首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins containing a classical NLS are transported into the nucleus by the import receptor importin beta, which binds to cargoes via the adaptor importin alpha. The import complex is translocated through the nuclear pore complex by interactions of importin beta with a series of nucleoporins. Previous studies have defined a nucleoporin binding region in the NH2-terminal half of importin beta. Here we report the identification of a second nucleoporin binding region in its COOH-terminal half. Although the affinity of the COOH-terminal region for nucleoporins is dramatically weaker than that of the NH2-terminal region, sets of mutations that perturb the nucleoporin binding of either region reduce the nuclear import activity of importin beta to a similar extent ( approximately 50%). An importin beta mutant with a combination of mutations in the NH2- and COOH-terminal regions is completely inactive for nuclear import. Thus, importin beta possesses two nucleoporin binding sites, both of which are important for its nuclear import function.  相似文献   

2.
A small GTPase Ran is a key regulator for active nuclear transport. In immunoblotting analysis, a monoclonal antibody against recombinant human Ran, designated ARAN1, was found to recognize an epitope in the COOH-terminal domain of Ran. In a solution binding assay, ARAN1 recognized Ran when complexed with importin beta, transportin, and CAS, but not the Ran-GTP or the Ran-GDP alone, indicating that the COOH-terminal domain of Ran is exposed via its interaction with importin beta-related proteins. In addition, ARAN1 suppressed the binding of RanBP1 to the Ran-importin beta complex. When injected into the nucleus of BHK cells, ARAN1 was rapidly exported to the cytoplasm, indicating that the Ran-importin beta-related protein complex is exported as a complex from the nucleus to the cytoplasm in living cells. Moreover, ARAN1, when injected into the cultured cells induces the accumulation of endogenous Ran in the cytoplasm and prevents the nuclear import of SV-40 T-antigen nuclear localization signal substrates. From these findings, we propose that the binding of RanBP1 to the Ran-importin beta complex is required for the dissociation of the complex in the cytoplasm and that the released Ran is recycled to the nucleus, which is essential for the nuclear protein transport.  相似文献   

3.
A new role for nuclear transport factor 2 and Ran: nuclear import of CapG   总被引:1,自引:0,他引:1  
The small GTPase Ran plays a central role in nucleocytoplasmic transport. Nuclear transport of Ran itself depends on nuclear transport factor 2 (NTF2). Here, we report that NTF2 and Ran control nuclear import of the filamentous actin capping protein CapG. In digitonin-permeabilized cells, neither GTPγS nor the GTP hydrolysis-deficient Ran mutant RanQ69L affect transit of CapG to the nucleus in the presence of cytosol. Obstruction of nucleoporins prevents nuclear transport of CapG, and we show that CapG binds to nucleoporin62. In addition, CapG interacts with NTF2, associates with Ran and is furthermore able to bind the NTF2–Ran complex. NTF2–Ran interaction is required for CapG nuclear import. This is corroborated by a NTF2 mutant with reduced affinity for Ran and a Ran mutant that does not bind NTF2, both of which prevent CapG import. Thus, a ubiquitously expressed protein shuttles to the nucleus through direct association with NTF2 and Ran. The role of NTF2 may therefore not be solely confined to sustaining the Ran gradient in cells.  相似文献   

4.
Karyopherins and nuclear import   总被引:21,自引:0,他引:21  
Proteins of the karyopherin alpha and karyopherin beta families play a central role in nucleocytoplasmic transport. Recently, crystal structures of karyopherin alpha and its complexes with nuclear localization signal peptides, a karyopherin beta2-Ran complex and complexes of full-length and fragments of karyopherin beta1 with import substrates, Ran and nucleoporins have been solved. These karyopherin structures provide valuable insights into understanding the molecular mechanism of nuclear import, especially substrate recognition, substrate release by GTPase and interactions with the nuclear pore complex.  相似文献   

5.
Nuclear import and export signals on macromolecules mediate directional, receptor-driven transport through the nuclear pore complex (NPC) by a process that is suggested to involve the sequential binding of transport complexes to different nucleoporins. The directionality of transport appears to be partly determined by the nucleocytoplasmic compartmentalization of components of the Ran GTPase system. We have analyzed whether the asymmetric localization of discrete nucleoporins can also contribute to transport directionality. To this end, we have used quantitative solid phase binding analysis to determine the affinity of an importin beta cargo complex for Nup358, the Nup62 complex, and Nup153, which are in the cytoplasmic, central, and nucleoplasmic regions of the NPC, respectively. These nucleoporins are proposed to provide progressively more distal binding sites for importin beta during import. Our results indicate that the importin beta transport complex binds to nucleoporins with progressively increasing affinity as the complex moves from Nup358 to the Nup62 complex and to Nup153. Antibody inhibition studies support the possibility that importin beta moves from Nup358 to Nup153 via the Nup62 complex during import. These results indicate that nucleoporins themselves, as well as the nucleocytoplasmic compartmentalization of the Ran system, are likely to play an important role in conferring directionality to nuclear protein import.  相似文献   

6.
7.
The nitric oxide synthase interacting protein (NOSIP), an E3-ubiquitin ligase, is involved in various processes like neuronal development, craniofacial development, granulopoiesis, mitogenic signaling, apoptosis, and cell proliferation. The best-characterized function of NOSIP is the regulation of endothelial nitric oxide synthase activity by translocating the membrane-bound enzyme to the cytoskeleton, specifically in the G2 phase of the cell cycle. For this, NOSIP itself has to be translocated from its prominent localization, the nucleus, to the cytoplasm. Nuclear import of NOSIP was suggested to be mediated by the canonical transport receptors importin α/β. Recently, we found NOSIP in a proteomic screen as a potential importin 13 cargo. Here, we describe the nuclear shuttling characteristics of NOSIP in living cells and in vitro and show that it does not interact directly with importin α. Instead, it formed stable complexes with several importins (−β, −7, −β/7, −13, and transportin 1) and was also imported into the nucleus in digitonin-permeabilized cells by these factors. In living HeLa cells, transportin 1 seems to be the major nuclear import receptor for NOSIP. A detailed analysis of the NOSIP-transportin 1 interaction revealed a high affinity and an unusual binding mode, involving the N-terminal half of transportin 1. In contrast to nuclear import, nuclear export of NOSIP seems to occur mostly by passive diffusion. Thus, our results uncover additional layers in the larger process of endothelial nitric oxide synthase regulation.  相似文献   

8.
Adenoviruses target their double-stranded DNA genome and its associated core proteins to the interphase nucleus; this core structure then enters through the nuclear pore complex. We have used digitonin permeabilized cell import assays to study the cellular import factors involved in nuclear entry of virus DNA and the core proteins, protein V and protein VII. We show that inhibition of transportin results in aberrant localization of protein V and that transportin is necessary for protein V to accumulate in the nucleolus. Furthermore, inhibition of transportin results in inhibition of protein VII and DNA import, whereas disruption of the classical importin alpha-importin beta import pathway has little effect. We show that mature protein VII has different import preferences from the precursor protein, preVII from which it is derived by proteolytic processing. While bacterially expressed glutathione S-transferase (GST)-preVII primarily utilizes the pathway mediated by importin alpha-importin beta, bacterially expressed GST-VII favours the transportin pathway. This is significant because while preVII is important during viral replication and assembly only mature VII is available during viral DNA import to a newly infected cell. Our results implicate transportin as a key import receptor for the nuclear localization of adenovirus core.  相似文献   

9.
The small GTPase Ran controls cellular processes by interacting with members of the importin beta family that bind specifically to the GTP-bound form of Ran, and this regulates the interaction between importin beta-like proteins and cellular factors. The structures of RanGDP and RanGTP are markedly different, and major structural changes are found in the switch I and switch II regions and in the C-terminal extension of Ran. Here, we show that a deletion mutant of Ran, lacking the entire C-terminal extension, termed Ran Core, can bind to importin beta in its GDP-bound form with high affinity. The ability of Ran CoreGDP to dissociate cargo from importin beta results in an import block in digitonin-permeabilized cells and leads to microtubule aster formation in mitotic Xenopus egg extract. As for importin beta, also transportin, importin 7 and exportin-t can no longer discriminate efficiently between the two nucleotide-bound forms of Ran Core. In contrast, a significant reduction in affinity of the RanGDP-binding protein NTF2 for Ran CoreGDP is observed, indicating that the switch regions have changed conformation in the Ran Core mutant. Our results demonstrate that the C terminus of Ran is a major determinant of the state of Ran, and that removal of this allows the GDP-bound form to adopt a GTP-like conformation, thereby creating a constitutively active protein.  相似文献   

10.
Here, we report the first evidence that the Ran GTPase cycle is required for nuclear pore complex (NPC) assembly. Using a genetic approach, factors required for NPC assembly were identified in Saccharomyces cerevisiae. Four mutant complementation groups were characterized that correspond to respective mutations in genes encoding Ran (gsp1), and essential Ran regulatory factors Ran GTPase-activating protein (rna1), Ran guanine nucleotide exchange factor (prp20), and the RanGDP import factor (ntf2). All the mutants showed temperature-dependent mislocalization of green fluorescence protein (GFP)-tagged nucleoporins (nups) and the pore-membrane protein Pom152. A decrease in GFP fluorescence associated with the nuclear envelope was observed along with an increase in the diffuse, cytoplasmic signal with GFP foci. The defects did not affect the stability of existing NPCs, and nup mislocalization was dependent on de novo protein synthesis and continued cell growth. Electron microscopy analysis revealed striking membrane perturbations and the accumulation of vesicles in arrested mutants. Using both biochemical fractionation and immunoelectron microscopy methods, these vesicles were shown to contain nups. We propose a model wherein a Ran-mediated vesicular fusion step is required for NPC assembly into intact nuclear envelopes.  相似文献   

11.
12.
13.
Mechanisms of receptor-mediated nuclear import and nuclear export   总被引:24,自引:4,他引:20  
Nuclear transport of proteins and RNA occurs through the nuclear pore complex and is mediated by a superfamily of transport receptors known collectively as karyopherins. Karyopherins bind to their cargoes by recognition of specific nuclear localization signals or nuclear export signals. Transport through the nuclear pore complex is facilitated by transient interactions between the karyopherins and the nuclear pore complex. The interactions of karyopherins with their cargoes are regulated by the Ras-related GTPase Ran. Ran is assisted in this process by proteins that regulate its GTPase cycle and subcellular localization. In this review, we describe several of the major transport pathways that are conserved in higher and lower eukaryotes, with particular emphasis on the role of Ran. We highlight the latest advances in the structure and function of transport receptors and discuss recent examples of steroid hormone receptor import and regulation by signal transduction pathways. Understanding the molecular basis of nuclear transport may provide insight into human diseases by revealing how nucleocytoplasmic trafficking regulates protein activity.  相似文献   

14.
CENP-B is a constitutive centromere DNA-binding protein that is conserved in a number of mammalian species and in yeast. Despite this conservation, earlier cytological and indirect experimental studies have provided conflicting evidence concerning the role of this protein in mitosis. The requirement of this protein in meiosis has also not previously been described. To resolve these uncertainties, we used targeted disruption of the Cenpb gene in mouse to study the functional significance of this protein in mitosis and meiosis. Male and female Cenpb null mice have normal body weights at birth and at weaning, but these subsequently lag behind those of the heterozygous and wild-type animals. The weight and sperm content of the testes of Cenpb null mice are also significantly decreased. Otherwise, the animals appear developmentally and reproductively normal. Cytogenetic fluorescence-activated cell sorting and histological analyses of somatic and germline tissues revealed no abnormality. These results indicate that Cenpb is not essential for mitosis or meiosis, although the observed weight reduction raises the possibility that Cenpb deficiency may subtly affect some aspects of centromere assembly and function, and result in reduced rate of cell cycle progression, efficiency of microtubule capture, and/or chromosome movement. A model for a functional redundancy of this protein is presented.  相似文献   

15.
We report here that importin alpha accumulates reversibly in the nucleus in response to cellular stresses including UV irradiation, oxidative stress, and heat shock. The nuclear accumulation of importin alpha appears to be triggered by a collapse in the Ran gradient, resulting in the suppression of the nuclear export of importin alpha. In addition, nuclear retention and the importin beta/Ran-independent import of importin alpha also facilitate its rapid nuclear accumulation. The findings herein show that the classical nuclear import pathway is down-regulated via the removal of importin alpha from the cytoplasm in response to stress. Moreover, whereas the nuclear accumulation of heat shock cognate 70 is more sensitive to heat shock than the other stresses, importin alpha is able to accumulate in the nucleus at all the stress conditions tested. These findings suggest that the stress-induced nuclear accumulation of importin alpha can be involved in a common physiological response to various stress conditions.  相似文献   

16.
In nucleated cells, proteins designed for nuclear import form complexes with soluble nuclear transport receptors prior to translocation across the nuclear envelope. The directionality of transport is due to the asymmetric distribution of the protein Ran, which dissociates import cargo complexes only in its nuclear RanGTP form. Using fluorescence correlation spectroscopy, we have studied the stability of cargo complexes in solution in the presence and in the absence of RanGTP. We find that RanGTP has a higher affinity for the major import receptor, the importin alpha/beta heterodimer, when importin alpha does not carry a cargo, suggesting that some nuclear transport targets might be preferentially released.  相似文献   

17.
Sequence requirements for plasmid nuclear import   总被引:8,自引:0,他引:8  
The nuclear envelope is a major barrier for nuclear uptake of plasmids and represents one of the most significant unsolved problems of nonviral gene delivery. We have previously shown that the nuclear entry of plasmid DNA is sequence-specific, requiring a 366-bp fragment containing the SV40 origin of replication and early promoter. In this report, we show that, although fragments throughout this region can support varying degrees of nuclear import, the 72-bp repeats of the SV40 enhancer facilitate maximal transport. The functions of the promoter and the origin of replication are not needed for nuclear localization of plasmid DNA. In contrast to the import activity of the SV40 enhancer, two other strong promoter and enhancer sequences, the human cytomegalovirus (CMV) immediate-early promoter and the Rous sarcoma virus LTR, were unable to direct nuclear localization of plasmids. The inability of the CMV promoter to mediate plasmid nuclear import was confirmed by measurement of the CMV promoter-driven expression of green fluorescent protein (GFP) in microinjected cells. At times before cell division, as few as 3 to 10 copies per cell of cytoplasmically injected plasmids containing the SV40 enhancer gave significant GFP expression, while no expression was obtained with more than 1000 copies per cell of plasmids lacking the SV40 sequence. However, the levels of expression were the same for both plasmids after cell division in cytoplasmically injected cells and at all times in nuclear injected cells. Thus, the inclusion this SV40 sequence in nonviral vectors may greatly increase their ability to be transported into the nucleus, especially in nondividing cells.  相似文献   

18.
Macromolecules are transported across the nuclear envelope most frequently by karyopherin/importin-beta superfamily members that are constructed from HEAT repeats. Transport of Kap95p (yeast importin-beta), the principal carrier for protein import, through nuclear pore complexes is facilitated by interactions with nucleoporins containing FG repeats. However, Nup1p interacts more strongly with Kap95p than other FG-nucleoporins. To establish the basis of this increased affinity, we determined the structure of Kap95p complexed with Nup1p residues 963-1076 that contain the high-affinity Kap95p binding site. Nup1p binds Kap95p at three sites between the outer A-helices of HEAT repeats 5, 6, 7 and 8. At each site, phenylalanine residues from Nup1p are buried in hydrophobic depressions between adjacent HEAT repeats. Although the Nup1p and generic FG-nucleoporin binding sites on Kap95p overlap, Nup1p binding differs markedly and has contributions from additional hydrophobic residues, together with interactions generated by the intimate contact of the linker between Nup1 residues 977-987 with Kap95p. The length and composition of this linker is crucial and suggests how differences in affinity for Kap95p both between and within FG-nucleoporins arise.  相似文献   

19.
Pro-inflammatory members of the interleukin-1 (IL-1) family of cytokines (IL-1α and β) are important mediators of host defense responses to infection but can also exacerbate the damaging inflammation that contributes to major human diseases. IL-1α and β are produced by cells of the innate immune system, such as macrophages, and act largely after their secretion by binding to the type I IL-1 receptor on responsive cells. There is evidence that IL-1α is also a nuclear protein that can act intracellularly. In this study, we report that both IL-1α and IL-1β produced by microglia (central nervous system macrophages) in response to an inflammatory challenge are distributed between the cytosol and the nucleus. Using IL-1-β-galactosidase and IL-1-green fluorescent protein chimeras (analyzed by fluorescence recovery after photobleaching), we demonstrate that nuclear import of IL-1α is exclusively active, requiring a nuclear localization sequence and Ran, while IL-1β nuclear import is entirely passive. These data provide valuable insights into the dynamic regulation of intracellular cytokine trafficking.  相似文献   

20.
Ribosomal protein L5 is a shuttling protein that, in Xenopus oocytes, is involved in the nucleocytoplasmic transport of 5S rRNA. As demonstrated earlier, L5 contains three independent nuclear import signals (NLSs), which function in oocytes as well as in somatic cells. Upon physical separation, these NLSs differ in respect to their capacity to bind to nuclear import factors in vitro and to mediate the nuclear import of a heterologous RNP in vivo. As reported in this communication, analysis of the in vitro nuclear import activity of these three NLSs reveals that they also differ in respect to their requirements for cytosolic import factors and Ran. Nuclear import mediated by the N-terminal and the central NLS depends on cytosolic import factor(s) and Ran, whereas import via the C-terminal NLS occurs independently from these factors. Thus, the presence of multiple NLSs in ribosomal protein L5 appears to allow for efficient nuclear transport via utilisation of multiple, mechanistically different import pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号