首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
<正>食品生物技术,是指生物技术在食品领域中的应用,包括利用传统生物技术进行食品发酵和酿造,以及利用现代生物技术,如基因工程、酶工程、细胞工程、现代发酵工程、组学技术等,进行食品及食品原料的生产、加工和改良。食品生物技术作为一项极富潜力和发展空间的高新技术,以生命科学为基础,以工程技术为手段,在食品工业的现代发展中发挥着重要的推动作用。食品生物技术是一门极具包容性和关联性的综合学科,包括分子生物学、细胞生物学、微生物学、免疫学、  相似文献   

2.
《生物学杂志》2011,28(5):113-113
1、《生物学杂志》是生命科学的综合性学术期刊,主要刊登动物、植物、微生物及生理、生化、遗传、生物技术、生物工程、分子生物学等生命科学领域的学术论文以及大中专院校生物教学等方面的经验介绍。主要栏目有:研究报告、综述与专论、技术方法、教学研究  相似文献   

3.
《生物学杂志》2014,(6):113-113
1、《生物学杂志》是生命科学的综合性学术期刊,主要刊登动物、植物、微生物及生理、生化、遗传、生物技术、生物工程、分子生物学等生命科学领域的学术论文以及大中专院校生物教学等方面的经验介绍。主要栏目有:研究报告、综述与专论、技术方法、教学研究等。  相似文献   

4.
《生物学杂志》2012,29(3):113-113
1、《生物学杂志》是生命科学的综合性学术期刊,主要刊登动物、植物、微生物及生理、生化、遗传、生物技术、生物工程、分子生物学等生命科学领域的学术论文以及大中专院校生物教学等方面的经验介绍。主要栏目有:研究报告、综述与专论、技术方法、教学研究  相似文献   

5.
我国昆虫分子生物学研究的回顾和展望   总被引:17,自引:0,他引:17  
龚和 《昆虫知识》2000,37(1):32-36
1953年,Watson和Crick发现了DNA双螺旋结构,奠定了现代分子生物学的基础,从而给生命科学研究带来了一场革命。以研究基因结构和功能为主的分子生物学和以DNA重组技术为核心的生物技术研究,在本世纪取得了飞跃发展,预示了分子生物学和生物技术将成为21世纪的发展方向,是具有远大发展前景的新兴学科和产业。昆虫生理生化研究对生物学基础研究和分子生物学的发展作出过重要贡献,例如基因一酶的学说、类固醇激素作用机理和细胞摄取生物大分子的细胞内吞作用都是首先在昆虫中发现。另外,果蝇的研究也为分子遗传学和分子生物学的发展…  相似文献   

6.
<正>《生命科学》是由国家自然科学基金委员会生命科学部、中国科学院生命科学与生物技术局、中国科学院生命科学和医学学部和中国科学院上海生命科学研究院共同主办的综合性学术期刊。本刊宗旨是以评述、综述、研究简讯(动态)等形式报道生命科学研究的发展趋势、学术动态和研究成果,以促进学术交流。欢迎踊跃投稿。1投稿范围细胞生物学与发育生物学、免疫学、遗传学、生物化学与分子生物学、生物医学工程学  相似文献   

7.
《生物学杂志》2011,28(1):113-113
1、《生物学杂志》是生命科学的综合性学术期刊,主要刊登动物、植物、微生物及生理、生化、遗传、生物技术、生物工程、分子生物学等生命科学领域的学术论文以及大中专院校生物教学等方面的经验介绍。主要栏目有:研究报告、综述与专论、技术方法、教学研究等。对反映国内外最新研究成果的论文、国家级自然  相似文献   

8.
<正>《生命科学》是由国家自然科学基金委员会生命科学部、中国科学院生命科学与生物技术局、中国科学院生命科学和医学学部和中国科学院上海生命科学研究院共同主办的综合性学术期刊,本刊宗旨是以评述、综述、研究简讯(动态)等形式报道生命科学研究的发展趋势、学术动态和研究成果,以促进学术交流。欢迎踊跃投稿。1投稿范围细胞生物学与发育生物学、免疫学、遗传学、生物化学与分子生物学、生物医学工程学、药物学与药理学、动物学、  相似文献   

9.
<正>《生命科学》是由国家自然科学基金委员会生命科学部、中国科学院生命科学与生物技术局、中国科学院生命科学和医学学部和中国科学院上海生命科学研究院共同主办的综合性学术期刊。本刊宗旨是以评述、综述、研究简讯(动态)等形式报道生命科学研究的发展趋势、学术动态和研究成果,以促进学术交流。欢迎踊跃投稿。1投稿范围细胞生物学与发育生物学、免疫学、遗传学、生物化学与分子生物学、生物医学工程学、药物学与药理学、动物学、  相似文献   

10.
<正>《生命科学》是由国家自然科学基金委员会生命科学部、中国科学院生命科学与生物技术局、中国科学院生命科学和医学学部和中国科学院上海生命科学研究院共同主办的综合性学术期刊。本刊宗旨是以评述、综述、研究简讯(动态)等形式报道生命科学研究的发展趋势、学术动态和研究成果。以促进学术交流。欢迎踊跃投稿。1投稿范围细胞生物学与发育生物学、免疫学、遗传学、生物化学与分子生物学、生物医学工程学、药物学与药理学、动物学、  相似文献   

11.
合成生物学是一门21世纪生物学的新兴学科,它着眼生物科学与工程科学的结合,把生物系统当作工程系统"从下往上"进行处理,由"单元"(unit)到"部件"(device)再到"系统"(system)来设计,修改和组装细胞构件及生物系统.合成生物学是分子和细胞生物学、进化系统学、生物化学、信息学、数学、计算机和工程等多学科交叉的产物.目前研究应用包括两个主要方面:一是通过对现有的、天然存在的生物系统进行重新设计和改造,修改已存在的生物系统,使该系统增添新的功能.二是通过设计和构建新的生物零件、组件和系统,创造自然界中尚不存在的人工生命系统.合成生物学作为一门建立在基因组方法之上的学科,主要强调对创造人工生命形态的计算生物学与实验生物学的协同整合.必须强调的是,用来构建生命系统新结构、产生新功能所使用的组件单元既可以是基因、核酸等生物组件,也可以是化学的、机械的和物理的元件.本文跟踪合成生物学研究及应用,对其在DNA水平编程、分子修饰、代谢途径、调控网络和工业生物技术等方面的进展进行综述.  相似文献   

12.
保护生物学概要   总被引:3,自引:0,他引:3  
保护生物学的形成是对生物危机的反应和生物科学迅速发展的结果。它是应用科学解决由于人类活动干扰或其它因素引起的物种、群落和生态系统出现的问题的新学科。其”目的是提供保护生物多样性的原理和工具“,其基础科学和应用科学的综合性交叉学科。系统学、生态学、生物地理学和种群生态学的原理和方法是保护生物学重要的理论和实践基础。  相似文献   

13.
This study explores the conceptual history of systems biology and its impact on philosophical and scientific conceptions of reductionism, antireductionism and emergence. Development of systems biology at the beginning of 21st century transformed biological science. Systems biology is a new holistic approach or strategy how to research biological organisms, developed through three phases. The first phase was completed when molecular biology transformed into systems molecular biology. Prior to the second phase, convergence between applied general systems theory and nonlinear dynamics took place, hence allowing the formation of systems mathematical biology. The second phase happened when systems molecular biology and systems mathematical biology, together, were applied for analysis of biological data. Finally, after successful application in science, medicine and biotechnology, the process of the formation of modern systems biology was completed.Systems and molecular reductionist views on organisms were completely opposed to each other. Implications of systems and molecular biology on reductionist–antireductionist debate were quite different. The analysis of reductionism, antireductionism and emergence issues, in the era of systems biology, revealed the hierarchy between methodological, epistemological and ontological antireductionism. Primarily, methodological antireductionism followed from the systems biology. Only after, epistemological and ontological antireductionism could be supported.  相似文献   

14.
In the context of 1960s research on biological membranes, scientists stumbled upon a curiously coloured material substance, which became called the “purple membrane.” Interactions with the material as well as chemical analyses led to the conclusion that the microbial membrane contained a photoactive molecule similar to rhodopsin, the light receptor of animals’ retinae. Until 1975, the find led to the formation of novel objects in science, and subsequently to the development of a field in the molecular life sciences that comprised biophysics, bioenergetics as well as membrane and structural biology. Furthermore, the purple membrane and bacteriorhodopsin, as the photoactive membrane transport protein was baptized, inspired attempts at hybrid bio-optical engineering throughout the 1980s. A central motif of the research field was the identification of a functional biological structure, such as a membrane, with a reactive material substance that could be easily prepared and manipulated. Building on this premise, early purple membrane research will be taken as a case in point to understand the appearance and transformation of objects in science through work with material substances. Here, the role played by a perceptible material and its spontaneous change of colour, or reactivity, casts a different light on objects and experimental practices in the late twentieth century molecular life sciences. With respect to the impact of chemical working and thinking, the purple membrane and rhodopsins represent an influential domain straddling the life and chemical sciences as well as bio- and material technologies, which has received only little historical and philosophical attention. Re-drawing the boundary between the living and the non-enlivened, these researches explain and model organismic activity through the reactivity of macromolecular structures, and thus palpable material substances.  相似文献   

15.
刘晓  熊燕  王方  赵国屏 《生命科学》2012,(11):1334-1338
合成生物学是以基因组学、系统生物学知识和分子生物学技术为基础,综合了科学与工程的一门新兴交叉学科。它使生命科学和生物技术研发进入了以人工设计、合成自然界中原本不曾出现的人造生命体系,以及对这些人工体系进行体内、体外优化,或利用这些人造生命体系研究自然生命规律为目标的新时代。然而,合成生物学研究在迅速发展、表现出巨大潜力和应用前景的同时,也引发了社会各界对相关社会、伦理、安全,以及知识产权等问题的重视与讨论。就世界各国针对合成生命对传统意义上生命概念的挑战、合成生物学产品存在的潜在风险危害、合成生物学研究的风险评估与监管等问题进行回顾综述和相关探讨。  相似文献   

16.
Computational biology, a term coined from analogy to the role of computing in the physical sciences, is now coming into its own as a major element of contemporary biological and biomedical research. Information science and computational science provide essential tools for next generation biological science efforts, from focusing the direction of experimental studies to providing knowledge and insight that can not otherwise be obtained. Going beyond the revolution in biology reflected in the successes of the genome project and driven by the power of molecular biology techniques, computational approaches will provide an underpinning for the integration of broad disciplines for development of a quantitative systems approach to understanding the mechanisms in the life of the cell.  相似文献   

17.
The technique of nuclear transplantation – popularly known as cloning – has been integrated into several different histories of twentieth century biology. Historians and science scholars have situated nuclear transplantation within narratives of scientific practice, biotechnology, bioethics, biomedicine, and changing views of life. However, nuclear transplantation has never been the focus of analysis. In this article, I examine the development of nuclear transplantation techniques, focusing on the people, motivations, and institutions associated with the first successful nuclear transfer in metazoans in 1952. The conflict between embryologists and geneticists over the mechanisms of differentiation motivated Robert Briggs to pursue nuclear transplantation experiments as a way to resolve the debate. Briggs worked at the Lankenau Hospital Research Institute, a research facility devoted to the study of cancer. The goal of understanding cancer would play a role in the development of the technique, and the story of nuclear transplantation sheds light on the role that biomedical contexts play in biological research in the second half of the twentieth century.  相似文献   

18.
This paper is about the interaction and the intertwinement between history of science as a historical process and history of science as the historiography of this process, taking molecular biology as an example. In the first part, two historical shifts are briefly characterized that appear to have punctuated the emergence of molecular biology between the 1930s and the 1980s, one connected to a new generation of analytical apparatus, the other to properly molecular tools. The second part concentrates on the historiography of this development. Basically, it distinguishes three phases. The first phase was largely dominated by accounts of the actors themselves. The second coincided with the general ‘practical turn’ in history of science at large, and today’s historical appropriations of the molecularization of the life sciences appear to be marked by the changing disciplinary status of the science under review. In a closing remark, an argument is made for differentiating between long-range, middle-range and short-range perspectives in dealing with the history of the sciences.  相似文献   

19.
20.
Microarrays in biology and medicine   总被引:1,自引:0,他引:1  
The remarkable speed with which biotechnology has become critical to the practice of life sciences owes much to a series of technological revolutions. Microarray is the latest invention in this ongoing technological revolution. This technology holds the promise to revolutionize the future of biology and medicine unlike any other technology that preceded it. Development of microarray technology has significantly changed the way questions about diseases and/or biological phenomena are addressed. This is because microarrays facilitate monitoring the expression of thousands of genes or proteins in a single experiment. This enormous power of microarrays has enabled scientists to monitor thousands of genes and their products in a given living organism in one experiment, and to understand how these genes function in an orchestrated manner. Obtaining such a global view of life at the molecular level was impossible using conventional molecular biological techniques. However, despite all the progress made in developing this technology, microarray is yet to reach a point where all data are obtained, analyzed, and shared in a standardized fashion. The present article is a brief overview of microarray technologies and their applications with an emphasis on DNA microarray.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号