as multiple peptidoglycan transpeptidases were shown to be saturated in the spheroplasts and thereby functionally inactivated by the penicillin of the growth medium to a very different degree. Complete or almost complete saturation occurred with the PBPs 1A, 1B, and 3, for which functions as indispensible transpeptidases in Escherichia coli have been postulated. In contrast, PBPs 5 and 6 were not saturated in the l-form spheroplasts. Transpeptidase function has been described previously in PBP 5 of P. mirabilis. The working hypothesis is proposed that synthesis of the functionally defective peptidoglycan of l-form spheroplasts in the presence of penicillin takes place with transpeptidase function of PBP 5.Dedicated to Professor Dr. H.-G. Schlegel on the occasion of his 60th birthday  相似文献   

17.
Bacterial cell walls and their structural units, particularly peptidoglycan, induce a vast variety of biological effects in host organisms. The pathobiological effects of peptidoglycan are greatly enhanced by various modifications and substitutions to its basic composition and structure. One such modification is the presence of acetyl moieties at the C-6 hydroxyl group of N-acetylmuramyl residues, and to date, 11 species of eubacteria, including some important human pathogens, such as Neisseria gonorrhoeae, Proteus mirabilis, and Staphylococcus aureus, are known to possess O-acetylated peptidoglycan. This review addresses the influence of O-acetylation of peptidoglycan on its resistance to degradation both in vitro and in vivo, the clinical importance of the modification, and the currently held views on the pathway for its biosynthesis.  相似文献   

18.
Mode of action of glycine on the biosynthesis of peptidoglycan   总被引:17,自引:6,他引:11       下载免费PDF全文
The mechanism of glycine action in growth inhibition was studied on eight different species of bacteria of various genera representing the four most common peptidoglycan types. To inhibit the growth of the different organisms to 80%, glycine concentrations from 0.05 to 1.33 M had to be applied. The inhibited cells showed morphological aberrations. It has been demonstrated that glycine is incorporated into the nucleotide-activated peptidoglycan precursors. The amount of incorporated glycine was equivalent to the decrease in the amount of alanine. With one exception glycine is also incorporated into the peptidoglycan. Studies on the primary structure of both the peptidoglycan precursors and the corresponding peptidoglycan have revealed that glycine can replace l-alanine in position 1 and d-alanine residues in positions 4 and 5 of the peptide subunit. Replacement of l-alanine in position 1 of the peptide subunit together with an accumulation of uridine diphosphate-muramic acid (UDP-MurNAc), indicating an inhibition of the UDP-MurNAc:l-Ala ligase, has been found in three bacteria (Staphylococcus aureus, Lactobacillus cellobiosus and L. plantarum). However, discrimination against precursors with glycine in position 1 in peptidoglycan synthesis has been observed only in S. aureus. Replacement of d-alanine residues was most common. It occurred in the peptidoglycan with one exception in all strains studied. In Corynebacterium sp., C. callunae, L. plantarum, and L. cellobiosus most of the d-alanine replacing glycine occurs C-terminal in position 4, and in C. insidiosum and S. aureus glycine is found C-terminal in position 5. It is suggested that the modified peptidoglycan precursors are accumulated by being poor substrates for some of the enzymes involved in peptidoglycan synthesis. Two mechanisms leading to a more loosely cross-linked peptidoglycan and to morphological changes of the cells are considered. First, the accumulation of glycine-containing precursors may lead to a disrupture of the normal balance between peptidoglycan synthesis and controlled enzymatic hydrolysis during growth. Second, the modified glycine-containing precursors may be incorporated. Since these are poor substrates in the transpeptidation reaction, a high percentage of muropeptides remains uncross-linked. The second mechanism may be the more significant in most cases.  相似文献   

19.
By incubation of cell-free particulate preparations from Micrococcus luteus with nucleotidic precursors uridine 5'-diphosphate-N-acetylglucosamine and uridine 5'-diphosphate-N-acetylmuramic acid-L-Ala-D-iso-Glu-L-Lys-D-Ala-D-Ala, several types of peptidoglycans were obtained: soluble peptidoglycan, insoluble peptidoglycan bound to the membrane and solubilized by trypsin, and peptidoglycan, which remained insoluble after the action of trypsin. The structure of each type of peptidoglycan was studied by action of lytic enzymes and separation of the fragments on Sephadex. Soluble peptidoglycans consist of a mixture of un-cross-linked polymers of various molecular weights. Trypsin-solubilized peptidoglycans are also a mixture of polymers of various sizes. They contain a preponderance of un-cross-linked material and some bridges with dimer peptides. Insoluble peptidoglycans, after the action of trypsin, contain about 50% of un-cross-linked peptide residues; in the other moiety, peptide units are cross-linked by D-Ala leads to L-Lys and D-Ala leads to L-Ala bonds which characterize the natural peptidoglycan. Therefore, the cell-free particulate preparation possesses the whole enzymatic system necessary for synthesis of cross-linked peptidoglycan.  相似文献   

20.
A nutritional mutant of Staphylococcus aureus H has been isolated and grown in media in which the only amino acids are arginine, cysteine, glutamic acid and proline. Walls of the bacteria grown in such media in continuous culture under potassium limitation differ in composition from walls of the bacteria grown in batch culture in rich nutrient broth in that they contain less glycine, the peptidoglycan component is less highly cross-linked and the teichoic acid component contains a reduced proportion of N-acetylglucosaminyl substituents. Walls of the potassium-limited bacteria retain the ability to bind bacteriophage 52a but are more susceptible to the action of lytic peptidases than are wall samples in which the peptidoglycan is more highly cross-linked. Teichoic acid was present in walls of the bacteria grown under phosphate limitation in the defined medium and these walls were also able to absorb bacteriophage 52a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号