首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Tethered bilayer lipid membranes (tBLMs) are robust and flexible model platforms for the investigation of various membrane related processes. They are especially suited to study the incorporation and function of ion channel proteins, where a high background resistance of the membrane is essential. Synthetic M2 peptides, analogues of the transmembrane fragment of the acetylcholine receptor, could be incorporated into two different membrane architectures. The functional reconstitution and the formation of a conducting pore are shown by electrochemical impedance spectroscopy (EIS). The pore is selective for small monovalent cations, while bulky ions cannot pass. This is a significant step towards a novel biosensing approach. We envision a device, where a stable and insulating membrane would be attached to an electronic read-out unit and embedded proteins would serve as actual sensing units.  相似文献   

2.
Tethered bilayer lipid membranes (tBLMs) are robust and flexible model platforms for the investigation of various membrane related processes. They are especially suited to study the incorporation and function of ion channel proteins, where a high background resistance of the membrane is essential. Synthetic M2 peptides, analogues of the transmembrane fragment of the acetylcholine receptor, could be incorporated into two different membrane architectures. The functional reconstitution and the formation of a conducting pore are shown by electrochemical impedance spectroscopy (EIS). The pore is selective for small monovalent cations, while bulky ions cannot pass. This is a significant step towards a novel biosensing approach. We envision a device, where a stable and insulating membrane would be attached to an electronic read-out unit and embedded proteins would serve as actual sensing units.  相似文献   

3.
Tethered bilayer lipid membranes (tBLMs) are important tools for studying protein–lipid interactions. The widely used methodology for the preparation of these membranes is the fusion of phospholipid vesicles from an aqueous medium onto an anchored phospholipid layer. The preparation of phospholipid vesicles is a long and tedious procedure. There is another simple method, rapid solvent exchange, for preparing lipid membranes. However, there is a lack of information on the effects of the preparation method of tBLMs on their interactions with proteins. Therefore, we present in this paper a comparative study on the binding of lysozyme onto tBLMs prepared by the abovementioned methods. The prepared tBLMs have either zwitterionic or anionic characteristics. The results show that lysozyme binding onto the prepared tBLMs is unaffected by the preparation method of the tBLMs, suggesting that the tedious fusion method might be replaced by the simple rapid solvent exchange method without altering the level of protein–lipid interactions.  相似文献   

4.
This paper presents the formation of a novel biomimetic interface consisting of an electrolessly deposited gold film overlaid with a tethered bilayer lipid membrane (tBLM). Self-assembly of colloidal gold particles was used to create an electrolessly deposited gold film on a glass slide. The properties of the film were characterized using field-effect scanning electron microscopy, energy dispersive spectroscopy, and atomic force microscopy. Bilayer lipid membranes were then tethered to the gold film by first depositing an inner molecular leaflet using a mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[3-(2-pyridyldithio)propionate], 1,2-di-O-phytanyl-sn-glycero-3-phosphoethanolamine (DPGP), and cystamine in ethanol onto a freshly prepared electrolessly deposited gold surface. The outer leaflet was then formed by the fusion of liposomes made from DPGP or 1,2-dioleoyl-sn-glycero-3-phosphocholine on the inner leaflet. To provide functionality, two membrane biomolecules were also incorporated into the tBLMs: the ionophore valinomycin and a segment of neuropathy target esterase containing the esterase domain. Electrochemical impedance spectroscopy, UV/visible spectroscopy, and fluorescence recovery after pattern photobleaching were used to characterize the resulting biomimetic interfaces and confirm the biomolecule activity of the membrane. Microcontact printing was used to form arrays of electrolessly deposited gold patterns on glass slides. Subsequent deposition of lipids yielded arrays of tBLMs. This approach can be extended to form functional biomimetic interfaces on a wide range of inexpensive materials, including plastics. Potential applications include high-throughput screening of drugs and chemicals that interact with cell membranes and for probing, and possibly controlling, interactions between living cells and synthetic membranes. In addition, the gold electrode provides the possibility of electrochemical applications, including biocatalysis, bio-fuel cells, and biosensors.  相似文献   

5.
Lysozyme and cytochrome c (CytC) are well-investigated proteins. Their specific interactions with lipid membranes, however, keep surprising secrets. Lysozyme destroys bacterial membrane; CytC binds hydrophobically to alkyl chains of the membrane lipid tails, indicating that both proteins are able to interact directly with the inner membrane components, especially with the fatty acyl chains of membrane lipids. The degrees of integration, depth of localization in the hydrophobic interior of different types of model membranes, and the type of interaction of lysozyme and CytC with surrounding lipids were investigated by fluorescent spectroscopy. Three different fluorescent markers, located at approximately 6.5, 9, and 18 Å into the lipid bilayer, were used. In addition, liposomes were designed as electrically neutral or positively or negatively charged to unravel the importance of the net electrical charge for lipid/protein interaction. CytC penetrates deeper into the lipid bilayer in comparison with lysozyme, and data are discussed in the terms of Stern–Volmer quenching of fluorescence.  相似文献   

6.
The interaction between proteins and membranes is of great interest in biomedical and biotechnological research for its implication in many functional and dysfunctional processes. We present an experimental study on the interaction between model membranes and alpha-lactalbumin (α-La). α-La is widely studied for both its biological function and its anti-tumoral properties. We use advanced fluorescence microscopy and spectroscopy techniques to characterize α-La-membrane mechanisms of interaction and α-La-induced modifications of membranes when insertion of partially disordered regions of protein chains in the lipid bilayer is favored. Moreover, using fluorescence lifetime imaging, we are able to distinguish between protein adsorption and insertion in the membranes. Our results indicate that, upon addition of α-La to giant vesicles samples, protein is inserted into the lipid bilayer with rates that are concentration-dependent. The formation of heterogeneous hybrid protein-lipid co-aggregates, paralleled with protein conformational and structural changes, alters the membrane structure and morphology, leading to an increase in membrane fluidity.  相似文献   

7.
Tethered bilayer lipid membranes are stable and promising model systems that mimic several properties of biological membranes. They provide an electrically insulating platform for the incorporation and study of functional membrane proteins, especially ion channels. Covalently linked to a solid support, they also offer enhanced stability compared with other model architectures. If the support can be used as an electrode, electrical characterisation of the system is possible and biosensing applications can be envisioned.Here, we will review some tethered bilayer structures developed in the past and show some examples of functional protein incorporation, both on oxide and gold substrates.  相似文献   

8.
Alamethicin, a small transmembrane peptide, inserts into a tethered bilayer membrane (tBLM) to form ion channels, which we have investigated using electrical impedance spectroscopy. The number of channels formed is dependent on the incubation time, concentration of the alamethicin and the application of DC voltage. The properties of the ion channels when formed in tethered bilayers are similar to those for such channels assembled into black lipid membranes (BLMs). Furthermore, amiloride and certain analogs can inhibit the channel pores, formed in the tBLMs. The potency and concentration of the inhibitors can be determined by measuring the change of impedance. Our work illustrates the possibility of using a synthetic tBLM for the study of small peptide voltage dependent ion channels. A potential application of such a device is as a screening tool in drug discovery processes.  相似文献   

9.
The mechanism of membrane permeabilization by the antimicrobial peptide distinctin was investigated by using two different mercury-supported biomimetic membranes, namely a lipid self-assembled monolayer and a lipid bilayer tethered to the mercury surface through a hydrophilic spacer (tethered bilayer lipid membrane: tBLM). Incorporation of distinctin into a lipid monolayer from its aqueous solution yields rapidly ion channels selective toward inorganic cations, such as Tl(+) and Cd(2+). Conversely, its incorporation in a tBLM allows the formation of ion channels permeable to potassium ions only at non-physiological transmembrane potentials, more negative than -340mV. These channels, once formed, are unstable at less negative transmembrane potentials. The kinetics of their formation is consistent with the disruption of distinctin clusters adsorbed on top of the lipid bilayer, incorporation of the resulting monomers and their aggregation into hydrophilic pores by a mechanism of nucleation and growth. Comparing the behavior of distinctin in tBLMs with that in conventional black lipid membranes strongly suggests that distinctin channel formation in lipid bilayer requires the partitioning of distinctin molecules between the two sides of the lipid bilayer. We can tentatively hypothesize that an ion channel is formed when one distinctin cluster on one side of the lipid bilayer matches another one on the opposite side.  相似文献   

10.
A new concept of solid-supported tethered bilayer lipid membrane (tBLM) for the functional incorporation of membrane proteins is introduced. The incorporated protein itself acts as the tethering molecule resulting in a versatile system in which the protein determines the characteristics of the submembraneous space. This architecture is achieved through a metal chelating surface, to which histidine-tagged (His-tagged) membrane proteins are able to bind in a reversible manner. The tethered bilayer lipid membrane is generated by substitution of protein-bound detergent molecules with lipids using in-situ dialysis or adsorption. The system is characterized by surface plasmon resonance, quartz crystal microbalance, and electrochemical impedance spectroscopy. His-tagged cytochrome c oxidase (CcO) is used as a model protein in this study. However, the new system should be applicable to all recombinant membrane proteins bearing a terminal His-tag. In particular, combination of surface immobilization and membrane reconstitution opens new prospects for the investigation of functional membrane proteins by various surface-sensitive techniques under a defined electric field.  相似文献   

11.
The conformational and orientation studies in lipid bilayers of 21 amino acid peptides bearing six crown ethers are reported. The compounds were designed to form artificial ion channels by stacking the crown rings, and were shown to be functional in bilayer membranes. We used Fourier transform infrared spectroscopy and CD spectropolarimetry to study the conformation of the peptides in solution and in lipid bilayers. These studies revealed that hexacrown peptides retain their alpha-helical conformation when incorporated in a lipid bilayer environment. Attenuated total reflectance spectroscopy was used to investigate the orientation of the peptides in a lipid bilayer. Results demonstrated that the peptides are not oriented at a fixed angle in membrane, but rather are in incorporation equilibrium between an active state parallel to the lipid chain and an inactive state adsorbed at the surface of the bilayer. From these results, we propose a model for the channel activity and the gating mechanism of these hexacrown peptides in bilayer membranes.  相似文献   

12.
Biological membranes are constantly exposed to forces. The stress-strain relation in membranes determines the behavior of many integral membrane proteins or other membrane related-proteins that show a mechanosensitive behavior. Here, we studied by force spectroscopy the behavior of supported lipid bilayers (SLBs) subjected to forces perpendicular to their plane. We measured the lipid bilayer mechanical properties and the force required for the punch-through event characteristic of atomic force spectroscopy on SLBs as a function of the interleaflet coupling. We found that for an uncoupled bilayer, the overall tip penetration occurs sequentially through the two leaflets, giving rise to two penetration events. In the case of a bilayer with coupled leaflets, penetration of the atomic force microscope tip always occurred in a single step. Considering the dependence of the jump-through force value on the tip speed, we also studied the process in the context of dynamic force spectroscopy (DFS). We performed DFS experiments by changing the temperature and cantilever spring constant, and analyzed the results in the context of the developed theories for DFS. We found that experiments performed at different temperatures and with different cantilever spring constants enabled a more effective comparison of experimental data with theory in comparison with previously published data.  相似文献   

13.
New technologies for the purification of stable membrane proteins have emerged in recent years, in particular methods that allow the preparation of membrane proteins with their native lipid environment. Here, we look at the progress achieved with the use of styrene-maleic acid copolymers (SMA) which are able to insert into biological membranes forming nanoparticles containing membrane proteins and lipids. This technology can be applied to membrane proteins from any host source, and, uniquely, allows purification without the protein ever being removed from a lipid bilayer. Not only do these SMA lipid particles (SMALPs) stabilise membrane proteins, allowing structural and functional studies, but they also offer opportunities to understand the local lipid environment of the host membrane. With any new or different method, questions inevitably arise about the integrity of the protein purified: does it retain its activity; its native structure; and ability to perform its function? How do membrane proteins within SMALPS perform in existing assays and lend themselves to analysis by established methods? We outline here recent work on the structure and function of membrane proteins that have been encapsulated like this in a polymer-bound lipid bilayer, and the potential for the future with this approach. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.  相似文献   

14.
The folding mechanisms of integral membrane proteins have largely eluded detailed study. This is owing to the inherent difficulties in folding these hydrophobic proteins in vitro, which, in turn, reflects the often apparently insurmountable problem of mimicking the natural membrane bilayer with lipid or detergent mixtures. There is, however, a large body of information on lipid properties and, in particular, on phosphatidylcholine and phosphatidylethanolamine lipids, which are common to many biological membranes. We have exploited this knowledge to develop efficient in vitro lipid-bilayer folding systems for the membrane protein, bacteriorhodopsin. Furthermore, we have shown that a rate-limiting apoprotein folding step and the overall folding efficiency appear to be controlled by particular properties of the lipid bilayer. The properties of interest are the stored curvature elastic energy within the bilayer, and the lateral pressure that the lipid chains exert on the their neighbouring folding proteins. These are generic properties of the bilayer that can be achieved with simple mixtures of biological lipids, and are not specific to the lipids studied here. These bilayer properties also seem to be important in modulating the function of several membrane proteins, as well as the function of membranes in vivo. Thus, it seems likely that careful manipulations of lipid properties will shed light on the forces that drive membrane protein folding, and will aid the development of bilayer folding systems for other membrane proteins.  相似文献   

15.
One of the main questions in the membrane biology is the functional roles of membrane heterogeneity and molecular localization. Although segregation and local enrichment of protein/lipid components (rafts) have been extensively studied, the presence and functions of such membrane domains still remain elusive. Along with biochemical, cell observation, and simulation studies, model membranes are emerging as an important tool for understanding the biological membrane, providing quantitative information on the physicochemical properties of membrane proteins and lipids. Segregation of fluid lipid bilayer into liquid-ordered (Lo) and liquid-disordered (Ld) phases has been studied as a simplified model of raft in model membranes, including giant unilamellar vesicles (GUVs), giant plasma membrane vesicles (GPMVs), and supported lipid bilayers (SLB). Partition coefficients of membrane proteins between Lo and Ld phases were measured to gauze their affinities to lipid rafts (raftophilicity). One important development in model membrane is patterned SLB based on the microfabrication technology. Patterned Lo/Ld phases have been applied to study the partition and function of membrane-bound molecules. Quantitative information of individual molecular species attained by model membranes is critical for elucidating the molecular functions in the complex web of molecular interactions. The present review gives a short account of the model membranes developed for studying the lateral heterogeneity, especially focusing on patterned model membranes on solid substrates.  相似文献   

16.
Fused or giant vesicles, planar lipid bilayers, a droplet membrane system, and planar-supported membranes have been developed to incorporate membrane proteins for the electrical and biophysical analysis of such proteins or the bilayer properties. However, it remains difficult to incorporate membrane proteins, including ion channels, into reconstituted membrane systems that allow easy control of operational dimensions, incorporation orientation of the membrane proteins, and lipid composition of membranes. Here, using a newly developed chemical engineering procedure, we report on a bead-supported unilamellar membrane (bSUM) system that allows good control over membrane dimension, protein orientation, and lipid composition. Our new system uses specific ligands to facilitate the unidirectional incorporation of membrane proteins into lipid bilayers. Cryo–electron microscopic imaging demonstrates the unilamellar nature of the bSUMs. Electrical recordings from voltage-gated ion channels in bSUMs of varying diameters demonstrate the versatility of the new system. Using KvAP as a model system, we show that compared with other in vitro membrane systems, the bSUMs have the following advantages: (a) a major fraction of channels are orientated in a controlled way; (b) the channels mediate the formation of the lipid bilayer; (c) there is one and only one bilayer membrane on each bead; (d) the lipid composition can be controlled and the bSUM size is also under experimental control over a range of 0.2–20 µm; (e) the channel activity can be recorded by patch clamp using a planar electrode; and (f) the voltage-clamp speed (0.2–0.5 ms) of the bSUM on a planar electrode is fast, making it suitable to study ion channels with fast gating kinetics. Our observations suggest that the chemically engineered bSUMs afford a novel platform for studying lipid–protein interactions in membranes of varying lipid composition and may be useful for other applications, such as targeted delivery and single-molecule imaging.  相似文献   

17.
Cell membranes are composed of a lipid bilayer, containing proteins that span the bilayer and/or interact with the lipids on either side of the two leaflets. Although recent advances in lipid analytics show that membranes in eukaryotic cells contain hundreds of different lipid species, the function of this lipid diversity remains enigmatic. The basic structure of cell membranes is the lipid bilayer, composed of two apposing leaflets, forming a two-dimensional liquid with fascinating properties designed to perform the functions cells require. To coordinate these functions, the bilayer has evolved the propensity to segregate its constituents laterally. This capability is based on dynamic liquid-liquid immiscibility and underlies the raft concept of membrane subcompartmentalization. This principle combines the potential for sphingolipid-cholesterol self-assembly with protein specificity to focus and regulate membrane bioactivity. Here we will review the emerging principles of membrane architecture with special emphasis on lipid organization and domain formation.  相似文献   

18.
The influence of lipid bilayer properties on a defined and sequence-specific transmembrane helix-helix interaction is not well characterized yet. To study the potential impact of changing bilayer properties on a sequence-specific transmembrane helix-helix interaction, we have traced the association of fluorescent-labeled glycophorin A transmembrane peptides by fluorescence spectroscopy in model membranes with varying lipid compositions. The observed changes of the glycophorin A dimerization propensities in different lipid bilayers suggest that the lipid bilayer thickness severely influences the monomer-dimer equilibrium of this transmembrane domain, and dimerization was most efficient under hydrophobic matching conditions. Moreover, cholesterol considerably promotes self-association of transmembrane helices in model membranes by affecting the lipid acyl chain ordering. In general, the order of the lipid acyl chains appears to be an important factor involved in determining the strength and stability of transmembrane helix-helix interactions. As discussed, the described influences of membrane properties on transmembrane helix-helix interactions are highly important for understanding the mechanism of transmembrane protein folding and functioning as well as for gaining a deeper insight into the regulation of signal transduction via membrane integral proteins by bilayer properties.  相似文献   

19.
Rossi C  Homand J  Bauche C  Hamdi H  Ladant D  Chopineau J 《Biochemistry》2003,42(51):15273-15283
In this work, two different types of supported biomimetic membranes were designed to study the membrane binding properties of two different proteins that both interact with cellular membranes in a calcium-dependent manner. The first one, neurocalcin, is a member of a subfamilly of EF-hand calcium-binding proteins that exhibit a calcium-myristoyl switch. The second protein is a bacterial toxin, the adenylate cyclase produced by Bordetella pertussis, the causative agent of whooping cough. The biomimetic membranes constructed in this study were either hybrid bilayer membranes or polymer-tethered membranes. Hemimembrane formation was obtained in two steps: a monolayer of 1-octadecanethiol or octadecyltrichlorosilane was self-assembled on top of the gold or glass surface, respectively, and then the egg-phosphatidyl choline (PC) vesicle fused on the hydrophobic alkyl layer. Polymer-tethered membranes on solid support were obtained using N-hydroxysuccinimide (NHS)-terminated-poly(ethyleneglycol) (PEG)-phospholipids as anchoring molecules. Egg-PC/1,2-distearoyl-sn-glycero-3-phospho-ethanolamine-poly(ethyleneglycol)-N-hydroxy-succinimide (DSPE-PEG-NHS) mixture liposomes were injected on the top of an amine grafted surface (cysteamine-coated gold or silanized glass); vesicles were linked to the surface and disrupted, leading to the formation of a bilayer. The biomimetic membrane constructions were followed by surface plasmon spectroscopy, while membrane fluidity and continuity were observed by fluorescence microscopy. Protein/membrane binding properties were determined by resonance surface plasmon measurements. The tethered bilayer, designed here, is very versatile as it can be adapted easily to different types of support. The results demonstrate the potentialities of such polymer-tethered artificial membranes for the study of proteins that insert into biological membranes such as toxins and/or integral membrane proteins.  相似文献   

20.
The synthesis, folding, and function of membrane transport proteins are critical factors for defining cellular physiology. Since the stability of these proteins evolved amidst the lipid bilayer, it is no surprise that we are finding that many of these membrane proteins demonstrate coupling of their structure or activity in some way to the membrane. More and more transporter structures are being determined with some information about the surrounding membrane, and computational modeling is providing further molecular details about these solvation structures. Thus, the field is moving towards identifying which molecular mechanisms - lipid interactions, membrane perturbations, differential solvation, and bulk membrane effects - are involved in linking membrane energetics to transporter stability and function. In this review, we present an overview of these mechanisms and the growing evidence that the lipid bilayer is a major determinant of the fold, form, and function of membrane transport proteins in membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号