首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Texture discrimination is sometimes asymmetrical; texture A embedded in texture B is more easily detected than texture B embedded in texture A. Furthermore, texture discrimination often improves as the disparate texture is moved into the periphery; this has been referred to as the central performance drop (CPD). The interaction of these interesting and counter-intuitive aspects of texture discrimination has received very little attention. Using four stimulus pattern pairs that were previously shown to elicit asymmetrical texture discrimination, we examined texture discrimination asymmetries as a function of eccentricity. We found three patterns of results; (i) both texture arrangements (A in B, and B in A) elicit a CPD but do not show an asymmetry, (ii) both texture arrangements elicit a monotonic decrease in performance with eccentricity (i.e. no CPD) but an asymmetry is seen at each eccentricity and (iii) discrimination asymmetries are minimal at fixation and in the far periphery and maximal about 3 degrees from fixation with a CPD generally shown for the 'stronger' member of the pair. These results emphasize that one cannot talk about the 'discriminability' of a particular texture pair without reference to the arrangement of the two textures and the eccentricity of presentation.  相似文献   

2.
 This article presents a computational model of early visual information processing that attempts to account for the central performance drop (CPD) in texture segmentation. CPD is the finding that detection performance on short stimulus displays of line textures using orientation differences to set off the target is not maximal at the foveal center but in parafoveal areas. A comparison between a simulation and psychophysical experimental data supported the assumption that the CPD may be explained by properties of spatial frequency channels whose band-pass filter characteristics are not constant over the retina but differ with eccentricity in a defined manner. The model provided satisfactory predictions of experimental data based on densely or widely spaced line elements in texture fields. It is concluded that preattentive texture analysis might be performed by a relatively small number of simple spatial filters. Received: 14 November 1996 / Accepted in revised form: 3 June 1997  相似文献   

3.
4.
Disruptions of natural texture appearance are known to negatively impact performance in texture discrimination tasks, for example, such that contrast-negated textures, synthetic textures, and textures depicting abstract art are processed less efficiently than natural textures. Presently, we examined how visual ERP responses (the P1 and the N1 in particular) were affected by violations of natural texture appearance. We presented participants with images depicting either natural textures or synthetic textures made from the original stimuli. Both stimulus types were additionally rendered either in positive or negative contrast. These appearance manipulations (negation and texture synthesis) preserve a range of low-level features, but also disrupt higher-order aspects of texture appearance. We recorded continuous EEG while participants completed a same/different image discrimination task using these images and measured both the P1 and N1 components over occipital recording sites. While the P1 exhibited no sensitivity to either contrast polarity or real/synthetic appearance, the N1 was sensitive to both deviations from natural appearance. Polarity reversal and synthetic appearance affected the N1 latency differently, however, suggesting a differential impact on processing. Our results suggest that stages of visual processing indexed by the P1 and N1 are sensitive to high-order statistical regularities in natural textures and also suggest that distinct violations of natural appearance impact neural responses differently.  相似文献   

5.
 Texture-discrimination algorithms have often been tested on images containing either mosaics of synthetic textures or artificially created mosaics of real textures – in any case, images in which most of the changes in intensity can be ascribed to the textures themselves. However, real images are not formed like this and may contain steep gradations in intensity which have nothing to do with local texture, such as those caused by incident shadows. A texture discrimination algorithm based on linear filters can fail in the presence of these strong gradations, as they may easily contain an order of magnitude more energy than the gradations in intensity due to texture in the image per se. In these cases, the mechanism may become responsive only to strong luminance effects, and not to texture. I have found that good performance on natural images containing texture can only be obtained from a filter-based texture detection scheme if it includes a stage which attempts to bring large intensity gradients within bounds. The exact nature of the best precompensator appears to depend somewhat on the way the filter outputs are processed. The fit to psychophysical data and the implications for more detailed models of human texture processing will be discussed. Received: 3 May 1993/Accepted in revised form: 7 June 1993  相似文献   

6.
A problem confronted by visual systems is that of discriminating textures. It appears that a recently described class of orientation-tuned neurones in the bee brain embody properties of mechanisms used by humans to discriminate complex textures. In particular these mechanisms would permit bees to discriminate a large range of textures by giving bees access to information related to higher-order correlations between texture elements. To determine if bees can exploit such textural information we have conducted behavioural experiments employing iso-dipole textures, that statistically speaking, differ from binary noise textures, and each other, only in their third-order correlation functions. While these textures are not themselves of any ethological significance their special properties permit us to show that bees can potentially use a very large palette of textures to classify textured objects. In electrophysiological experiments we demonstrate the requisite contrast sign invariance (rectification) of the orientation-selective neurones' responses and discuss other similarities of these neurones' responses to models accounting for human texture discrimination. Accepted: 7 October 1998  相似文献   

7.
Ninio J 《Spatial Vision》2007,20(6):561-577
Camouflaging textures containing as in real life edges at all orientations, were designed by computer, then manually, for use in stereoscopic vision studies. In the manual procedure, the starting point is either a set of photographs (for instance, of barks) or a manually produced first-generation texture. Then patches are cut zigzagging and assembled into successive generations of textures. The absence of extended edges--straight or curved--and the local heterogeneity of the texture are important camouflaging factors, allowing curved surfaces to be covered with these textures without visible join. Small areas of a texture often suggest a scene, but when the areas are assembled, the suggestive power is lost, and the statistical properties of the texture then dominate. However, when symmetry is introduced (as in the Rorschach test), meaningful scenes emerge again.  相似文献   

8.
Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design.  相似文献   

9.
Considerable information about the texture of objects can be perceived remotely through a probe. It is not clear, however, how texture perception with a probe compares with texture perception with the bare finger. Here we investigate the perception of a variety of textured surfaces encountered daily (e.g., corduroy, paper, and rubber) using the two scanning modes—direct touch through the finger and indirect touch through a probe held in the hand—in two tasks. In the first task, subjects rated the overall pair-wise dissimilarity of the textures. In the second task, subjects rated each texture along three continua, namely, perceived roughness, hardness, and stickiness of the surfaces, shown previously as the primary dimensions of texture perception in direct touch. From the dissimilarity judgment experiment, we found that the texture percept is similar though not identical in the two scanning modes. From the adjective rating experiments, we found that while roughness ratings are similar, hardness and stickiness ratings tend to differ between scanning conditions. These differences between the two modes of scanning are apparent in perceptual space for tactile textures based on multidimensional scaling (MDS) analysis. Finally, we demonstrate that three physical quantities, vibratory power, compliance, and friction carry roughness, hardness, and stickiness information, predicting perceived dissimilarity of texture pairs with indirect touch. Given that different types of texture information are processed by separate groups of neurons across direct and indirect touch, we propose that the neural mechanisms underlying texture perception differ between scanning modes.  相似文献   

10.
Considerable information about the texture of objects can be perceived remotely through a probe. It is not clear, however, how texture perception with a probe compares with texture perception with the bare finger. Here we investigate the perception of a variety of textured surfaces encountered daily (e.g., corduroy, paper, and rubber) using the two scanning modes - direct touch through the finger and indirect touch through a probe held in the hand - in two tasks. In the first task, subjects rated the overall pair-wise dissimilarity of the textures. In the second task, subjects rated each texture along three continua, namely, perceived roughness, hardness, and stickiness of the surfaces, shown previously as the primary dimensions of texture perception in direct touch. From the dissimilarity judgment experiment, we found that the texture percept is similar though not identical in the two scanning modes. From the adjective rating experiments, we found that while roughness ratings are similar, hardness and stickiness ratings tend to differ between scanning conditions. These differences between the two modes of scanning are apparent in perceptual space for tactile textures based on multidimensional scaling (MDS) analysis. Finally, we demonstrate that three physical quantities, vibratory power, compliance, and friction carry roughness, hardness, and stickiness information, predicting perceived dissimilarity of texture pairs with indirect touch. Given that different types of texture information are processed by separate groups of neurons across direct and indirect touch, we propose that the neural mechanisms underlying texture perception differ between scanning modes.  相似文献   

11.
In Part I Caelli and Julesz generated texture pairs of 4-disk micropatterns with identical dipole statistics. They found that this iso-dipole constraint could not prevent the quasi-collinearity of certain disk elements which, in turn, yielded effortless discrimination. They proposed two classes of perceptual analyzers to explain discrimination with these micropatern textures: Class A, corresponding to those which detect dipole differences; while Class B detectors, such as the quasi-collinear detector (QCD), acted when isodipole textures were presented. In this paper we show several new methods for generating iso-dipole textures with micropatterns consisting of 5 or more disks or non-disk shaped elements, and we report the discovery of two other Class B detectors, a corner detector (using a 6-disk method), and a closure detector (with 8–11 disk micropatterns). These QCD, corner, and closure detectors were verified by examining several hundred iso-dipole texture pairs. It appears that iso-dipole constraints make ineffective all other feature analyzers involved in effortless texture discrimination than the Class B types. These figural properties of collinearity, corners, and closure can be perceived without scrutiny and are precursors of form perception.  相似文献   

12.
In this paper we consider some spatial and temporal properties of visual textures which either inhibit or enhance their discrimination. From exposure time and texture mixing studies two findings emerge. First, it is clear that the spatial summation process involved in texture discrimination has a time course consistent with counting models for decision making. Secondly, the receptive field structures of salient texture features, in particular-orientation, seem to involve simple excitatory center and inhibitory surround mechanisms.This project was supported by a grant from the Australian Research Grant Council. I would like to thank Ms. Judy McKimm for aiding in the collection of experimental data  相似文献   

13.
In backward visual masking, it is common to find that the mask has its biggest effect when it follows the target by several tens of milliseconds. Research in the 1960s and 1970s suggested that masking effects were best characterized by the stimulus onset asynchrony (SOA) between the target and mask. In particular, one claim has been that the SOA for which masking is optimal remains fixed, even as target and mask durations varied. Experimental evidence supported this claim, and it was accepted as an SOA law. However, recent modeling (Francis, 1997) and experimental studies (Macknik and Livingstone, 1998) argued for new ISI (interstimulus interval) and STA (stimulus termination asynchrony) laws, respectively. This paper reports a mathematical analysis and experimental tests of the laws. The mathematical analysis demonstrates unsuspected relationships between the laws. The experiments test the predictions of the SOA, ISI, and STA laws. The data favor the ISI law over the SOA and the STA laws.  相似文献   

14.
In his long years of studying visual perception, Jacob Beck made many contributions. This article is a short review of one line of his research--that we shared in--and then a presentation of some results from on-going research down the same line. In the 1980s Beck and his colleagues introduced a new kind of visual stimulus: element-arrangement texture patterns. A series of studies with these patterns has shown that a model containing spatial-frequency and orientation-selective channels can explain many aspects of texture perception as long as two kinds of nonlinear processes are also included; the published studies are briefly summarized. The new results come from multiple objective tasks requiring the observer to make simple discriminations between second-order element-arrangement textures. Results with the objective tasks replicate previously published results using subjective ratings, and the use of the objective tasks allows us to explore several more fine-grained questions about complex (second-order) channels and normalization.  相似文献   

15.
The use of hexamethyldisilazane (HMDS) as a drying agent was investigated in the specimen preparation for scanning electron microscopy (SEM) imaging of bacterial surface colonization on sub-bituminous coal. The ability of microbes to biofragment, ferment and generate methane from coal has sparked interest in the initial attachment and colonization of coal surfaces. HMDS represents an attractive alternative to critical point drying (CPD) in the imaging of cells on coal, negating the need for expensive equipment. Coal is easily fragmented into sub-micron particles, which can be problematic in critical point drying procedures. In this study, both individual and aggregated cells appeared well shaped with minimal occurrence of flattened cells, signifying the suitability of HMDS in cell attachment studies on sub-bituminous coal. In the absence of glucose, microcolonies of short and long cells showed similar positive results using this method. EPS shrinkage found in microcolonies was inevitable, though this enabled observation of points of attachment between cells and with coal, which would be less effective if the EPS was intact. Overall the use of HMDS drying is preferred over the more commonly used CPD method as it is safer, cheaper and more practical.  相似文献   

16.
17.
Developing measures for rapid and early detection of disease re-emergence is important to perform science-based risk assessment of epidemic threats. In the past few years, several early warning signals (EWS) from complex systems theory have been introduced to detect impending critical transitions and extend the set of indicators. However, it is still debated whether they are generically applicable or potentially sensitive to some dynamical characteristics such as system noise and rates of approach to critical parameter values. Moreover, testing on empirical data has, so far, been limited. Hence, verifying EWS performance remains a challenge. In this study, we tackle this question by analyzing the performance of common EWS, such as increasing variance and autocorrelation, in detecting the emergence of COVID-19 outbreaks in various countries. Our work illustrates that these EWS might be successful in detecting disease emergence when some basic assumptions are satisfied: a slow forcing through the transitions and not-fat-tailed noise. In uncertain cases, we observe that noise properties or commensurable time scales may obscure the expected early warning signals. Overall, our results suggest that EWS can be useful for active monitoring of epidemic dynamics, but that their performance is sensitive to certain features of the underlying dynamics. Our findings thus pave a connection between theoretical and empirical studies, constituting a further step towards the application of EWS indicators for informing public health policies.  相似文献   

18.
Covalent lipid modifications mediate protein-membrane and protein-protein interactions and are often essential for function. The purposes of this study were to examine the Cys residues of the transmembrane domain of metallocarboxypeptidase D (CPD) that could be a target for palmitoylation and to clarify the function of this modification. CPD is an integral membrane protein that cycles between the trans Golgi network and the plasma membrane. We constructed AtT-20 cells stably expressing various constructs carrying a reporter protein (albumin) fused to a transmembrane domain and the CPD cytoplasmic tail. Some of the constructs contained the three Cys residues present in the CPD transmembrane region, while other constructs contained Ala in place of the Cys. Constructs carrying Cys residues were palmitoylated, while those constructs lacking the Cys residues were not. Because palmitoylation of several proteins affects their association with cholesterol and sphingolipid-rich membrane domains or caveolae, we tested endogenous CPD and several of the reporter constructs for resistance to extraction with Triton X-100. A construct containing the Cys residues of the CPD transmembrane domain was soluble in Triton X-100 as was endogenous palmitoylated CPD, indicating that palmitoylation does not target CPD to detergent-resistant membrane rafts. Interestingly, constructs of CPD that lack palmitoylation sites have an increased half-life, a slightly more diffuse steady-state localization, and a slower rate of exit from the Golgi as compared with constructs containing palmitoylation sites. Thus, the covalent attachment of palmitic acid to the Cys residues of CPD has a functional significance in the trafficking of the protein.  相似文献   

19.
20.
Rats discriminate surface textures using their whiskers (vibrissae), but how whiskers extract texture information, and how this information is encoded by the brain, are not known. In the resonance model, whisker motion across different textures excites mechanical resonance in distinct subsets of whiskers, due to variation across whiskers in resonance frequency, which varies with whisker length. Texture information is therefore encoded by the spatial pattern of activated whiskers. In the competing kinetic signature model, different textures excite resonance equally across whiskers, and instead, texture is encoded by characteristic, nonuniform temporal patterns of whisker motion. We tested these models by measuring whisker motion in awake, behaving rats whisking in air and onto sandpaper surfaces. Resonant motion was prominent during whisking in air, with fundamental frequencies ranging from approximately 35 Hz for the long Delta whisker to approximately 110 Hz for the shorter D3 whisker. Resonant vibrations also occurred while whisking against textures, but the amplitude of resonance within single whiskers was independent of texture, contradicting the resonance model. Rather, whiskers resonated transiently during discrete, high-velocity, and high-acceleration slip-stick events, which occurred prominently during whisking on surfaces. The rate and magnitude of slip-stick events varied systematically with texture. These results suggest that texture is encoded not by differential resonant motion across whiskers, but by the magnitude and temporal pattern of slip-stick motion. These findings predict a temporal code for texture in neural spike trains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号