首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SIRT1 is a protein deacetylase that has emerged as a therapeutic target for the development of activators to treat diseases of aging. SIRT1-activating compounds (STACs) have been developed that produce biological effects consistent with direct SIRT1 activation. At the molecular level, the mechanism by which STACs activate SIRT1 remains elusive. In the studies reported herein, the mechanism of SIRT1 activation is examined using representative compounds chosen from a collection of STACs. These studies reveal that activation of SIRT1 by STACs is strongly dependent on structural features of the peptide substrate. Significantly, and in contrast to studies reporting that peptides must bear a fluorophore for their deacetylation to be accelerated, we find that some STACs can accelerate the SIRT1-catalyzed deacetylation of specific unlabeled peptides composed only of natural amino acids. These results, together with others of this study, are at odds with a recent claim that complex formation between STACs and fluorophore-labeled peptides plays a role in the activation of SIRT1 (Pacholec, M., Chrunyk, B., Cunningham, D., Flynn, D., Griffith, D., Griffor, M., Loulakis, P., Pabst, B., Qiu, X., Stockman, B., Thanabal, V., Varghese, A., Ward, J., Withka, J., and Ahn, K. (2010) J. Biol. Chem. 285, 8340–8351). Rather, the data suggest that STACs interact directly with SIRT1 and activate SIRT1-catalyzed deacetylation through an allosteric mechanism.  相似文献   

2.
Sir2 is a NAD+-dependent protein deacetylase that extends lifespan in yeast and worms. This study examines seven human proteins homologous to Sir2 (SIRT1 through SIRT7) for cellular localization, expression profiles, protein deacetylation activity, and effects on human cell lifespan. We found that: 1) three nuclear SIRT proteins (SIRT1, SIRT6, and SIRT7) show different subnuclear localizations: SIRT6 and SIRT7 are associated with heterochromatic regions and nucleoli, respectively, where yeast Sir2 functions; 2) SIRT3, SIRT4, and SIRT5 are localized in mitochondria, an organelle that links aging and energy metabolism; 3) cellular p53 is a major in vivo substrate of SIRT1 deacetylase, but not the other six SIRT proteins; 4) SIRT1, but not the other two nuclear SIRT proteins, shows an in vitro deacetylase activity on histone H4 and p53 peptides; and 5) overexpression of any one of the seven SIRT proteins does not extend cellular replicative lifespan in normal human fibroblasts or prostate epithelial cells. This study supports the notion that multiple human SIRT proteins have evolutionarily conserved and nonconserved functions at different cellular locations and reveals that the lifespan of normal human cells, in contrast to that of lower eukaryotes, cannot be manipulated by increased expression of a single SIRT protein.  相似文献   

3.
Sir2, an NAD+-dependent protein deacetylase, extends the lifespan in diverse species from yeast to flies. Mammals have 7 homologues of Sir2, SIRT1-7, which affect aging and metabolism and which are potential targets for pharmacologic intervention. We identified SIRT2, which preferentially deacetylates tubulin and histone H4, as a down-regulated protein in gliomas due to its epigenetic aberration. We herein discuss the role of SIRT2 in the mitotic checkpoint function and show that it may be as a potential target of anti-cancer drugs.  相似文献   

4.
Recent studies have emphasized the importance of SIRT1, a mammalian homolog of Sir2 longevity factor, in the regulation of metabolism, cellular survival, and organismal lifespan. The signaling network interacting with SIRT1 continues to expand as does the number of functions known to be regulated by SIRT1. Autophagy is also an emerging field in longevity studies. Autophagocytosis is a housekeeping mechanism cleaning cells from aberrant and dysfunctional molecules and organelles. The extension of lifespan has been linked to the efficient maintenance of autophagic degradation, a process which declines during aging. Interestingly, recent observations have demonstrated that SIRT1 regulates the formation of autophagic vacuoles, either directly or indirectly through a downstream signaling network. We will examine the signaling pathways linking SIRT1 to the regulation of autophagic degradation. The interactions of SIRT1 with the FoxO and p53 signaling can also regulate both the autophagic degradation and lifespan extension emphasizing the key role of autophagy in the regulation of lifespan.  相似文献   

5.
Wang F  Nguyen M  Qin FX  Tong Q 《Aging cell》2007,6(4):505-514
  相似文献   

6.
Cynthia Ho 《FEBS letters》2009,583(18):3081-170
Sir2 mediates lifespan extension in lower eukaryotes but whether its mammalian homolog, sirtuin 1, silent mating type information regulation 2 homolog (SIRT1), is a longevity protein is controversial. We stably introduced the SIRT1 gene into human vascular smooth muscle cells (SMCs) and observed minimal extension of replicative lifespan. However, SIRT1 activity was found to be exquisitely dependent on nicotinamide phosphoribosyltransferase (Nampt) activity. Moreover, overexpression of Nampt converted SIRT1-overexpressing SMCs to senescence-resistant cells together with heightened SIRT1 activity, suppressed p21, and strikingly lengthened replicative lifespan. Thus, SIRT1 can markedly postpone SMC senescence, but this requires overcoming an otherwise vulnerable nicotinamide adenine dinucleotide salvage reaction in aging SMCs.  相似文献   

7.
8.
9.
Sirtuins are a promising avenue for orally administered drugs that might deliver the anti-aging benefits normally provided by calorie restriction.Calorie (or dietary) restriction was first shown to extend rodent lifespan almost 80 years ago, and remains the most robust longevity-promoting intervention in mammals, genetic or dietary. Sirtuins are NAD-dependent deacylases homologous to yeast Sir2p and were first shown to extend replicative lifespan in budding yeast [1]. Because of their NAD requirement, sirtuins were proposed as mediators of the anti-ageing effects of calorie restriction [1]. Indeed, many studies in yeast, Caenorhabditis elegans, Drosophila melanogaster and mice have supported these ideas [2]. However, a 2011 paper posed a challenge: transgenic strains of C. elegans and Drosophila that overexpress SIR2 were found not to be long-lived [3].Rather than review the extensive sirtuin literature previous to that paper, I focus on a few key studies that have followed it, which underscore a conserved role of sirtuins in slowing ageing. In the first study, two highly divergent budding yeast strains—a lab strain and a clinical isolate—were crossed. A genome-wide quantitative trait locus analysis was then performed to map genes that determine differences in replicative lifespan [4]. The top hit was SIR2, explaining more than one-half of the difference in replicative lifespan between the two strains (due to five codon differences between the SIR2 alleles). In Drosophila, overexpression of dSIR2 in the fat body extended the lifespan of flies on the normal diet, whereas deletion of dSIR2 in the fat body abolished the extension of lifespan by a calorie-restriction-like protocol [5]. This example illustrates the key role of dSIR2 in lifespan determination and its central role in mediating dietary effects on longevity, discussed further below. Another study showed that two transgenic mouse lines that overexpress the mammalian SIRT6—mammals have seven sirtuins—had significantly extended lifespans [6]. Finally, a recent study clearly showed that worm sir2.1 could extend lifespan by regulating two distinct longevity pathways involving insulin-like signalling and the mitochondrial unfolded protein response [7]. All told, this body of work supports the original proposal that sirtuins are conserved mediators of longevity.Many other studies also illustrate that sirtuins can mediate the effects of diet. As an example, calorie restriction completely protected against ageing-induced hearing loss in wild type but not SIRT3−/− mice [8]. The mitochondrial sirtuin SIRT3 thus helps to protect the neurons of the inner ear against oxidative damage during calorie restriction. Of course, these studies do not imply that sirtuins are the only mediators of calorie restriction effects, but they do indicate that they must be central components.Finally, what about the translational potential of this research, namely using putative SIRT1-activating compounds—resveratrol and newer, synthetic STACs? Two new studies provide strong evidence that the effects of these compounds really do occur through SIRT1. First, acute deletion of SIRT1 in adult mice prevented many of the physiological effects of resveratrol and other STACs [9]. Second, a single mutation adjacent to the SIRT1 catalytic domain abolished the ability of STACs to activate the enzyme in vitro, or to promote the canonical physiological changes in vivo [10].In summary, sirtuins seem to represent a promising avenue by which orally available drugs might deliver anti-ageing benefits normally triggered by calorie restriction. Indeed, the biology of sirtuins is complex and diverse, but this is an indication of their deep reach into key disease processes. Connections between sirtuins and cancer metabolism are but one new example of this. The future path of discovery promises to be exciting and might lead to new drugs that maintain robust health.  相似文献   

10.
11.
12.
Sirtuins are highly conserved NAD+-dependent protein deacetylases and/or ADP-ribosyltransferases that can extend the lifespan of several lower model organisms including yeast, worms and flies. The seven mammalian sirtuins, SIRT1 to SIRT7, have emerged as key metabolic sensors that directly link environmental signals to mammalian metabolic homeostasis and stress response. Recent studies have shed light on the critical roles of sirtuins in mammalian energy metabolism in response to nutrient signals. This review focuses on the involvement of two nuclear sirtuins, SIRT1 and SIRT6, and three mitochondrial sirtuins, SIRT3, SIRT4, and SIRT5, in regulation of diverse metabolic processes.  相似文献   

13.
The yeast Sir2 protein mediates chromatin silencing through an intrinsic NAD-dependent histone deacetylase activity. Sir2 is a conserved protein and was recently shown to regulate lifespan extension both in budding yeast and worms. Here, we show that SIRT1, the human Sir2 homolog, is recruited to the promyelocytic leukemia protein (PML) nuclear bodies of mammalian cells upon overexpression of either PML or oncogenic Ras (Ha-rasV12). SIRT1 binds and deacetylates p53, a component of PML nuclear bodies, and it can repress p53-mediated transactivation. Moreover, we show that SIRT1 and p53 co-localize in nuclear bodies upon PML upregulation. When overexpressed in primary mouse embryo fibroblasts (MEFs), SIRT1 antagonizes PML-induced acetylation of p53 and rescues PML-mediated premature cellular senescence. Taken together, our data establish the SIRT1 deacetylase as a novel negative regulator of p53 function capable of modulating cellular senescence.  相似文献   

14.
Mechanism of human SIRT1 activation by resveratrol   总被引:14,自引:0,他引:14  
The NAD+-dependent protein deacetylase family, Sir2 (or sirtuins), is important for many cellular processes including gene silencing, regulation of p53, fatty acid metabolism, cell cycle regulation, and life span extension. Resveratrol, a polyphenol found in wines and thought to harbor major health benefits, was reported to be an activator of Sir2 enzymes in vivo and in vitro. In addition, resveratrol was shown to increase life span in three model organisms through a Sir2-dependent pathway. Here, we investigated the molecular basis for Sir2 activation by resveratrol. Among the three enzymes tested (yeast Sir2, human SIRT1, and human SIRT2), only SIRT1 exhibited significant enzyme activation ( approximately 8-fold) using the commercially available Fluor de Lys kit (BioMol). To examine the requirements for resveratrol activation of SIRT1, we synthesized three p53 acetylpeptide substrates either lacking a fluorophore or containing a 7-amino-4-methylcoumarin (p53-AMC) or rhodamine 110 (p53-R110). Although SIRT1 activation was independent of the acetylpeptide sequence, resveratrol activation was completely dependent on the presence of a covalently attached fluorophore. Substrate competition studies indicated that the fluorophore decreased the binding affinity of the peptide, and, in the presence of resveratrol, fluorophore-containing substrates bound more tightly to SIRT1. Using available crystal structures, a model of SIRT1 bound to p53-AMC peptide was constructed. Without resveratrol, the coumarin of p53-AMC peptide is solvent-exposed and makes no significant contacts with SIRT1. We propose that binding of resveratrol to SIRT1 promotes a conformational change that better accommodates the attached coumarin group.  相似文献   

15.
This study used a replicative lifespan assay of K6001 yeast to screen anti-aging food factors in commercial flavonoids. Hesperidin derived from the Citrus genus extended the lifespan of yeast at doses of 5 and 10 μM as compared with the control group (p<0.01, p<0.01). Reactive oxygen species (ROS), real-time PCR (RT-PCR), and lifespan assays of uth1 and skn7 mutants with the K6001 background were used to study the anti-aging mechanisms in yeast. The results indicate that hesperidin significantly inhibits the ROS of yeast, and UTH1 gene expression, and that SKN7 gene are involved in hesperidin-mediated lifespan extension. Further, increases in the Sir2 homolog, SIRT1 activity, and SOD gene expression were confirmed at doses of 5 (p<0.01) and 10 μM (p<0.05). This suggests that Sir2, UTH1 genes, and ROS inhibition after administration of hesperidin have important roles in the anti-aging effects of yeast. However, the aglycon hesperetin did not exhibit anti-aging effects in yeast.  相似文献   

16.
Increased expression of SIRT1 extends the lifespan of lower organisms and delays the onset of age‐related diseases in mammals. Here, we show that SRT2104, a synthetic small molecule activator of SIRT1, extends both mean and maximal lifespan of mice fed a standard diet. This is accompanied by improvements in health, including enhanced motor coordination, performance, bone mineral density, and insulin sensitivity associated with higher mitochondrial content and decreased inflammation. Short‐term SRT2104 treatment preserves bone and muscle mass in an experimental model of atrophy. These results demonstrate it is possible to design a small molecule that can slow aging and delay multiple age‐related diseases in mammals, supporting the therapeutic potential of SIRT1 activators in humans.  相似文献   

17.
18.
19.
Saccharomyces cerevisiae is calorie-restricted by lowering glucose from 2% to 0.5%. Under low glucose conditions, replicative lifespan is extended in a manner that depends on the NAD+-dependent protein lysine deacetylase Sir2 and NAD+ salvage enzymes. Because NAD+ is required for glucose utilization and Sir2 function, it was postulated that glucose levels alter the levels of NAD+ metabolites that tune Sir2 function. Though NAD+ precursor vitamins, which increase the levels of all NAD+ metabolites, can extend yeast replicative lifespan, glucose restriction does not significantly change the levels or ratios of intracellular NAD+ metabolites. To test whether glucose restriction affects protein copy numbers, we developed a technology that combines the measurement of Urh1 specific activity and quantification of relative expression between Urh1 and any other protein. The technology was applied to obtain the protein copy numbers of enzymes involved in NAD+ metabolism in rich and synthetic yeast media. Our data indicated that Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinamide and then to nicotinic acid, are up-regulated by glucose restriction in rich media, and that Pnc1 alone is up-regulated in synthetic media while levels of all other enzymes are unchanged. These data suggest that production or export of nicotinic acid might be a connection between NAD+ and calorie restriction-mediated lifespan extension in yeast.  相似文献   

20.
Progressive loss of SIRT1 with cell cycle withdrawal   总被引:2,自引:0,他引:2  
Sasaki T  Maier B  Bartke A  Scrable H 《Aging cell》2006,5(5):413-422
Sir2 is an NAD+-dependent deacetylase that regulates lifespan in yeast, worms and flies. The mammalian orthologs of Sir2 include SIRT1 in humans and mice. In this study, we analyzed the level of SIRT1 in human lung fibroblasts (IMR90) and mouse embryonic fibroblasts (MEFs) from mice with normal, accelerated, and delayed aging. SIRT1 protein, but not mRNA, decreased significantly with serial cell passage in both human and murine cells. Mouse SIRT1 decreased rapidly in prematurely senescent (p44 Tg) MEFs, remained high in MEFs with delayed senescence (Igf-1r-/-), and was inversely correlated with senescence-activated beta-galactosidase (SA-betaGal) activity. Reacquisition of mitotic capability following spontaneous immortalization of serially passaged wild-type MEFs restored the level of SIRT1 to that of early passage, highly proliferative MEFs. In mouse and human fibroblasts, we found a significant positive correlation between the levels of SIRT1 and proliferating cell nuclear antigen (PCNA), a DNA processing factor expressed during S-phase. In the animal, we found that SIRT1 decreased with age in tissues in which mitotic activity also declines, such as the thymus and testis, but not in tissues such as the brain in which there is little change in mitotic activity throughout life. Again, the decreases in SIRT1 were highly correlated with decreases in PCNA. Finally, loss of SIRT1 with age was accelerated in mice with accelerated aging but was not observed in long-lived growth hormone-receptor knockout mice. Thus, as mitotic activity ceases in mouse and human cells in the normal environment of the animal or in the culture dish, there is a concomitant decline in the level of SIRT1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号