首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G DasGupta  E Reisler 《Biochemistry》1992,31(6):1836-1841
The binding of myosin subfragment 1 (S-1) to actin in the presence of ATP and the acto-S-1 ATPase activities of acto-S-1 complexes were determined at 5 degrees C under conditions of partial saturation of actin, up to 90%, by antibodies against the first seven N-terminal residues on actin. The antibodies [Fab(1-7)] inhibited strongly the acto-S-1 ATPase and the binding of S-1 to actin in the presence of ATP at low concentrations of S-1, up to 25 microM. Further increases in S-1 concentration resulted in a partial and cooperative recovery of both the binding of S-1 to actin and the acto-S-1 ATPase while causing only limited displacement of Fab(1-7) from actin. The extent to which the binding and the ATPase activity were recovered depended on the saturation of actin by Fab(1-7). The combined amounts of S-1 and Fab binding to actin suggested that the activation of the myosin ATPase activity was due to actin free of Fab. Examination of the acto-S-1 ATPase activities as a function of S-1 bound to actin at different levels of actin saturation by Fab(1-7) revealed that the antibodies inhibited the activation of the bound myosin. Thus, the binding of antibodies to the N-terminal segment of actin can act to inhibit both the binding of S-1 to actin in the presence of ATP and a catalytic step in ATP hydrolysis by actomyosin. The implications of these results to the regulation of actomyosin interaction are discussed.  相似文献   

2.
We have investigated the steps in the actomyosin ATPase cycle that determine the maximum ATPase rate (Vmax) and the binding between myosin subfragment one (S-1) and actin which occurs when the ATPase activity is close to Vmax. We find that the forward rate constant of the initial ATP hydrolysis (initial Pi burst) is about 5 times faster than the maximum turnover rate of the actin S-1 ATPase. Thus, another step in the cycle must be considerably slower than the forward rate of the initial Pi burst. If this slower step occurs only when S-1 is complexed with actin, as originally predicted by the Lymn-Taylor model, the ATPase activity and the fraction of S-1 bound to actin in the steady state should increase almost in parallel as the actin concentration is increased. As measured by turbidity determined in the stopped-flow apparatus, the fraction of S-1 bound to actin, like the ATPase activity, shows a hyperbolic dependence on actin concentration, approaching 100% asymptotically. However, the actin concentration required so that 50% of the S-1 is bound to actin is about 4 times greater than the actin concentration required for half-maximal ATPase activity. Thus, as previously found at 0 degrees C, at 15 degrees C much of the S-1 is dissociated from actin when the ATPase is close to Vmax, showing that a slow first-order transition which follows the initial Pi burst (the transition from the refractory to the nonrefractory state) must be the slowest step in the ATPase cycle. Stopped-flow studies also reveal that the steady-state turbidity level is reached almost instantaneously after the S-1, actin, and ATP are mixed, regardless of the order of mixing. Thus, the binding between S-1 and actin which is observed in the steady state is due to a rapid equilibrium between S-1--ATP and acto--S-1--ATP which is shifted toward acto-S-1--ATP at high actin concentration. Furthermore, both S-1--ATP and S-1--ADP.Pi (the state occurring immediately after the initial Pi burst) appear to have the same binding constant to actin. Thus, at high actin concentration both S-1--ATP and S-1--ADP.Pi are in rapid equilibrium with their respective actin complexes. Although at very high actin concentration almost complete binding of S-1--ATP and S-1--ADP.Pi to actin occurs, there is no inhibition of the ATPase activity at high actin concentration. This strongly suggests that both the initial Pi burst and the slow rate-limiting transition which follows (the transition from the refractory to the nonrefractory state) occur at about the same rates whether the S-1 is bound to or dissociated from actin. We, therefore, conclude that S-1 does not have to dissociate from actin each time an ATP molecule is hydrolyzed.  相似文献   

3.
The fluorescent nucleotides epsilon ADP and epsilon ATP were used to study the binding and hydrolysis mechanisms of subfragment 1 (S-1) and acto-subfragment 1 from striated and smooth muscle. The quenching of the enhanced fluorescence emission of bound nucleotide by acrylamide analyzed either by the Stern-Volmer method or by fluorescence lifetime measurements showed the presence of two bound nucleotide states for 1-N6-ethenoadenosine triphosphate (epsilon ATP), 1-N6-ethenoadenosine diphosphate (epsilon ADP), and epsilon ADP-vanadate complexes with S-1. The equilibrium constant relating the two bound nucleotide states was close to unity. Transient kinetic studies showed two first-order transitions with rate constants of approximately 500 and 100 s-1 for both epsilon ATP and epsilon ADP and striated muscle S-1 and 300 and 30 s-1, respectively, for smooth muscle S-1. The hydrolysis of [gamma-32P] epsilon ATP yielded a transient phase of small amplitude (less than 0.2 mol/site) with a rate constant of 5-10 s-1. Consequently, the hydrolysis of the substrate is a step in the mechanism which is distinct from the two conformational changes induced by the binding of epsilon ATP. An essentially symmetric reaction mechanism is proposed in which two structural changes accompany substrate binding and the reversal of these steps occurs in product release. epsilon ATP dissociates acto-S-1 as effectively as ATP. For smooth muscle acto-S-1, dissociation proceeds in two steps, each accompanied by enhancement of fluorescence emission. A symmetric reaction scheme is proposed for the acto-S-1 epsilon ATPase cycle. The very similar kinetic properties of the reactions of epsilon ATP and ATP with S-1 and acto-S-1 suggest that two ATP intermediate states also occur in the ATPase reaction mechanism.  相似文献   

4.
The rate-limiting step in the actomyosin adenosinetriphosphatase cycle   总被引:3,自引:0,他引:3  
We have previously shown that myosin does not have to detach from actin during each cycle of ATP hydrolysis. In the present study, using the A-1 isoenzyme of myosin subfragment 1, we have investigated the nature of the rate-limiting steps in the ATPase cycle. Our results show that, at 15 degrees C, at very low ionic strength, KATPase determined from the double-reciprocal plot of ATPase activity vs. actin concentration is more than 6-fold stronger than KBINDING determined by directly measuring the binding of A-1 myosin subfragment 1 to actin during steady-state ATP hydrolysis. Computer modeling shows that this large difference between KATPase and KBINDING is not compatible with Pi release being the rate-limiting step in the ATPase cycle. If Pi release is not rate limiting, it is possible that the ATP hydrolysis step, itself, is rate limiting. However, this predicts that, at high actin concentration, the value of the initial Pi burst should be close to zero. Therefore, we measured the magnitude of the initial Pi burst in the presence of actin, using both direct measurement and measurement of relative fluorescence magnitude. Our results suggest that the magnitude of the initial Pi burst in the presence of actin is considerably higher than would be expected if the ATP hydrolysis step were the rate-limiting step in the ATPase cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Regulation in striated muscles primarily involves the effect of changes in the free calcium concentration on the interaction of subfragment-1 (S-1) with the actin-tropomyosin-troponin complex (henceforth referred to as [acto]R). At low concentrations of free Ca++ the rate of ATP hydrolysis by (acto)R S-1 can be as much as 20-fold lower than that in the presence of high free Ca++, even though the binding of S-1 to (actin)R in the presence of ATP is virtually independent of the calcium concentration. This implies that the mechanism of regulation involves a kinetic transition between actin-bound states, rather than the result of changes in actin binding. In the current work, we have investigated the fluorescence transient that occurs with the binding and hydrolysis of ATP both at low and high free [Ca++]. The magnitude of this transition at low free [Ca++] is higher than at high free [Ca++]. At low free [Ca++], the rate of the fluorescence transient either stays constant or decreases slightly with increasing free actin concentrations, but at high free [Ca++] the rate increases slightly with increasing free actin concentration. The observed changes in rate are not great enough to be of regulatory importance. The results of the fluorescence transient experiments together with the binding studies performed at steady state also show that neither the binding of M.ATP or M.ADP.Pi to (actin)R is appreciably Ca++ sensitive. These data imply that an additional step (or steps) in the ATPase cycle, i.e., other than the burst transition, must be regulated by calcium.  相似文献   

6.
《The Journal of cell biology》1983,96(6):1761-1765
Tomato activation inhibiting protein (AIP) is a molecule of an apparent molecular weight of 72,000 that co-purifies with tomato actin. In an assay system containing rabbit skeletal muscle F-actin and rabbit skeletal muscle myosin subfragment-1 (myosin S-1), tomato AIP dissociated the acto-S-1 complex in the absence of Mg+2ATP and inhibited the ability of F-actin to activate the low ionic strength Mg+2ATPase activity of myosin S-1. At a molar ratio of 5 actin to 1 AIP, a 50% inhibition of the actin-activated Mg+2ATPase activity of myosin S-1 was observed. The inhibition can be reversed by raising the calcium ion concentration to 1 X 10(-5) M. The AIP had no effect on the basal low ionic strength Mg+2ATPase activity of myosin S-1 in the absence of actin. The protein did not bind directly to actin nor did it cause depolymerization or aggregation of F-actin but appeared, instead, to interact with the actin binding site on myosin S-1. Since AIP is a potent, reversible inhibitor of the rabbit acto-S-1 ATPase activity, it is postulated that it may be responsible for the low levels of actin activation exhibited by tomato F-actin fractions containing the AIP.  相似文献   

7.
Although there is agreement that actomyosin can hydrolyze ATP without dissociation of the actin from myosin, there is still controversy about the nature of the rate-limiting step in the ATPase cycle. Two models, which differ in their rate-limiting step, can account for the kinetic data. In the four-state model, which has four states containing bound ATP or ADP . Pi, the rate-limiting step is ATP hydrolysis (A . M . ATP in equilibrium A . M . ADP . Pi). In the six-state model, which we previously proposed, the rate-limiting step is a conformational change which occurs before Pi release but after ATP hydrolysis. A difference between these models is that only the four-state model predicts that almost no acto-subfragment 1 (S-1) . ADP . Pi complex will be formed when ATP is mixed with acto . S-1. In the present study, we determined the amount of acto . S-1 . ADP . Pi formed when ATP is mixed with S-1 cross-linked to actin [Mornet, D., Bertrand, R., Pantel, P., Audemard, E., & Kassab, R. (1981) Nature (London) 292, 301-306]. The amount of acto . S-1 . ADP . Pi was determined both from intrinsic fluorescence enhancement and from direct measurement of Pi. We found that at mu = 0.013 M, the fluorescence magnitude in the presence of ATP of the cross-linked actin . S-1 preparation was about 50% of the value obtained with S-1, while at mu = 0.053 M the fluorescence magnitude was about 70% of that obtained with S-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
J A Evans  E Eisenberg 《Biochemistry》1989,28(19):7741-7747
Considerable effort has been devoted to understanding the mechanism of 18O exchange in skinned skeletal and insect muscle fibers. However, a full understanding of the mechanism of 18O exchange in muscle fibers requires an understanding of the mechanism of 18O exchange in the simpler in vitro systems employing myosin subfragment 1 (S-1) and heavy meromyosin (HMM). In the present study, using both S-1 and S-1 covalently cross-linked to actin, we show first that over a wide range of temperature, ionic strength, and actin concentration there is only one pathway of 18O exchange with S-1. This is also the case with HMM except at very low ionic strength and low actin concentration, and even here, the data can be explained if 20% of the HMM is denatured in such a way that it shows no 18O exchange. Our results also show that actin markedly decreases the rate of 18O exchange. If it is assumed that Pi release is rate limiting, the four-state kinetic model of the actomyosin ATPase cannot fit these 18O exchange data. However, if it is assumed that the ATP hydrolysis step is rate limiting and Pi release is very fast, the four-state kinetic model can qualitatively fit these data although the fit is not perfect. A better fit to the 18O exchange data can be obtained with the six-state kinetic model of the actomyosin ATPase, but this fit requires the assumption that, at saturating actin concentration, the rate of Pi rotation is about 9-fold slower than the rate of reversal of the ATP hydrolysis step.  相似文献   

9.
The main purpose of this study was to determine whether potentiation of acto-S-1 ATPase activity (activity higher than that obtained with tropomyosin-free actin) could be caused by nucleotide-containing acto-S-1 complexes. In addition, we wanted to know whether these complexes also have a positive cooperative effect on their own apparent binding constant under conditions where nucleotide-free acto-S-1 complexes cause potentiation of ATPase activity. Using calcium-saturated troponin-tropomyosin actin filaments, we observed potentiation of ATPase activity in the presence of 5.0 mM magnesium 5'-adenylyl imidodiphosphate (MgAMPPNP) and calculated that the ability of acto-S-1-AMPPNP complexes to cause potentiation must have been very similar to that of nucleotide-free acto-S-1 complexes. In extension of earlier studies, potentiated acto-S-1 ATPase activity was characterized by an increase in Vmax and, as observed before, a lowering of the apparent Km for subfragment 1 (S-1). Under conditions similar to those that produce the potentiation of acto-S-1 ATPase activity, the apparent actin binding constant of nucleotide-free S-1 was increased about 3-5 fold while the apparent binding constant of AMPPNP to actin-bound S-1 was reduced to (2.5-10) x 10(2) M-1 compared to that of about (1-5) x 10(3) M-1 for S-1 bound to tropomyosin-free actin. Under the same conditions, the apparent binding constant of S-1-AMPPNP to actin was not increased. We suggest that a potentiated state of the tropomyosin actin filament is produced by the cooperative action of acto-S-1 or acto-S-1-AMPPNP complexes. The potentiated state is characterized by an increase in the Vmax of the acto-S-1 ATPase activity, increased binding constants for S-1 and S-1-ADP, and increased binding of tropomyosin to actin.  相似文献   

10.
Bertrand R  Derancourt J  Kassab R 《Biochemistry》2000,39(47):14626-14637
We have synthesized the luminescent and fluorescent lanthanide chelate S-(2-nitro-5-thiobenzoic acid)cysteaminyldiethylenetriaminepentaacetate-5-[(2-aminoethyl)am ino ]naphthalene-1-sulfonic acid as well as the fluorescent analogue S-(2-nitro-5-thiobenzoic acid)cysteaminyl-5-carboxyfluorescein using the procedure we recently described [Bertrand, R., Capony, J.-P., Derancourt, J., and Kassab, R. (1999) Biochemistry 38, 11914-11925]. Both mixed disulfides react with the skeletal myosin motor domain (S-1) as actin site-directed agents and label exclusively and stoichiometrically Cys 540 in the hydrophobic strong actin binding helix-loop-helix motif, causing only a 1.9-2.4-fold decrease in the V(max) for acto-S-1 ATPase. The covalently attached cysteaminyl probe side chain spans maximally 17 and 8 A, respectively, and the fluorophores have different polarity, volume, and flexibility. Thus, they may provide complementary spectroscopic information on the environmental properties of this critical actin binding region. Here, we have analyzed by extrinsic fluorescence spectroscopy S-1 derivatized with the fluorescein label or with the Tb(3+) or Eu(3+) chelate of the other label to assess the conformational transitions precisely occurring at this site upon interaction with F-actin, nucleotides, or phosphate analogues. For either label, specific spectral changes of significant amplitude were obtained, identifying at least two major structural states. One was mediated by rigor binding of F-actin in the absence or presence of MgADP. It was abolished by MgATP, and it was not produced by the binding of nonpolymerizable G-actin. A modeling of the corresponding changes in the intensity and lambda(max) of the fluorescence emission spectra, achieved using the fluorescent adducts of 2-mercaptoethanol in varying concentrations of dimethylformamide, illustrates the predicted apolar nature of the strong acto-S-1 interface. A second state was promoted by the binding of ATP, AMP-PNP, ADP.AlF4, ADP. BeFx, or PP(i). It should be prevalent in the weak acto-S-1 binding complexes. The accompanying fluorescence intensity reduction, observed with each label, in both the absence and presence of F-actin, would result from a specific modification by these ligands of the probe orientation and/or solvent accessibility as suggested by acrylamide quenching experiments. It could represent the spectral manifestation of the predicted allosteric linkage from the ATPase site to the strong actin binding site of S-1 that modulates the acto-S-1 affinity. Our study offers the basis necessary for further detailed spectroscopic investigations on the conformational dynamics in solution of the stereospecific and hydrophobic actin binding motif during the skeletal cross-bridge cycle.  相似文献   

11.
F-Actin was partially cross-linked to myosin subfragment-1 (S-1) at various molar ratios (r = S-1/actin) with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The cross-linked acto-S-1 ATPase showed so called "super-activation," Vx. S-1 was added further to the cross-linked acto-S-1 and the ATPase activity, Vy, was measured. Since the added S-1 can interact only with the bare actin protomers within the cross-linked actin filament, the difference, delta V = Vy - Vx - Vs (where Vs is the ATPase activity of the additional S-1 alone), can indicate the state of the bare actin protomers while the cross-linked acto-S-1 is hydrolyzing ATP. With increasing r, delta V decreased much more rapidly than delta Vo(1 - r) (where delta Vo is delta V at r = 0) and reached a minimum around r = 0.15. As r increased further, delta V approached the level of delta Vo(1 - r). When SH1/SH2-blocked S-1 was cross-linked to F-actin, delta V decreased according to delta Vo(1 - r). Therefore, the large reduction of delta V, observed when intact S-1 was cross-linked, was coupled to the high ATPase activity of the cross-linked acto-S-1. Combining these data with other kinetic data, we could deduce that structural distortion in a cross-linked actin induced by the ATPase reaction of the S-1 partner propagated over several bare actin protomers along the filament and reduced their affinity for the S-1-ADP-Pi complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Myosin IIIA is expressed in photoreceptor cells and thought to play a critical role in phototransduction processes, yet its function on a molecular basis is largely unknown. Here we clarified the kinetic mechanism of the ATPase cycle of human myosin IIIA. The steady-state ATPase activity was markedly activated approximately 10-fold with very low actin concentration. The rate of ADP off from actomyosin IIIA was 10 times greater than the overall cycling rate, thus not a rate-determining step. The rate constant of the ATP hydrolysis step of the actin-dissociated form was very slow, but the rate was markedly accelerated by actin binding. The dissociation constant of the ATP-bound form of myosin IIIA from actin is submicromolar, which agrees well with the low K(actin). These results indicate that ATP hydrolysis predominantly takes place in the actin-bound form for actomyosin IIIA ATPase reaction. The obtained K(actin) was much lower than the previously reported one, and we found that the autophosphorylation of myosin IIIA dramatically increased the K(actin), whereas the V(max) was unchanged. Our kinetic model indicates that both the actin-attached hydrolysis and the P(i) release steps determine the overall cycle rate of the dephosphorylated form. Although the stable steady-state intermediates of actomyosin IIIA ATPase reaction are not typical strong actin-binding intermediates, the affinity of the stable intermediates for actin is much higher than conventional weak actin binding forms. The present results suggest that myosin IIIA can spend a majority of its ATP hydrolysis cycling time on actin.  相似文献   

13.
M A Geeves  D R Trentham 《Biochemistry》1982,21(11):2782-2789
The time course of formation and decay of protein-bound adenosine 5'-triphosphate (ATP) has been monitored during single turnovers of the myosin subfragment 1 ATPase with nonspectrophotometric techniques. The rate constant controlling the ATP cleavage step increases markedly with ionic strength, so that in low salt the protein--ATP complex is observed transiently at higher concentration than the protein-products complex. The kinetics of the ATP cleavage step in a single turnover of the actosubfragment 1 ATPase indicates that under appropriate conditions this step is partially rate limiting during overall steady-state ATPase activity. It follows that a binary subfragment 1-ATP complex is a significant component of the steady-state intermediate of the actosubfragment 1 ATPase. Transient kinetic studies of ATP and adenosine 5'-(3-thiotriphosphate) [ATP (gamma S)] binding show directly that a substrate-induced protein isomerization accompanies ligand binding. The rate constant of the isomerization is 170 s-1 at pH 7.0, 15 degrees C, and 0.01 M ionic strength. Under these conditions nucleotide binding appears to be accompanied by a protein fluorescence increase that is 50% of the increase associated with magnesium-dependent steady-state ATPase activity.  相似文献   

14.
We have synthesized the mixed disulfide, S-(2-nitro-5-thiobenzoic acid) cysteaminyl-EDTA, using a rapid procedure and water-soluble chemistry. Its disulfide-thiol exchange reaction with rabbit myosin subfragment-1 (S-1), analyzed by spectrophotometry, ATPase assays, and peptide mapping, led to the incorporation of the cysteaminyl-EDTA group into only Cys 540 on the heavy chain and into the unique cysteine on the alkali light chains. The former thiol, residing in the strong actin binding site, reacted at a much faster rate with a concomitant 3-fold decrease in the V(max) for acto-S-1 ATPase but without change in the essential enzymatic functions of S-1. Upon chelation of Fe(3+) ions to the Cys 540-bound EDTA and incubation of the S-1 derivative-Fe complex with ascorbic acid at pH 7.5, the 95 kDa heavy chain underwent a conformation-dependent, single-cut oxidative fragmentation within 5-15 A of Cys 540. Three pairs of fragments were formed which, after specific fluorescent labeling and SDS-PAGE, could be positioned along the heavy chain sequence as 68 kDa-26 kDa, 62 kDa-32 kDa, and 54 kDa-40 kDa. Densitometric measurements revealed that the yield of the 54 kDa-40 kDa pair of bands, but not that for the two other pairs, was very sensitive to S-1 binding to nucleotides or phosphate analogues as well as to F-actin. In binary complexes, all the former ligands specifically lowered the yield to 40% of S-1 alone, roughly in the following order: ADP = AMP-PNP > ATP = ADP.AlF(4) > ADP.BeF(x)() > PP(i). By contrast, rigor binding to F-actin increased the yield to 130%. In the ternary acto-S-1-ADP complex, the yield was again reduced to 80%, and it fell to 25% in acto-S-1-ADP.AlF(4), the putative transition state analogue complex of the acto-S-1 ATPase. These different quantitative changes reflect distinct ligand-induced conformations of the secondary structure element whose scission generates the 54 kDa-40 kDa species. According to the S-1 crystal structure, this element could be unambiguously assigned to the switch II helix (residues 475-507) whose N-terminus lies 14.2 A from Cys 540 and would include the ligand-responsive cleavage site. This motif is thought to be crucial for the transmission of sub-nanometer structural changes at the ATPase site to both the actin site and the lever arm domain during energy transduction. Our study illustrates this novel, actin site-specific chemical proteolysis of S-1 as a direct probe of the switch II helix conformational transitions in solution most likely associated with the skeletal cross-bridge cycle.  相似文献   

15.
The synthetic heptapeptide, Ile-Arg-Ile-Cys-Arg-Lsy-Gly-ethoxy, an analog of one of the actin binding sites on myosin head (S-site) (Suzuki, R., Nishi, N., Tokura, S., and Morita, F. (1987) J. Biol. Chem. 262, 11410-11412) was found to completely inhibit the acto-S-1 (myosin subfragment 1) ATPase activity. The effect of the heptapeptide on the binding ability of S-1 for F-actin was determined by an ultracentrifugal separation. Results indicated that the heptapeptide scarcely dissociated the acto-S-1 complex during the ATPase reaction. Consistent results were obtained from the acto-S-1 ATPase activities determined as a function of S-1 concentrations in the absence or presence of the heptapeptide at a fixed F-actin concentration. The heptapeptide reduced the maximum acto-S-1 ATPase activity without affecting the apparent dissociation constant of the acto-S-1 complex. The heptapeptide bound by a site on actin complementary to the S-site probably inhibits the activation of S-1 ATPase by F-actin. These results suggest that S-1 ATPase is necessary to rebind transiently with F-actin at the S-site in order to be activated by F-actin. This is consistent with the activation mechanism proposed assuming the two actin-binding sites on S-1 ATPase (Katoh, T., and Morita F. (1984) J. Biochem. (Tokyo) 96, 1223-1230).  相似文献   

16.
Kinetic mechanism of myofibril ATPase.   总被引:18,自引:5,他引:13       下载免费PDF全文
The kinetic mechanism of myofibril ATPase was investigated using psoas and mixed back muscle over a range of ionic strengths. Myofibrils were labeled with pyrene iodoacetamide to measure the rate constants for the binding of ATP and formation of the weakly attached state. The velocity of shortening was measured by stopping the contraction at various times by mixing with pH 4.5 buffer. The transient and steady-state rates of ATP hydrolysis were measured by the quench flow method. The results fitted the kinetic scheme [formula: see text] The rate constants (or equilibrium constants for steps 1 and 6) were obtained for the six steps. k5 was calculated from the KM for shortening velocity, K1, and k2. The rate constants were essentially equal for myofibrils and acto-S-1 at low ionic strength. Increasing the ionic strength up to 100 mM in NaCl increased the rate of the hydrolysis step and the size of the phosphate burst and the effective rate of product release became the rate-limiting step. The step calculated from the velocity of shortening, k5, and k2 is 15 nm, based on a model in which step 4 is the force-generating step.  相似文献   

17.
The rates of the elementary steps of the actomyosin ATPase reaction were measured using the myosin subfragment-1 of porcine left ventricular muscle. The results could be explained only by the two-route mechanism for actomyosin ATPase (Inoue, Shigekawa, & Tonomura (1973) J. Biochem. 74, 923-934), in which ATP is hydrolyzed via routes with or without accompanying dissociation of actomyosin. The dependence on the F-actin concentration of the rate of the acto-S-1 ATPase reaction in the steady state was measured in 5 mM KCl at 20 degrees C. The maximal rate, Vmax, and the dissociation constant for F-actin of the ATPase, Kd, were 3.0 s-1 and 2.2 mg/ml, respectively. The Kd value was almost the same as that determined from the extent of binding of S-1 with F-actin during the ATPase reaction. The rate of recombination of the S-1-phosphate-ADP complex, S-1ADPP, with F-actin, vr, was lower than that of the ATPase reaction in the steady state. Thus, ATP is mainly hydrolyzed without accompanying dissociation of acto-S-1 into S-1ADPP and F-actin. In the cardiac acto-S-1 ATPase reaction, the rate of the ATPase reaction in the steady state and that of recombination of S-1ADPP with F-actin were about 1/5 those of the skeletal acto-S-1 ATPase reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The oxygen exchange occurring during the acto-S-1 ATPase reaction was analyzed based on the distribution of 18O-labeled species of P1 using [gamma-18O]ATP as a substrate. Evidence was found for the two-route mechanism in which ATP is hydrolyzed via the dissociation of acto-S-1 into F-actin and the S-1-phosphate-ADP complex, S-1PADP, and their recombination, and also hydrolyzed without the dissociation of acto-S-1 (Inoue, A., Shigekawa, M., & Tonomura, Y. (1973) J. Biochem. 74, 923-934; Inoue, A., Ikebe, M., & Tonomura, Y. (1980) J. Biochem. 88, 1663-1677). When ATP was mainly hydrolyzed without the dissociation of acto-S-1, the extent of oxygen exchange was low. When ATP was hydrolyzed by both routes, the distribution of product P1 with 3, 2, 1, and 0 18O atoms showed a mixture resulting from low and high oxygen exchange. The rate of ATPase without the dissociation of acto-S-1 can be estimated from the rate of the overall reaction (v), the rate of recombination of S-1PADP with F-actin (vr), and the extent of dissociation of acto-S-1 (a). The distribution of the P1 species measured was almost equal to that calculated from the ratio of ATP hydrolysis via the two pathways as avr and v-avr, respectively. This result indicates that the rates of the dissociation of acto-S-1PADP into S-1PADP and F-actin and their recombination are much lower than the rate of decomposition of the acto-S-1PADP complex into acto-S-1 + ADP + Pi.  相似文献   

19.
Mutations of myosin VIIA cause deafness in various species from human and mice to Zebrafish and Drosophila. We analyzed the kinetic mechanism of the ATPase cycle of Drosophila myosin VIIA by using a single-headed construct with the entire neck domain. The steady-state ATPase activity (0.06 s(-1)) was markedly activated by actin to yield V(max) and K(ATPase) of 1.72 s(-1) and 3.2 microm, respectively. The most intriguing finding is that the ATP hydrolysis predominantly takes place in the actin-bound form (actin-attached hydrolysis) for the actomyosin VIIA ATPase reaction. The ATP hydrolysis rate was much faster for the actin-attached form than the dissociated form, in contrast to other myosins reported so far. Both the ATP hydrolysis step and the phosphate release step were significantly faster than the entire ATPase cycle rate, thus not rate-determining. The rate of ADP dissociation from actomyosin VIIA was 1.86 s(-1), which was comparable with the overall ATPase cycle rate, thus assigned to be a rate-determining step. The results suggest that Drosophila myosin VIIA spends the majority of the ATPase cycle in an actomyosin.ADP form, a strong actin binding state. The duty ratio calculated from our kinetic model was approximately 0.9. Therefore, myosin VIIA is classified to be a high duty ratio motor. The present results suggested that myosin VIIA can be a processive motor to serve cargo trafficking in cells once it forms a dimer structure.  相似文献   

20.
The mechanism of ATP hydrolysis by myosin and actomyosin was investigated for the four major classes of vertebrate muscles: fast white (posterior latissimus dorsi), slow red (anterior latissimus dorsi), cardiac and smooth (gizzard). The kinetic behavior of all classes of muscle was consistent with the scheme developed previously for rabbit fast white muscle, but quantitative differences were observed for the rate constants of some of the steps in the hydrolysis cycle. The rate of the hydrolysis step of myosin subfragment-1 was similar for the striated muscles and two to three times smaller for smooth muscle. Two isomerizations of the enzyme occurred in the pathway leading to the formation of the myosin-products intermediate. The rate of dissociation of acto S–1 by ATP was slower for slow muscles and a maximum rate was observed at low temperature. The rate of association of the S-1-products intermediate with actin was equal to the turnover rate of acto S–1 ATPase at low concentrations of actin. The rate of dissociation of ADP from an acto S–1-ADP complex was also much slower for slow muscle. It was shown by Barany (1967) that the maximum turnover rate of actomyosin ATPase (VM) is proportional to the velocity of contraction of the muscle. The only step in the mechanism that is correlated with VM is the apparent second-order rate constant for the formation of a complex of the S-1-product state with actin. The evidence is discussed in terms of a mechanism in which the release of reaction products from actomyosin is the step that is of primary importance in determining the value of VM and the velocity of contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号