首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetylation is indispensable for p53 activation   总被引:1,自引:0,他引:1  
Tang Y  Zhao W  Chen Y  Zhao Y  Gu W 《Cell》2008,133(4):612-626
The activation of the tumor suppressor p53 facilitates the cellular response to genotoxic stress; however, the p53 response can only be executed if its interaction with its inhibitor Mdm2 is abolished. There have been conflicting reports on the question of whether p53 posttranslational modifications, such as phosphorylation or acetylation, are essential or only play a subtle, fine-tuning role in the p53 response. Thus, it remains unclear whether p53 modification is absolutely required for its activation. We have now identified all major acetylation sites of p53. Although unacetylated p53 retains its ability to induce the p53-Mdm2 feedback loop, loss of acetylation completely abolishes p53-dependent growth arrest and apoptosis. Notably, acetylation of p53 abrogates Mdm2-mediated repression by blocking the recruitment of Mdm2 to p53-responsive promoters, which leads to p53 activation independent of its phosphorylation status. Our study identifies p53 acetylation as an indispensable event that destabilizes the p53-Mdm2 interaction and enables the p53-mediated stress response.  相似文献   

2.
Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function   总被引:22,自引:0,他引:22  
  相似文献   

3.
4.
5.
Appropriate regulation of DNA damage response is pivotal for maintaining genome stability. p53 as well as E2F-1 plays a critical role during DNA damage response, however, the physiological significance of their interaction has been elusive. In the present study, we found that E2F-1 has an inhibitory effect on p53 during adriamycin (ADR)-mediated DNA damage response. Upon ADR exposure, p53 and E2F-1 were markedly induced at protein and mRNA levels in p53-procifient U2OS and HCT116 cells, and formed a stable complex as examined by co-immunoprecipitation experiments. Of note, chromatin immunoprecipitation (ChIP) experiments revealed that ADR-mediated induction coincides with the efficient recruitment of p53 and E2F-1 onto the promoters of p53-target genes, such as p21(WAF1) and BAX. Subsequent RT-PCR and luciferase reporter assays demonstrated that E2F-1 strongly attenuates p53-dependent transactivation of p53-target genes. Importantly, siRNA-mediated knockdown of E2F-1 stimulated apoptosis in response to ADR, which was associated with an accelerated response of p21(WAF1) and BAX. Collectively, our present findings suggest that E2F-1 participates in p53-mediated DNA damage response and might have a checkpoint function to limit overactive p53.  相似文献   

6.
7.
The histone acetyl transferase Tip60 (HTATIP) shares many properties with the tumor suppressor p53 (TP53). Both proteins are involved in the cellular response to DNA damage, are subjected to proteasomal digestion following Mdm2-mediated ubiquitination, and accumulate after UV irradiation. We found here that knock-down of Tip60 affects the p53-dependent response following actinomycin D treatment, most likely because it inhibits p21 (CDKN1A) accumulation. Moreover, Tip60 is required for p53 to activate the endogenous p21 promoter, suggesting that it functions as a p53 co-activator. However, we also found that knock-down of Tip60 increases the turnover rate of p53 under normal growth conditions. Tip60 interferes with Mdm2-mediated degradation of p53, probably because it affects its subcellular localization. Taken together, our results suggest that Tip60 plays a double role in the p53 pathway: under normal growth conditions, Tip60 contributes to maintain a basal pool of p53 by interfering with its degradation; following DNA damage, Tip60 functions as p53 co-activator. That these two distinct roles are linked during the p53-dependent response is an attractive hypothesis.  相似文献   

8.
Although p53 is frequently mutated in human cancers, about 80% of human melanomas retain wild-type p53. Here we report that PHGDH, the key metabolic enzyme that catalyzes the rate-limiting step of the serine biosynthesis pathway, is a target of p53 in human melanoma cells. p53 suppresses PHGDH expression and inhibits de novo serine biosynthesis. Notably, upon serine starvation, p53-mediated cell death is enhanced dramatically in response to Nutlin-3 treatment. Moreover, PHGDH has been found recently to be amplified frequently in human melanomas. We found that PHGDH overexpression significantly suppresses the apoptotic response, whereas RNAi-mediated knockdown of endogenous PHGDH promotes apoptosis under the same treatment. These results demonstrate an important role of p53 in regulating the serine biosynthesis pathway through suppressing PHGDH expression and reveal serine deprivation as a novel approach to sensitize p53-mediated apoptotic responses in human melanoma cells.  相似文献   

9.
10.
11.
Nuclear and mitochondrial apoptotic pathways of p53   总被引:12,自引:0,他引:12  
Moll UM  Zaika A 《FEBS letters》2001,493(2-3):65-69
  相似文献   

12.
13.
We have identified a novel pro-apoptotic p53 target gene named CDIP (Cell Death Involved p53-target). Inhibition of CDIP abrogates p53-mediated apoptotic responses, demonstrating that CDIP is an important p53 apoptotic effector. CDIP itself potently induces apoptosis that is associated with caspase-8 cleavage, implicating the extrinsic cell death pathway in apoptosis mediated by CDIP. siRNA-directed knockdown of caspase-8 results in a severe impairment of CDIP-dependent cell death. In investigating the potential involvement of extrinsic cell death pathway in CDIP-mediated apoptosis, we found that TNF-alpha expression tightly correlates with CDIP expression, and that inhibition of TNF-alpha signaling attenuates CDIP-dependent apoptosis. We also demonstrate that TNF-alpha is upregulated in response to p53 and p53 inducing genotoxic stress, in a CDIP-dependent manner. Consistently, knockdown of TNF-alpha impairs p53-mediated stress-induced apoptosis. Together, these findings support a novel p53 --> CDIP --> TNF-alpha apoptotic pathway that directs apoptosis after exposure of cells to genotoxic stress. Thus, CDIP provides a new link between p53-mediated intrinsic and death receptor-mediated extrinsic apoptotic signaling, providing a novel target for cancer therapeutics aimed at maximizing the p53 apoptotic response of cancer cells to drug therapy.  相似文献   

14.
The Murine double-minute clone 2 (Mdm2) onco-protein is the principal regulator of the tumour suppressor, p53. Mdm2 acts as an E3-type ubiquitin ligase that mediates the ubiquitylation and turnover of p53 under normal, unstressed circumstances. In response to cellular stress, such as DNA damage, the Mdm2–p53 interaction is disrupted. Part of the mechanism of uncoupling p53 from Mdm2-mediated degradation involves hypo-phosphorylation of a cluster of phosphorylated serine residues in the central acidic domain of Mdm2. Here, we show that two of the residues within this domain that are phosphorylated in vivo, Ser-260 and Ser-269, are phosphorylated by CK2 in vitro. Treatment of cells with the CK2 inhibitor, 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), leads to the induction of p53 and downstream targets of p53 including Mdm2 itself and p21. These data are consistent with the idea that CK2-mediated phosphorylation of Mdm2 may regulate Mdm2-mediated p53 turnover.  相似文献   

15.
Sen N  Satija YK  Das S 《Molecular cell》2011,44(4):621-634
Metabolic stress results in p53 activation, which can trigger cell-cycle arrest, ROS clearance, or apoptosis. However, what determines the p53-mediated cell fate decision upon metabolic stress is not very well understood. We show here that PGC-1α binds to p53 and modulates its transactivation function, resulting in preferential transactivation of proarrest and metabolic target genes. Thus glucose starvation results in p53-dependent cell-cycle arrest and ROS clearance, but abrogation of PGC-1α expression results in extensive apoptosis. Additionally, prolonged starvation results in PGC-1α degradation concomitant with induction of apoptosis. We have also identified RNF2, a Polycomb group (PcG) protein, as the cognate E3 ubiquitin ligase. Starvation of mice where PGC-1α expression is abrogated results in loss of p53-mediated ROS clearance, enhanced p53-dependent apoptosis, and consequent severe liver atrophy. These findings provide key insights into the role of PGC-1α in regulating p53-mediated cell fate decisions in response to metabolic stress.  相似文献   

16.
17.
Poly(ADP-ribose) polymerase-1 (PARP-1) and the p53 tumor suppressor protein are both involved in the cellular response to genotoxic stress. Upon binding to the site of DNA strand breakage, PARP-1 is activated, leading to rapid and transient poly(ADP-ribosyl)ation of nuclear proteins using NAD+ as substrate. To investigate the role of PARP-1 in the p53 response to ionizing radiation in human cells, PARP-1 function was disrupted in wild-type p53 expressing MCF-7 and BJ/TERT cells using two strategies: chemical inhibition with 1,5-dihydroxyisoquinoline, and trans-dominant inhibition by overexpression of the PARP-1 DNA-binding domain. Although a number of proteins can catalyze poly(ADP-ribosyl)ation in addition to PARP-1, we show that PARP-1 is the only detectable active species in BJ/TERT and MCF-7 cells. 1,5-Dihydroxyisoquinoline treatment prior to ionizing radiation delayed and attenuated the induction of two p53-responsive genes, p21 and mdm-2, and led to suppression of the p53-mediated G1-arrest response in MCF-7 and BJ/TERT cells. Trans-dominant inhibition of PARP-1 by overexpression of the PARP-1 DNA-binding domain in MCF-7 cells also led to a delay and attenuation in p21 induction and suppression of the p53-mediated G1 arrest response to ionizing radiation. Hence, inhibition of endogenous PARP-1 function suppresses the transactivation function of p53 in response to ionizing radiation. This study establishes PARP-1 as a critical regulator of the p53 response to DNA damage.  相似文献   

18.
Regulation of p53 and MDM2 activity by MTBP   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号