首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brain is one of the major sites of metastasis in breast cancer; however, the pathological mechanism of brain metastasis is poorly understood. One of the critical rate-limiting steps of brain metastasis is the breaching of blood-brain barrier, which acts as a selective interface between the circulation and the central nervous system, and this process is considered to involve tumor-secreted proteinases. We analyzed clinical significance of 21 matrix metalloproteinases on brain metastasis-free survival of breast cancer followed by verification in brain metastatic cell lines and found that only matrix metalloproteinase 1 (MMP1) is significantly correlated with brain metastasis. We have shown that MMP1 is highly expressed in brain metastatic cells and is capable of degrading Claudin and Occludin but not Zo-1, which are key components of blood-brain barrier. Knockdown of MMP1 in brain metastatic cells significantly suppressed their ability of brain metastasis in vivo, whereas ectopic expression of MMP1 significantly increased the brain metastatic ability of the cells that are not brain metastatic. We also found that COX2 was highly up-regulated in brain metastatic cells and that COX2-induced prostaglandins were directly able to promote the expression of MMP1 followed by augmenting brain metastasis. Furthermore, we found that COX2 and prostaglandin were able to activate astrocytes to release chemokine (C-C motif) ligand 7 (CCL7), which in turn promoted self-renewal of tumor-initiating cells in the brain and that knockdown of COX2 significantly reduced the brain metastatic ability of tumor cells. Our results suggest the COX2-MMP1/CCL7 axis as a novel therapeutic target for brain metastasis.  相似文献   

2.
Neuroprostanes are prostaglandin-like compounds produced by free radical-induced peroxidation of docosahexaenoic acid, which is highly enriched in the brain. We previously described the formation of highly reactive gamma-ketoaldehydes (isoketals) as products of the isoprostane pathway of free radical-induced peroxidation of arachidonic acid. We therefore explored whether isoketal-like compounds (neuroketals) are also formed via the neuroprostane pathway. Utilizing mass spectrometric analyses, neuroketals were found to be formed in abundance in vitro during oxidation of docosahexaenoic acid and were formed in greater abundance than isoketals during co-oxidation of docosahexaenoic and arachidonic acid. Neuroketals were shown to rapidly adduct to lysine, forming lactam and Schiff base adducts. Neuroketal lysyl-lactam protein adducts were detected in nonoxidized rat brain synaptosomes at a level of 0.09 ng/mg of protein, which increased 19-fold following oxidation in vitro. Neuroketal lysyl-lactam protein adducts were also detected in vivo in normal human brain at a level of 9.9 +/- 3.7 ng/g of brain tissue. These studies identify a new class of highly reactive molecules that may participate in the formation of protein adducts and protein-protein cross-links in neurodegenerative diseases and contribute to the injurious effects of other oxidative pathologies in the brain.  相似文献   

3.
4.
The proteins in the cell membrane of the brain are modified by glycans in highly interactive regions. The glycans and glycoproteins are involved in cell–cell interactions that are of fundamental importance to the brain. In this study, the comprehensive N-glycome and N-glycoproteome of the brain were determined in 11 functional brain regions, some of them known to be affected with the progression of Alzheimer’s disease. N-glycans throughout the regions were generally highly branched and highly sialofucosylated. Regional variations were also found with regard to the glycan types including high mannose and complex-type structures. Glycoproteomic analysis identified the proteins that differed in glycosylation in the various regions. To obtain the broader representation of glycan compositions, four subjects with two in their 70s and two in their 90s representing two Alzheimer's disease subjects, one hippocampal sclerosis subject, and one subject with no cognitive impairment were analyzed. The four subjects were all glycomically mapped across 11 brain regions. Marked differences in the glycomic and glycoproteomic profiles were observed between the samples.  相似文献   

5.
Studies on the origin of choline in the brain of the rat   总被引:15,自引:5,他引:10       下载免费PDF全文
1. Labelled precursors of choline, namely ethanolamine, dimethylaminoethanol and methionine and also labelled choline itself were injected intraperitoneally into the adult female rat and the incorporation into lipids and water-soluble fractions was traced in liver, blood and brain. 2. No significant free choline was detected and no labelling of the phosphorylcholine of blood. There was, however, considerable labelling of the phosphorylcholine of brain and liver. 3. After intracerebral injection, [1,2-(14)C]dimethylaminoethanol was rapidly phosphorylated and converted into phosphatidyldimethylaminoethanol, presumably by the cytidine pathway. 4. In view of the pattern of labelling and the amount of phosphatidylcholine in the tissues examined, it seems highly likely that choline is transported to the brain by the blood in a lipid-bound form.  相似文献   

6.
A radioreceptor assay verified by independent biochemical methods was used to evaluate tissue levels of neuroleptic activity in serum and brain extracts after injections of haloperidol in the rat. The assay detected activity between doses of 0.1 and 10 mg/kg at times between 0.25 and 12 hrs. Tissue levels in blood and brain were highly correlated and corresponded well with a behavioral test of catalepsy at one hour after drug administration. This relationship between brain levels and behavior persisted but changed quantitatively over time.  相似文献   

7.
The extraneuronal monoamine transporter plays an important role in the inactivation of monoamine transmitters. A basal extraneuronal tissue expression of this transporter has been reported, but it is also expressed in CNS glia. As little is known about the expression pattern and the function of the extraneuronal monoamine transporter in the brain, we performed a detailed investigation. Firstly, a northern blot analysis of different rat organs revealed that the transporter is strongly expressed in placenta, lung and heart and less prominently in the whole brain, brain stem, intestine, testis, epididymis, stomach, kidney and skeletal muscle. It was not expressed in cerebellum, liver and embryo. Using an in situ hybridization to the rat brain, we detected a marked and highly confined expression of the extraneuronal monoamine transporter in the area postrema, but in no other brain areas. These findings were confirmed by polyclonal antibodies against rat extraneuronal monoamine transporter showing an intensive signal in the area postrema, although a few cells in the cerebellum and the brain stem also showed a signal. Additionally, a partly overlapping expression pattern of the monoamine oxidase-B was detected. Summarizing, we firstly describe a marked and highly confined expression of the extraneuronal monoamine transporter in the rat area postrema by in situ hybridisation which may play a role in physiological functions of this circumventricular organ such as emesis, food intake and the regulation of cardiovascular functions.  相似文献   

8.
Abstract: Classically, drug penetration through the blood-brain barrier depends on the lipid solubility of the substance, except for some highly lipophilic drugs, like colchicine and vinblastine, both substrates of P-glycoprotein, a drug efflux pump present at the luminal surface of the brain capillary endothelial cells. Colchicine and vinblastine uptake into the brain was studied in the rat using the in situ brain perfusion technique and two inhibitors of P-glycoprotein, verapamil and SDZ PSC-833. When rats were pretreated with PSC-833 (10 mg/kg, intravenous bolus), colchicine and vinblastine uptake was enhanced 8.42- and 9.08-fold, respectively, in all the gray areas of the rat brain studied. The mean colchicine distribution volume was increased from 0.67 ± 0.41 to 5.64 ± 0.70 µl/g and vinblastine distribution volume from 2.74 ± 1.15 to 24.88 ± 4.03 µl/g. When rats were pretreated with verapamil (1 mg/kg, intravenous bolus), colchicine distribution volume was increased 3.70-fold. The increase in colchicine and vinblastine did not differ between the eight brain gray areas. PSC-833 and verapamil pretreatment had no influence on the distribution volume of either drug in the choroid plexus. Nevertheless, distribution volumes remained small, considering the highly lipophilic nature of the substances. We suggest that P-glycoprotein is either only partially inhibited (difficulty of fully saturating P-glycoprotein, especially under in vivo conditions) or not the only barrier to these two drugs.  相似文献   

9.
The direct, highly selective and sensitive real-time imaging of neuro- and biochemical mediators is the only way to clarify precisely the chemistry of the brain and to discover the key molecular targets involved in regulation of brain homeostasis. To realize that, we need: high-speed deep-tissue imaging techniques with high spatial and temporal resolution; and ultra-fast and highly selective molecular sensors, giving a possibility to monitor target molecules directly in their physiological environment; in addition, these molecular sensors have to be comparatively small and permeable for blood-brain barrier, to be applicable in brain studies. The present view accents on the perspectives for development of direct approach for investigation of function/flow coupling phenomenon in the brain, based on the current progress in development of ultra-fast molecular sensors for direct visualization of biochemical mediators (e.g., nitric oxide, Ca ions), and high-speed two-photon/multi-photon deep-tissue imaging.  相似文献   

10.
In the process of drug discovery, brain and plasma measurements of new chemical entities in rodents are of interest, particularly when the target receptors are in the brain. Brain-to-plasma ratios (B/P) obtained from a rodent pharmacokinetic assay are useful in helping determine which compounds are brain penetrant. The study reported here was performed to determine whether whole-body saline perfusion for complete blood removal was required to accurately measure brain tissue compound concentrations. Diazepam was used as a positive control since it is highly brain penetrant. Compound A was used as a negative control since it had known poor brain penetration. After intravenous dosing with either diazepam or compound A, rats were anesthetized and blood was collected, then the brain was removed following no perfusion or whole-body perfusion with saline. The analytes described (compound A, diazepam, and the internal standard) were recovered from plasma or brain homogenate by use of protein precipitation, and were subsequently analyzed by use of liquid chromatography/tandem mass spectrometry (LC/MS/MS). The B/P values determined by use of LC-MS were not significantly different in perfused vs. non-perfused rats (P > or = 0.05). This approach (whole brain collected from non-perfused male rats) is an attractive alternative over brain penetration studies of perfused rats, since it has markedly reduced the technical time and potential for pain and distress required for generating B/P data due to elimination of the requirement for anesthesia and surgical preparation of animals.  相似文献   

11.
Using a highly sensitive and specific gas chromatography-mass spectrometric assay, the glycol metabolites of norepinephrine (NE), 3,4-dihydroxyphenylethyleneglycol (DHPG) and 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) were determined simultaneously in brain and body fluids of several mammalian species, including humans. Highest molar ratios of DHPG to MHPG were found in rat brain (1.20), a species in which these glycol metabolites were primarily conjugated. In mouse, guinea pig, hamster, monkey, and human brain, DHPG and MHPG were mostly unconjugated, and DHPG concentrations were about 30–60% of the respective MHPG levels. In dog cortex, MHPG occurred predominantly as conjugates, whereas DHPG could only be detected in its unconjugated form. In all species studies, highest DHPG and MHPG concentrations occurred in hypothalamus followed, in general, by midbrain and brainstem whereas cerebral cortex, caudate and cerebellum had the lowest values. These results demonstrate substantial differences in the degree of conjugation and relative abundance of brain DHPG compared to MHPG between the rat and other animal species studied.  相似文献   

12.
Endosulfine (EDSF) belongs to a highly conserved cAMP-regulated phosphoprotein (ARPP) family and was first isolated from ovine brain as a possible endogenous ligand for sulfonylurea receptors. To explore its involvement in brain functions, we investigated regional distribution of alpha-EDSF gene expression in the rat brain, and its regulation under physiological and pathological conditions. The majority of alpha-EDSF gene was expressed in the pyramidal neurons, which represent the principal excitatory neurons in various brain regions. Down-regulation of alpha-EDSF mRNA was detected in the rat hippocampus during long-term memory consolidation following a spatial learning experience, whereas swimming-related stress caused persistent up-regulation of alpha-EDSF gene expression in several brain regions. These changes, however, were absent from brains of diabetic rats that were subjected to the same behavioral treatments. Intracerebroventricular injection of streptozocin with a toxic dose induced severe learning deficits and brain structure alteration accompanied by a massive increase of alpha-EDSF mRNA in the somatosensory cortex. These results suggest that alpha-EDSF gene expression is differentially regulated by distinct brain processes involving excitatory neuronal activities.  相似文献   

13.
Relaxin is a peptide hormone with known actions associated with female reproductive physiology, but it has also been identified in the brain. Only one relaxin gene had been characterized in rodents until recently when a novel human relaxin gene, human gene-3 (H3) and its mouse equivalent (M3) were identified. The current study reports the identification of a rat homologue, rat gene-3 (R3) relaxin that is highly expressed in a discrete region of the adult brain. The full R3 relaxin cDNA was generated using RT-PCR and 3' and 5' RACE protocols. The derived amino acid sequence of R3 relaxin retains all the characteristic features of a relaxin peptide and has a high degree of homology with H3 and M3 relaxin. The distribution of R3 relaxin mRNA in adult rat brain was determined and highly abundant expression was only detected in neurons of the ventromedial dorsal tegmental nucleus (vmDTg) in the pons, whereas all other brain areas were unlabelled or contained much lower mRNA levels. Relaxin binding sites and relaxin immunoreactivity were also detected in the vmDTg. These together with earlier findings provide strong evidence for a role(s) for multiple relaxin peptides as neurotransmitters and/or modulators in the rat CNS.  相似文献   

14.
半滑舌鳎FTZ-F1cDNA克隆及表达分析   总被引:1,自引:1,他引:0  
为研究性别相关基因FTZ-F1在半滑舌鳎鱼中的表达特征,采用同源克隆策略,从其精巢分离了3143bp长的半滑舌鳎FTZ-F1(hsFTZ-F1)的全长cDNA,该序列包含1458bp开放阅读框,66bp长的5'末端非编码区(UTR),1619bp长的3'末端UTR。mRNA的组织分布、氨基酸序列和系统发生分析表明:hsFTZ-F1属于SF-1/Ad4BP类群。RT-PCR分析表明:hsFTZ-F1mRNA的分布广泛,几乎在所有组织都有表达,但在性腺、肾脏、脑和头肾组织中表达最强,其他组织表达较弱,雌鱼脑和头肾中的表达量明显高于雄性。胚胎发育过程中表达量都高于孵化后仔鱼的表达量,表明hsFTZ-F1可能参与了半滑舌鳎的器官形成过程。  相似文献   

15.
The fetal brain is highly vulnerable to teratogens, including many infectious agents. As a consequence of prenatal infection, many children suffer severe and permanent brain injury and dysfunction. Because most animal models of congenital brain infection do not strongly mirror human disease, the models are highly limited in their abilities to shed light on the pathogenesis of these diseases. The animal model for congenital lymphocytic choriomeningitis virus (LCMV) infection, however, does not suffer from this limitation. LCMV is a well-known human pathogen. When the infection occurs during pregnancy, the virus can infect the fetus, and the developing brain is particularly vulnerable. Children with congenital LCMV infection often have substantial neurological deficits. The neonatal rat inoculated with LCMV is a superb model system of human congenital LCMV infection. Virtually all of the neuropathologic changes observed in humans congenitally infected with LCMV, including microencephaly, encephalomalacia, chorioretinitis, porencephalic cysts, neuronal migration disturbances, periventricular infection, and cerebellar hypoplasia, are reproduced in the rat model. Within the developing rat brain, LCMV selectively targets mitotically active neuronal precursors. Thus, the targets of infection and sites of pathology depend on host age at the time of infection. The rat model has further shown that the pathogenic changes induced by LCMV infection are both virus-mediated and immune-mediated. Furthermore, different brain regions simultaneously infected with LCMV can undergo widely different pathologic changes, reflecting different brain region-virus-immune system interactions. Because the neonatal rat inoculated with LCMV so faithfully reproduces the diverse neuropathology observed in the human counterpart, the rat model system is a highly valuable tool for the study of congenital LCMV infection and of all prenatal brain infections In addition, because LCMV induces delayed-onset neuronal loss after the virus has been cleared, the neonatal rat infected with LCMV may be an excellent model system to study neurodegenerative or psychiatric diseases whose etiologies are hypothesized to be virus-induced, such as autism, schizophrenia, and temporal lobe epilepsy.  相似文献   

16.
Principle trends in the evolution of brain associative centers are discussed. It is demonstrated that in various taxonomic groups the possibilities of adaptive changes, as far as the brain is concerned, go beyond the scope of biological, topographical, and dynamic coordinations, typical for other scopes and systems. The reason for such peculiarity of brain evolution is the multifunctional nature of nerve tissue. This property of nerve tissue allows vertebrates to implement the integrity principle and still preserve the flexibility of the brain, which is highly specialized morphologically and functionally.  相似文献   

17.
【目的】研究血液通路在H5N1高致病性禽流感病毒入侵小鼠中枢神经系统中的作用。【方法】用3株H5N1病毒滴鼻感染BALB/c小鼠,研究小鼠肺、脑、血中的病毒在感染后不同时间点的复制动态及病理进展,通过免疫组化和免疫荧光染色显示病毒在脑部血管内皮细胞及血管周围神经组织的感染情况。【结果】小鼠感染后病毒迅速在肺中高效复制,随即形成病毒血症;感染后第6天病毒在肺中的滴度和在血液样本中的检出率达到峰值,此时小鼠脑部才开始检测到病毒;小鼠脑内血管内皮细胞、脑血管周围神经组织的神经元和神经胶质细胞中可检测到流感病毒NP蛋白。【结论】血液播散可能是高致病性H5N1禽流感病毒进入中枢神经系统的途径之一。  相似文献   

18.
Peptide YY is a highly potent emetic when given intravenously in dogs. We hypothesized that the area postrema, a small brain stem nucleus that acts as a chemoreceptive trigger zone for vomiting and lies outside the blood-brain barrier, might have receptors that PYY would bind to, in order to mediate the emetic response. We prepared [125I]PYY and used autoradiography to show that high affinity binding sites for this ligand were highly localized in the area postrema and related nuclei of the dog medulla oblongata. Furthermore, the distribution of [125I]PYY binding sites in the rat medulla oblongata was very similar to that in the dog; the distribution of [125I]PYY binding sites throughout the rat brain was seen to be similar to the distribution of [125I]NPY binding sites.  相似文献   

19.
The mandarin fish (Siniperca chuatsi) DNA methyltransferase gene 1 (dnmt1) was highly expressed in the mesonephros, head kidney and gonad, whereas dnmt2 was expressed in most tissues. dnmt3a was highly expressed in the brain and spleen, but dnmt3b was mainly expressed in the brain and head kidney. The genes dnmt1 and dnmt2 were highly expressed in the early stages of embryonic development, and dnmt3a and dnmt3b were expressed later. These genes also showed certain changes after artificial diet acclimation, salinity adaptation and immune stress.  相似文献   

20.
The macaque brain serves as a model for the human brain, but its suitability is challenged by unique human features, including connectivity reconfigurations, which emerged during primate evolution. We perform a quantitative comparative analysis of the whole brain macroscale structural connectivity of the two species. Our findings suggest that the human and macaque brain as a whole are similarly wired. A region-wise analysis reveals many interspecies similarities of connectivity patterns, but also lack thereof, primarily involving cingulate regions. We unravel a common structural backbone in both species involving a highly overlapping set of regions. This structural backbone, important for mediating information across the brain, seems to constitute a feature of the primate brain persevering evolution. Our findings illustrate novel evolutionary aspects at the macroscale connectivity level and offer a quantitative translational bridge between macaque and human research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号