首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Further evidence that sucrose is passively leaked from the sievetubes directly into the apoplast of bean stems and activelyreloaded is reported. The stem apoplast is identified as thepool of sucrose outside the sieve tubes which buffers againstsudden changes in sieve tube sucrose concentration, caused bysudden changes in sink demand or source supply. Key words: Sucrose transport, Phaseolus vulgaris, Apoplast, Phloem unloading  相似文献   

2.
Phloem unloading in developing leaves of Beta vulgaris L. (`Klein E' multigerm) occurred from successively higher order branches of veins as leaves matured. Phloem unloading was studied in autoradiographs of leaf samples taken at various times during the arrival of a pulse of 14C-labeled photoassimilate. Extension of mass flow of sieve element contents into leaf vein branches was determined from the high level of radiolabel in veins soon after first arrival of the pulse. Rapid entry, indicative of mass flow through open sieve pores, occurred down to the fourth division of veins in young, importing leaves and to the fifth or terminal branch in importing regions near the zone of transition from sink to source. The rate of unloading decreased with leaf age, as evidenced by the increased time required for the vein-mesophyll demarcation to become obscured. The rate of import per unit leaf area, measured by steady state labeling with 14CO2 also decreased as a leaf matured. The decline in import appeared to result from progressive changes that increased resistance to unloading of sieve elements and eventually terminated phloem unloading.  相似文献   

3.
There is growing evidence that the phloem transport pathwayis leaky with passive unloading into the apoplast and activereloading from the apoplast. In this paper we report in vivomeasurements of unloading and reloading in immature stems ofbean expressed as a percentage per unit length of the photo-assimilateflow within the transport pathway. Gross unloading was up to6% cm-1 and net unloading up to 4% cm-1. Time constants of bulkflow through 10 cm of stem were about 4-6 min whereas thoseof net unloading were 8-13 min and of gross unloading, at themost, 7-8 min. Key words: Phloem transport, apoplast, bean stem  相似文献   

4.
MURPHY  RICARDO 《Annals of botany》1989,63(5):551-559
Confirming a previous analysis by Lang (1974), it is concludedthat in tree trunks, phloem turgor and turgor gradients maybe estimated from osmotic pressure and osmotic-pressure gradients,respectively. The present analysis is an improvement becauseit is based on observed osmotic-pressure gradients rather thansupposed turgor gradients, and allowance is made for sucroseunloading and gradients of external water potential. It is concludedthat the rate of sucrose unloading in tree trunks must be lessthan 50 nmol m–2 S m–1. In small plants, higherrates of unloading (100 nmol m m–2 S m–1) and steeperconcentration gradients will lead to larger errors, but turgorpressures can still be estimated with acceptable accuracy. Oneshould be more cautious when considering turgor gradients insmall plants, although it seems likely that reasonable estimateswill still be obtained. Assuming plasmodesmatal transport throughan unconstricted cytoplasmic annulus, it is concluded that thesieve elements and their associated cells will sustain verysimilar turgor and osmotic pressures. Convection and diffusioncan both contribute significantly to plasmodesmatal sucroseunloading. Similarly, the plasmodesmatal volume flux will reflecta combination of pressure flow and osmosis. Water fluxes acrossthe sieve element plasmalemma and through the plasmodesmatacan be in opposite directions. It may be possible to assessthe extent of hydraulic coupling between the sieve elementsand their associated cells from studies of phloem water relations Phloem, turgor, osmotic pressure, plasmodesmata, phloem unloading, Munch hypothesis  相似文献   

5.
6.
7.
光合同化物韧皮部卸载途径和机制   总被引:2,自引:2,他引:2  
介绍近年来同化物在库器官中的卸载途径、机制和研究方法的研究进展,并简略讨论了该领域研究所面临的问题。  相似文献   

8.
The nature and the action pattern of apoplastic pectinmethylesterase (PME) isoforms were investigated in mung bean [Vigna radiata (L.) Wilzeck] hypocotyls. Successive extractions of neutral and alkaline PME isoforms present in hypocotyl native cell walls (referred to as PE1, PE2, PE3, PE4, with increasingly basic isoelectric points) revealed that solubilization of PE1, PE2, and PE4 did not induce any significant decrease in the cell-wall-bound PME activity. The in vitro de-esterification occurring when isolated cell walls were incubated with pectin resulted, then, from the activity of PE3. In addition, pH control of PME activity was shown to be much stronger for enzymes bound to cell walls, in their native state or reintroduced after solubilization, than for enzymes in solution. Mature cell walls showed much more activity than young cell walls, and were relatively enriched in two acidic PME isoforms missing in young cell walls. One acidic PME was also detected in the extracellular fluid. The acidic and neutral isoforms that could be easily transferred from their binding sites to their substrate might be those involved in the demethylation process developing along the mung bean hypocotyl.  相似文献   

9.
How arsenic (As) is transported in phloem remains unknown. To help answer this question, we quantified the chemical species of As in phloem and xylem exudates of castor bean (Ricinus communis) exposed to arsenate [As(V)], arsenite [As(III)], monomethylarsonic acid [MMA(V)], or dimethylarsinic acid. In the As(V)- and As(III)-exposed plants, As(V) was the main species in xylem exudate (55%–83%) whereas As(III) predominated in phloem exudate (70%–94%). The ratio of As concentrations in phloem to xylem exudate varied from 0.7 to 3.9. Analyses of phloem exudate using high-resolution inductively coupled plasma-mass spectrometry and accurate mass electrospray mass spectrometry coupled to high-performance liquid chromatography identified high concentrations of reduced and oxidized glutathione and some oxidized phytochelatin, but no As(III)-thiol complexes. It is thought that As(III)-thiol complexes would not be stable in the alkaline conditions of phloem sap. Small concentrations of oxidized glutathione and oxidized phytochelatin were found in xylem exudate, where there was also no evidence of As(III)-thiol complexes. MMA(V) was partially reduced to MMA(III) in roots, but only MMA(V) was found in xylem and phloem exudate. Despite the smallest uptake among the four As species supplied to plants, dimethylarsinic acid was most efficiently transported in both xylem and phloem, and its phloem concentration was 3.2 times that in xylem. Our results show that free inorganic As, mainly As(III), was transported in the phloem of castor bean exposed to either As(V) or As(III), and that methylated As species were more mobile than inorganic As in the phloem.Arsenic (As) is an environmental and food chain contaminant that has attracted much attention in recent years. Soil contamination with As may lead to phytotoxicity and reduced crop yield (Panaullah et al., 2009). Food crops are also an important source of inorganic As, a class-one carcinogen, in human dietary intake, and there is a need to decrease the exposure to this toxin (European Food Safety Authority, 2009). Paddy rice (Oryza sativa) is particularly efficient in As accumulation, which poses a potential risk to the population based on a rice diet (Meharg et al., 2009; Zhao et al., 2010a). Other terrestrial food crops generally do not accumulate as much As as paddy rice; however, where soils are contaminated, relatively high concentrations of As in wheat (Triticum aestivum) grain have been reported (Williams et al., 2007; Zhao et al., 2010b). On the other hand, some fern species in the Pteridaceae family are able to tolerate and hyperaccumulate As in the aboveground part to >1,000 mg kg−1 dry weight (e.g. Ma et al., 2001; Zhao et al., 2002); these plants offer the possibility for remediation of As-contaminated soil or water (Salido et al., 2003; Huang et al., 2004). A better understanding of As uptake and long-distance transport, metabolism, and detoxification is needed for developing strategies for mitigating As contamination, through either decreased As accumulation in food crops or enhanced As accumulation for phytoremediation.The pathways of As uptake by plant roots differ between different As species; arsenate [As(V)] enters plant cells via phosphate transporters, whereas arsenite [As(III)] is taken up via some aquaporins (for review, see Zhao et al., 2009). In rice, a silicic acid efflux protein also mediates As(III) efflux toward stele for xylem loading (Ma et al., 2008). Methylated As species, such as monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)], which may be present in the environment as products of microbial or algal methylation of inorganic As or from past uses of methylated As pesticides, are taken up by rice roots partly through the aquaporin NIP2;1 (for nodulin 26-like intrinsic protein; also named Lsi1; Li et al., 2009). Once inside plant cells, As(V) is reduced to As(III), possibly catalyzed by As(V) reductase(s) such as the plant homologs of the yeast (Saccharomyces cerevisiae) ACR2 (Bleeker et al., 2006; Dhankher et al., 2006; Ellis et al., 2006; Duan et al., 2007). As(III) has a high affinity to thiol (-SH) groups and is detoxified by complexation with thiol-rich phytochelatins (PCs; Pickering et al., 2000; Schmöger et al., 2000; Raab et al., 2005; Bluemlein et al., 2009; Liu et al., 2010). As(III)-PC complexation in roots was found to result in reduced mobility for efflux and for long-distance transport, possibly because the complexes are stored in the vacuoles (Liu et al., 2010). Excess As(III) causes cellular toxicity by binding to the vicinal thiol groups of enzymes, such as the plastidial lipoamide dehydrogenase, which has been shown to be a sensitive target of As toxicity (Chen et al., 2010). The As hyperaccumulating Pteris species differ from nonhyperaccumulating plants because of enhanced As(V) uptake (Wang et al., 2002; Poynton et al., 2004), little As(III)-thiol complexation (Zhao et al., 2003; Raab et al., 2004), and efficient xylem loading of As(III) (Su et al., 2008). Recently, an As(III) efflux transporter, PvACR3, has been found to play an important role in As(III) detoxification by transporting As(III) into vacuoles in Pteris vittata (Indriolo et al., 2010).With the exception of As hyperaccumulators, most plant species have a limited root-to-shoot translocation of As (Zhao et al., 2009). The chemical species of As in xylem exudate have been determined in a number of plant species. As(III) was found to be the predominant species (80%–100%) in the xylem sap of rice, tomato (Solanum lycopersicum), cucumber (Cucumis sativus), and P. vittata even when these plants were fed As(V) (Mihucz et al., 2005; Xu et al., 2007; Ma et al., 2008; Su et al., 2010), suggesting that As(V) is reduced in roots before being loaded into the xylem. In other plant species, such as Brassica juncea (Pickering et al., 2000), wheat, and barley (Hordeum vulgare; Su et al., 2010), As(V) accounted for larger proportions (40%–50%) of the total As in the xylem sap. Studies using HPLC-inductively coupled plasma (ICP)-mass spectrometry (MS) coupled with electrospray (ES)-MS showed no evidence of As(III)-thiol complexation in the xylem sap of sunflower (Helianthus annuus; Raab et al., 2005). When rice plants were exposed to MMA(V) or DMA(V), both As species were found in the xylem sap (Li et al., 2009). Generally, methylated As species are taken up by roots at slower rates than inorganic As, but they are more mobile during the xylem transport from roots to shoots (Marin et al., 1992; Raab et al., 2007; Li et al., 2009).It has been shown that phloem transport contributes substantially to As accumulation in rice grain (Carey et al., 2010). However, little is known about how As is transported in phloem (Zhao et al., 2009). There are no reports on the chemical species of As in phloem exudate. The speciation of As in phloem is important because it dictates how As is loaded in the source tissues and unloaded in the sink tissues, such as grain. Questions with regard to the oxidation state, methylation, and complexation of As in phloem sap remain to be answered. Unlike xylem sap, phloem sap is much more difficult to obtain in sufficient quantities for analysis. In this study, we investigated As speciation in phloem and xylem exudates of castor bean (Ricinus communis), which is widely used as a model plant to investigate phloem transport of solutes (e.g. Hall et al., 1971; Hall and Baker, 1972; Allen and Smith, 1986; Bromilow et al., 1987).  相似文献   

10.
11.
Nolte KD  Koch KE 《Plant physiology》1993,101(3):899-905
An immunohistochemical approach was used in maize (Zea mays) and citrus (Citrus paradisi) to address the previously noted association between sucrose synthase and vascular bundles and to determine the localization of the low but detectable levels of sucrose synthase that remain in leaves after the import-export transition. Sucrose synthase protein was immunolocalized at the light microscope level using paraffin sections reacted with rabbit sucrose synthase polyclonal antisera and gold-conjugated goat anti-rabbit immunoglobulin G. Immunolabel was specifically observed in phloem companion cells of minor and intermediate veins in mature leaves of both species. Similar localization was apparent in the midrib of mature citrus leaves, with additional labeling in selected files of phloem parenchyma cells. A clear companion-cell specificity was evident in the phloem unloading zone of citrus fruit, where high activity of sucrose synthase has been demonstrated in vascular bundles during periods of rapid import. Sucrose synthase protein was not associated with adjacent cells surrounding the vascular strands in this tissue. The companion-cell specificity of sucrose synthase in phloem of both importing and exporting structures of these diverse species implies that this may be a widespread association and underscores its potential importance to the physiology of vascular bundles.  相似文献   

12.
Phloem unloading and post-phloem transport in developing wheat (Triticum aestivum L.) grains were investigated by perfusing the endosperm cavities of attached grains. Relative unloading ratio (RUR) and the rate of sucrose release into the endosperm cavity (SRR) were calculated, respectively, from 14C import and from sucrose washout from the cavity. RUR and SRR continued at or near in vivo rates over a wide range of cavity sap osmolality (90 to approximately 500 milliosmolal) and sucrose concentration (14-430 mM) and for long times (29 h). These are much greater ranges than have been observed for the endosperm cavity in vivo (230-300 milliosmolal, and 40-120 mM, respectively), indicating that neither the cavity sap osmolality nor sucrose concentration are controlling factors for the rate of assimilate import into the cavity. The maintenance of in vivo transport rates over a wide range of conditions strongly implicates the role of transport processes within the maternal tissues of the wheat grain, rather than activities of the embryo or endosperm, in determining the rate of assimilate import into the grain. RUR was decreased by high concentrations of sucrose and sorbitol, but not of mannitol. By plasmolyzing some chalazal cells, sorbitol appeared to block symplastic transport across the crease tissues, but neither sucrose nor mannitol caused plasmolysis in maternal tissues of attached grains. The inhibition of RUR by KCN and carbonyl cyanide m-chlorophenyl (CCCP) and the continued import of sucrose into grains against its concentration gradient suggest that solute movement into the endosperm cavity might occur by active membrane transport. However, the evidence is weak, since KCN and CCCP appeared to act primarily on some aspect of symplastic (i.e. nonmembrane) transport. Also, sucrose could move from the endosperm cavity into the maternal tissues (i.e. opposite to the normal direction of sucrose movement), suggesting that transmembrane movement in the nucellus may be a reversible process. Pressure-driven flow into the grain could account for movement against a concentration gradient.  相似文献   

13.
Phloem unloading in pea seed coats was observed by removingthe embryos from developing seeds and washing the attached coatswith a weakly buffered solution. The quantity of labelled photosynthateappearing in the washing solution varied immediately when thesolute concentration was changed, and is shown to be an osmoticresponse. This response is predicted by the Münch theoryof phloem transport with concentration dependent unloading.Respiratory inhibitors and the sulphydryl modifying reagentPCMBS had a slow effect upon the washout of tracer, which arrivedwithin the seed coat prior to inhibitor application, but completelystopped any washout of tracer arriving after its application.This time-course suggests that the inhibitors were not directlyinhibiting unloading, but preventing further tracer from enteringthe region of unloading within the seed coat. Phloem unloadingwithin the seed coats of Pisum appears to be passive and notdependent upon a PCMBS-sensitive carrier. Key words: Pisum sativum, seeds, phloem unloading  相似文献   

14.
采用真空灌注离心法提取蚕豆叶片质外体汁液 ,通过测定不同离心力条件下叶片和叶片质外体汁液中磷酸己糖异构酶 (HPI)活力 ,判断蚕豆叶片质外体提取液是否受到细胞渗出物污染的结果表明 ,采用的适宜条件为 :离心温度≤ 4℃ ,离心力 5 0 0~ 80 0×g ,离心时间 8min。此条件下所获得的蚕豆叶片质外体汁液没有或很少受到细胞质的污染。  相似文献   

15.
MURPHY  RICARDO 《Annals of botany》1989,63(5):561-570
The theory described in Part I of this series is applied hereto the loading of water and sucrose into the sieve-element-companion-cell(se-cc) complexes of minor veins. It is concluded that symplasticphloem loading cannot account for large increases in osmoticpressure from mesophyll to se-cc complex or the dilution ofsieve tube sap which is evident in leaves. By contrast, loadingfrom the free space into a symplastically isolated se-cc complexcan account for both these observations. Within the se-cc complex,sucrose and water will be transported from the companion cellsto the sieve elements by a pressure-driven flow of solutionthrough the cytoplasmic annuli of plasmodesmata. The associatedchanges in turgor and osmotic pressure are small, and so these-cc complex can be regarded as a single compartment with respectto water potential. The assumption that this compartment isat water flux equilibrium will lead to significant overestimatesof turgor gradients. However, if the trans-membrane water potentialdifference and the external water potential are taken into account,the correlation of such gradients with sieve-element dimensionsand / or transport velocities provides one means of testingthe Munch hypothesis of phloem transport Phloem, turgor, osmotic pressure, plasmodesmata, Münch hypothesis, Phloem loading  相似文献   

16.
Steam-girdling experiments with detached wheat shoots showed that cesium was eliminated from the xylem sap and loaded into the phloem during acropetal transport. This transfer is important for the accumulation of cesium (especially also of the radiopollutants 134Cs and 137Cs) in maturing wheat grains.  相似文献   

17.
Physiological and transport data are presented in support of a symplastic pathway of phloem unloading in importing leaves of Beta vulgaris L. (`Klein E multigerm'). The sulfhydryl reagent p-chloromercuribenzene sulfonic acid (PCMBS) at concentration of 10 millimolar inhibited uptake of exogenous [14C]sucrose by sink leaf tissue over sucrose concentrations of 0.1 to 5.0 millimolar. Inhibited uptake was 24% of controls. The same PCMBS treatment did not affect import of 14C-label into sink leaves during steady state labeling of a source leaf with 14CO2. Lack of inhibition of import implies that sucrose did not pass through the free space during unloading. A passively transported xenobiotic sugar, l-[14C]glucose, imported by a sink leaf through the phloem, was evenly distributed throughout the leaf as seen by whole-leaf autoradiography. In contrast, l-[14C]glucose supplied to the apoplast through the cut petiole or into a vein of a sink leaf collected mainly in the vicinity of the major veins with little entering the mesophyll. These patterns are best explained by transport through the symplast from phloem to mesophyll.  相似文献   

18.
19.
苏应娟  张冰 《生态科学》1996,15(1):35-42
茎次生韧皮部和木材的比较解剖支持红豆杉科、三尖杉科和罗汉松科自然类群、不主张建立穗花杉科和竹柏科  相似文献   

20.
HO  L. C.; NICHOLS  R. 《Annals of botany》1975,39(3):439-446
The pathway and distribution of 14C-sugars in flower parts havebeen examined to find out in which tissue sugars are translocatedin the stem of the cut carnation; 14C-sucrose or 14C-glucosewas supplied at the base of the cut stem from a feeding solutionand the localization and chemical nature of the carbon-14 recoveredfrom flower parts were investigated. By reducing the rate oftranspiration it was found that the uptake of feeding solutionwas also reduced, but the distribution of absorbed 14C-sucrosein the flower parts was different from that which would be expectedif sucrose moved exclusively in the transpiration stream. Autoradiographsdemonstrated that 14C absorbed from the feeding solution as14C-sucrose appeared in both xylem and phloem but predominantlyin the latter; girdling failed to stop the translocation ofthe absorbed 14C-sucrose. Results of experiments with 14C-sucroseand 14C-glucose showed that sucrose was the mobile sugar andthat glucose was converted to sucrose before it was translocated.It was concluded that the translocation of sucrose absorbedfrom the feeding solution takes place both in xylem and phloemand is regulated by a mechanism involving the loading and translocationof sucrose in the phloem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号