首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
冯芸芝  孙栋  邵倩文  王春生 《生态学报》2022,42(21):8544-8554
浮游动物是海洋生态系统的关键类群,其覆盖门类广泛,多样性高。传统形态鉴定技术需要检测人员具备专业的形态鉴定知识,且费时费力。宏条形码技术无需分离生物个体,而是提取拖网采集到的浮游动物混合样本的总DNA,或者水体中的环境DNA (eDNA),依托高通量测序平台测序,能够实现对大规模样本快速、准确、经济的分析,在海洋浮游动物生态学研究中得到越来越广泛的应用。分析了DNA宏条形码技术常用的核糖体和线粒体分子标记,在浮游动物多样性和数量研究中的可靠性和不足,并给出在海洋浮游动物群落监测,食物关系分析及生物入侵早期预警等研究中的应用。未来,开发多基因片段组合条形码,发展完备的参考数据库及实现准确的量化研究是DNA宏条形码技术发展的重要方向。  相似文献   

2.
DNA条形码是利用标准的DNA片段对物种进行快速鉴定的技术,已在生物学各相关领域得到广泛应用。随着DNA条形码技术的不断发展和完善,已成功应用于生态学领域的相关研究中。本文综述了DNA条形码在物种快速鉴定和隐存种发现、群落系统发育重建和生态取证、群落内物种间相互关系研究等方面的应用,并介绍了DNAmetabarcoding技术和环境DNA条形码在生物多样性和生态学研究领域中的应用。最后,结合新的测序技术和未来大科学装置的发展,在相关数据库逐渐完善,新分析方法和计算模型不断开发使用的情景下,对DNA条形码在生态学相关领域的应用前景进行了展望。  相似文献   

3.
为评价宏DNA条形码技术在我国海洋生物多样性监测中的应用潜力,采集了22份鸭绿江口浮游动物样品,分别利用宏条形码分子鉴定和形态鉴定方法对优势类群桡足类进行多样性的比较研究。结果显示:(1)利用宏条形码分子鉴定方法共鉴定出4目23科32属229个操作分类单元(Operational Taxonomic Units, OTUs),形态方法共鉴定出3目5科5属6种;同时,利用形态鉴定得到的分类阶元多数(目:100%、科:80%、属:80%)能用宏条形码分子鉴定方法鉴定出来,而宏条形码分子鉴定方法鉴定得到的分类阶元多数(目:25%、科:83%、属:88%)却未能用形态鉴定出来,表明宏条形码分子鉴定方法在鉴定物种丰富度方面具有明显优势。(2)利用宏条形码分子鉴定与形态鉴定桡足类的多样性指数呈显著的一致性(r=0.524,P=0.024),表明宏条形码鉴定方法与形态方法在评价物种多样性方面具有较好的可比性。本研究表明宏条形码分子鉴定方法在我国海洋浮游动物业务化监测中具有较高的应用潜力。  相似文献   

4.
DNA条形码是一段短的、标准化的DNA序列,DNA条形码技术通过对DNA条形码序列分析实现物种的有效鉴定.随着生物DNA条形码序列的大量测定,DNA条形码分析方法得到迅速发展,推动了其在生物分子鉴定中的应用.2003年以来,DNA条形码技术已广泛应用于动物、植物和真菌等物种的鉴定,并有力地推动了生物分类学、生物多样性和生态学等学科的发展.本文在综述DNA条形码技术的基础上,总结了5类主要的DNA条形码分析方法,即基于遗传距离的分析、基于遗传相似度的分析、基于系统发育树的分析、基于序列特征的分析和基于统计分类法的分析,并进一步展望了DNA条形码技术的发展与应用.  相似文献   

5.
DNA条形码是利用生物体内标准的、有足够变异的、易扩增且相对较短的DNA片段对物种进行快速准确鉴定的技术。自2003年DNA条形码相关概念提出以来广受关注,国内外相继开展了DNA条形码及信息系统建设研究,为DNA条形码技术的发展提供了坚实的研究基础和生物信息学分析平台。DNA条形码技术弥补了传统分类学的不足,为生物多样性研究提供了新的思路和方法。本文介绍了DNA条形码的产生与发展过程,国内外DNA条形码技术与信息系统建设研究进展,重点阐述了DNA条形码技术在物种鉴定、濒危物种保护、隐存种发现、生物多样性评估等研究领域中的应用。最后结合DNA条形码技术目前存在的问题,对其在相关研究领域的应用前景进行了展望。  相似文献   

6.
植物DNA条形码研究展望   总被引:2,自引:0,他引:2  
李德铢  曾春霞 《生物多样性》2015,23(3):297-6721
<正>物种的鉴定是生物多样性研究的基石之一。在DNA双螺旋结构发现50年之际,加拿大学者提出了通过DNA条形码,即标准化的、较短的DNA序列对物种进行快速、准确鉴定的动议(Hebert et al.,2003)。经过12年的发展,DNA条形码已成为生物多样性研究领域发展最迅速的方向之一。一方面,DNA条形码和分子系统发育的研究使分类学、生态学、进化生物学等传统领域焕发出新的活力,极大  相似文献   

7.
植物DNA条形码促进系统发育群落生态学发展   总被引:5,自引:1,他引:4  
系统发育群落生态学是近年兴起的一个重要牛态学研究分支,它以群落生态学为基础并引入了系统发育的分析方法,全面动态地反映了群落中物种内和物种间的相互作用关系,揭示了群落格局形成的生态学过程,研究了生物多样性的形成及维持机制.巴拿马BCI(Barro Colorado Island)样地的成功例子说明,在固定样地进行长期的群落生态与系统发育研究切实可行且极具意义;DNA条形码的快速兴起对这一研究发挥着重要作用.本文先列举了群落生态与系统发育综合分析能解决的群落系统发育结构、群落生态位结构、生物地理学和性状进化等生态学问题;接着介绍了标准植物DNA条形码以及利用片段组合(rbcL+matK+trnH-psbA)进行快速物种识别和近缘种区分、精确群落系统发育关系的构建以及群落生态学研究;随后提出DNA条形码研究在类群水平上需注意两片段的条形码组合(matK+rbcL)在同属种鉴别能力上的不足,而在较大尺度群落水平上需对实验设计进行优化.DNA条形码将为探讨物种多样性及其维持机理、系统发育beta多样性以及群落水平上功能性状进化研究提供新的思路.  相似文献   

8.
向小果  王伟 《生物多样性》2015,23(3):281-146
<正>1常用植物DNA条形码物种的准确鉴定是开展科学研究和生物多样性保护的先决条件,但根据形态学特征进行物种鉴定对非专业人员而言比较困难。即使是专业人员,面对纷繁复杂的物种,要想逐一鉴定也难以实现。DNA条形码技术(DNA barcoding)为物种的快速、准确鉴定提供了可能(Hebert et al.,2003)。线粒体COI基因作为动物的DNA条形码已得到广泛应用。但对  相似文献   

9.
快速准确识别鉴定昆虫的方法在植物检疫中具有重要意义.长期以来,基于形态特征的入侵害虫鉴定研究由于经常遇到诸如幼期(包括卵、幼虫/若虫、蛹/前蛹/拟蛹),隐存种、复合种以及样本受损等情况,致使物种的快速准确鉴定陷入举步维艰的境地.DNA条形码技术的发展为上述问题的解决提供了新契机,已成为昆虫分类鉴定、植物及其产品的产地检疫和调运检疫以及出入境检验检疫中备受关注的一种新兴技术.本文以重大农林害虫类群介壳虫类、蓟马类、粉虱类和实蝇类等为例,简要介绍DNA条形码技术在农林入侵害虫鉴定和溯源研究中的应用,并对DNA条形码技术的进一步完善进行了探讨和展望.  相似文献   

10.
DNA条形码技术就是利用一段较短的标准DNA序列对物种进行快速鉴定。与基于植物外部形态特征的传统分类鉴定方法相比, DNA条形码具有高效、准确,且易于实现自动化和标准化的特点。马先蒿属(Pedicularis L.)植物具对生(轮生)叶的种类70%以上分布在中国,近缘种间形态上非常相似,鉴定较为困难。研究选取马先蒿属具对生(轮生)叶类群43种164份样品,利用叶绿体基因(rbcL、matK、trnH psbA)和核基因(ITS)条形码片段,采用建树法和距离法检验4个条形码对这些物种的鉴定效果。结果表明,ITS片段用于建树法和距离法的鉴别率分别为81.40%和89.57%,其鉴别率高于3个叶绿体基因片段和任一基因片段的组合条码。另外,利用ITS成功解决了一些疑难种的分类问题。DNA条形码在马先蒿属研究中的实用性为新一代植物志(iFlora)实现物种的快速和准确鉴定提供了有力支持,并能为分类学、生态学、进化生物学、居群遗传学和保护遗传学等分支学科的研究提供重要信息。  相似文献   

11.
Gelatinous zooplankton are a large component of the animal biomass in all marine environments, but are considered to be uncommon in the diet of most marine top predators. However, the diets of key predator groups like seabirds have conventionally been assessed from stomach content analyses, which cannot detect most gelatinous prey. As marine top predators are used to identify changes in the overall species composition of marine ecosystems, such biases in dietary assessment may impact our detection of important ecosystem regime shifts. We investigated albatross diet using DNA metabarcoding of scats to assess the prevalence of gelatinous zooplankton consumption by two albatross species, one of which is used as an indicator species for ecosystem monitoring. Black‐browed and Campbell albatross scats were collected from eight breeding colonies covering the circumpolar range of these birds over two consecutive breeding seasons. Fish was the main dietary item at most sites; however, cnidarian DNA, primarily from scyphozoan jellyfish, was present in 42% of samples overall and up to 80% of samples at some sites. Jellyfish was detected during all breeding stages and consumed by adults and chicks. Trawl fishery catches of jellyfish near the Falkland Islands indicate a similar frequency of jellyfish occurrence in albatross diets in years of high and low jellyfish availability, suggesting jellyfish consumption may be selective rather than opportunistic. Warmer oceans and overfishing of finfish are predicted to favour jellyfish population increases, and we demonstrate here that dietary DNA metabarcoding enables measurements of the contribution of gelatinous zooplankton to the diet of marine predators.  相似文献   

12.
The applications of traditional morphological and molecular methods for species identification are greatly restricted by processing speed and on a regional or greater scale are generally considered unfeasible. In this context, high-throughput sequencing, or metagenetics, has been proposed as an efficient tool to document biodiversity. Here we evaluated the effectiveness of 454 pyrosequencing in marine metazoan community analysis using the 18S rDNA: V1-V2 region. Multiplex pyrosequencing of the V1-V2 region was used to analyze two pooled samples of DNA, one comprising 118 and the other 37 morphologically identified species, and one natural sample taken directly from a North Sea zooplankton community. A DNA reference library comprising all species represented in the pooled samples was created by Sanger sequencing, and this was then used to determine the optimal similarity threshold for species delineation. The optimal threshold was found at 99% species similarity, with 85% identification success. Pyrosequencing was able to identify between fewer species: 67% and 78% of the species in the two pooled samples. Also, a large number of sequences for three species that were not included in the pooled samples were amplified by pyrosequencing, suggesting preferential amplification of some genotypes and the sensitivity of this approach to even low levels of contamination. Conversely, metagenetic analysis of the natural zooplankton sample identified many more species (particularly gelatinous zooplankton and meroplankton) than morphological analysis of a formalin-fixed sample from the same sampling site, suggesting an increased level of taxonomic resolution with pyrosequencing. The study demonstrated that, based on the V1-V2 region, 454 sequencing does not provide accurate species differentiation and reliable taxonomic classification, as it is required in most biodiversity monitoring. The analysis of artificially prepared samples indicated that species detection in pyrosequencing datasets is complicated by potential PCR-based biases and that the V1-V2 marker is poorly resolved for some taxa.  相似文献   

13.
Marine mussels illustrate a stunning variability in shape and color. Such variability, added to the scarcity of reliable morphological characters for their identification, can mislead recognition prompting the assignation of specimens of a single species to different ones or incorporate specimens belonging to different taxa into a single one. DNA barcoding is widely used for species identification; however, as this method relies on the previous morphological identification of the specimens, some of the DNA sequences stored in DNA databases are incorrectly assigned to a given species. In view of this uncertainty, further criteria beyond morphological characters and DNA sequences in databases are required to more reliably and accurately identify marine mussels. In this work we mapped ribosomal RNA and histone gene clusters to chromosomes of four species of marine mussels and compared them with those from another eight marine mussel taxa. Specimens of these twelve taxa were also DNA barcoded. Our results clearly demonstrated that the chromosomal analysis of marine mussels could shed light on their identification and, therefore, solve contradictions posed by morphological and molecular data.  相似文献   

14.
Knowledge of zooplankton in situ diet is critical for accurate assessment of marine ecosystem function and structure, but due to methodological constraints, there is still a limited understanding of ecological networks in marine ecosystems. Here, we used DNA‐metabarcoding to study trophic interactions, with the aim to unveil the natural diet of zooplankton species under temporal variation of food resources. Several target consumers, including copepods and cladocerans, were investigated by sequencing 16S rRNA and 18S rRNA genes to identify prokaryote and eukaryote potential prey present in their guts. During the spring phytoplankton bloom, we found a dominance of diatom and dinoflagellate trophic links to copepods. During the summer period, zooplankton including cladocerans showed a more diverse diet dominated by cyanobacteria and heterotrophic prey. Our study suggests that copepods present trophic plasticity, changing their natural diet over seasons, and adapting their feeding strategies to the available prey spectrum, with some species being more selective. We did not find a large overlap of prey consumed by copepods and cladocerans, based on prey diversity found in their guts, suggesting that they occupy different roles in the trophic web. This study represents the first molecular approach to investigate several zooplankton–prey associations under seasonal variation, and highlights how, unlike other techniques, the diversity coverage is high when using DNA, allowing the possibility to detect a wide range of trophic interactions in plankton communities.  相似文献   

15.
The Ostracoda (Crustacea; Class Ostracoda) is a diverse, frequently abundant, and ecologically important component of the marine zooplankton assemblage. There are more than 200 described species of marine planktonic ostracods, many of which (especially conspecific species) can be identified only by microscopic examination and dissection of fragile morphological characters. Given the complexity of species identification and increasing lack of expert taxonomists, DNA barcodes (short DNA sequences for species discrimination and identification) are particularly useful and necessary. Results are reported from analysis of 210 specimens of 78 species of marine planktonic ostracods, including two novel species, and 51 species for which barcodes have not been previously published. Specimens were collected during 2006 to 2008 from the Atlantic, Indian, and Southern Oceans, Greenland Sea and Gulf of Alaska. Samples were collected from surface to 5,000 m using various collection devices. DNA sequence variation was analyzed for a 598 base-pair region of the mitochondrial cytochrome oxidase subunit I (COI) gene. Kimura-2-Parameter (K2P) genetic distances within described species (mean = 0.010 ± 0.017 SD) were significantly smaller than between species (0.260 + 0.080), excluding eight taxa hypothesized to comprise cryptic species due to morphological variation (especially different size forms) and/or collection from different geographic regions. These taxa showed similar K2P distance values within (0.014 + 0.026) and between (0.221 ± 0.068) species. All K2P distances > 0.1 resulted from comparisons between identified or cryptic species, with no overlap between intra- and interspecific genetic distances. A Neighbor Joining tree resolved nearly all described species analyzed, with multiple sequences forming monophyletic clusters with high bootstrap values (typically 99%). Based on taxonomically and geographically extensive sampling and analysis (albeit with small sample sizes), the COI barcode region was shown to be a valuable character for discrimination, recognition, identification, and discovery of species of marine planktonic ostracods.  相似文献   

16.
Sweijd  N. A.  Bowie  R. C. K.  Evans  B. S.  Lopata  A. L. 《Hydrobiologia》2000,420(1):153-164
Biochemical and molecular species identification techniques have a broad range of applications in the management and conservation of marine organisms. While species boundaries are not always clearly defined, phylogeneticists utilise autapomorphic characters to distinguish phylogenetic species. Genetic markers discriminate between marine taxa when traditional morphological distinctions are unclear. The applications of these techniques can be divided into four general categories. Firstly, compliance enforcement, which often depends on genetic identification techniques to enable officials to identify the species to which regulations pertain. Secondly, quality control applications, to allow for the testing of marine products to guard against fraudulent substitution with less valuable species, which is particularly pertinent since processing often obliterates identifiable features. Thirdly, a variety of applications to ecological and life-history studies and conservation management are reported. Here, the genetic identification techniques of species from cryptic life-cycle stages or of morphologically indistinct species are an indispensable tool for marine scientists, conservators and managers. Lastly, the application of genetic techniques for sourcing population origin is briefly discussed. The biochemical and molecular techniques applied to species identification all exploit phenotypic or genotypic polymorphisms that are sampled using either tertiary level protein based methods or primary level DNA based methods. In this review, examples of the applications along with the total protein, allozyme, serological, PCR and other DNA based methodologies are briefly described and some generalities with regard to their use are presented.  相似文献   

17.
More than two third area of our planet is covered by oceans and assessment of marine biodiversity is a challenging task. With the increasing global population, there is a tendency to exploit marine resources for food, energy and other requirements. This puts pressure on the fragile marine environment and necessitates sustainable conservation efforts. Marine species identification using traditional taxonomical methods is often burdened with taxonomic controversies. Here we discuss the comparatively new concept of DNA barcoding and its significance in marine perspective. This molecular technique can be useful in the assessment of cryptic species which is widespread in marine environment and linking the different life cycle stages to the adult which is difficult to accomplish in the marine ecosystem. Other advantages of DNA barcoding include authentication and safety assessment of seafood, wildlife forensics, conservation genetics and detection of invasive alien species (IAS). Global DNA barcoding efforts in the marine habitat include MarBOL, CeDAMar, CMarZ, SHARK-BOL, etc. An overview on DNA barcoding of different marine groups ranging from the microbes to mammals is revealed. In conjugation with newer and faster techniques like high-throughput sequencing, DNA barcoding can serve as an effective modern tool in marine biodiversity assessment and conservation.  相似文献   

18.
19.

Aim

To use a long-term collection of bulk plankton samples to test the capacity of DNA metabarcoding to characterize the spatial and seasonal patterns found within a range of zooplankton communities, and investigate links with concurrent abiotic data collected as part of Australia's Integrated Marine Observing System (IMOS) programme.

Location

Samples were sourced seasonally for 3 years from nine Pan-Australian marine sites (n = 90).

Methods

Here, we apply a multi-assay metabarcoding approach to environmental DNA extracted from bulk plankton samples. Six assays (targeting 16SrRNA and COI genes) were used to target, amplify and sequence the zooplankton diversity found within each sample. The data generated from each assay were filtered and clustered into OTUs prior to analysis. Abiotic IMOS data collected contemporaneously enabled us to explore the physical and chemical drivers of community composition.

Results

From over 25 million sequences, we identified in excess of 500 distinct taxa and detected clear spatial differences. We found that site and sea surface temperature are the most consistent predictors of differences between zooplankton communities. We detected endangered and invasive species such as the bryozoan Membranipora membranacea and the mollusc Maoricolpus roseus, and seasonal occurrences of species such as humpback whales (Megaptera novaeangliae). We also estimated the number of samples required to detect any significant seasonal changes. For OTU richness, this was found to be assay dependent and for OTU assemblage, a minimum of nine samples per season would be required.

Main Conclusion

Our results demonstrate the ability of DNA to capture and map zooplankton community changes in response to seasonal and spatial stressors and provide vital evidence to environmental stakeholders. We confirm that a metabarcoding method offers a practical opportunity for an ecosystem-wide approach to long-term biomonitoring and understanding marine biomes where morphological analysis is not feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号