首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Absorbance changes, caused by adding KCl to a suspension of broken chloroplasts in the presence of a low concentration of MgCl2, have been measured in the wavelength region 460-540 nm. The magnitude of the KCl-induced absorbance changes is shown to be proportional to the logarithm of the KCL concentration gradient initially induced across the thylakoid membrane. The difference spectrum of these absorbance changes is shown to be identical with the spectrum of the light-induced absorbance changes, which has been attributed to an electrochromic shift of p-515. This is interpreted as evidence that under these conditions salt-induced absorbance changes of P-515 occur in response to a membrane diffusion potential. The results indicate that the electrogenic potential across the thylakoid membrane, generated by a single turnover light flash, is in the range between 15 and 35 mV.  相似文献   

2.
Shigeru Itoh 《BBA》1979,548(3):596-607
Electrostatic characteristics of the membrane surface in the vicinity of P-700 were estimated by analyzing the salt and detergent effects on its reaction rate with ionic reagents using the Gouy-Chapman diffuse double layer theory in various preparations of chloroplasts.

Upon disruption of thylakoid membranes by sonic treatment or by treatment with digitonin, the reaction rate markedly increased, while the estimated surface charge density became smaller.

It was concluded that the membrane surface which determines the reaction rate between P-700 and the ionic reagents changed as the disruption of thylakoid structure. The outer thylakoid surface had more negative charges than the inner one.

Changes in the electrical potential profile across the thylakoid membrane during the illumination were also discussed from these results.  相似文献   


3.
Shigeru Itoh 《BBA》1979,548(3):579-595
Salt- or pH-induced change of the rate of reduction of the phtooxidized membrane bound electron transfer components, P-700, by ionic and nonionic reductants added in the outer medium was studied in sonicated chloroplasts.

The rate with the negatively charged reductants increased with the increase of salt concentration at a neutral pH or with the decrease of medium pH. Salts of divalent cations were much more effective than those of monovalent cations. A trivalent cation was even more effective. The rate with a nonionic reductant was little affected by salts.

The change of the reduction rate was analyzed using the Gouy-Chapman theory, which explains the change of reduction rate by the changes of activities of ionic reductants at the charged membrane surface where the reaction takes place. This analysis gave more useful parameters and explained more satisfactorily the case with high-valence cation salts than the Brönsted type analysis. The values for the surface charge density and the surface potential of the membrane surface in the vicinity of P-700 estimated from the analysis were lower than those estimated for the surface in the vicinity of Photosystem II primary acceptor, suggesting the heterogeneity of the thylakoid surface.

The salt-induced surface potential change was shown to affect the activation energy of the reaction between P-700 and the ionic reagent.  相似文献   


4.
Pierre Setif  Guy Hervo  Paul Mathis 《BBA》1981,638(2):257-267
Absorption changes induced in chlorophyll protein (CP 1) particles by short laser flashes have been analyzed in order to decide whether a state lasting for a few microseconds at 21°C or 800 μs at 10 K corresponds to the biradical P-700+ ... A1 (A1 being a chlorophyll a) or to a triplet state produced in a submicrosecond recombination of the preceding state. At 21°C the spectrum of the flash-induced ΔA (720–870 nm) presents a flat-topped band from 740 to 820 nm, clearly different from that of P-700+. A saturation curve (ΔA vs. laser energy), obtained with a 2 or 10 ns laser pulse, indicates that ΔA saturates at a value 2- or 3-times smaller than that expected on the basis of the chemical oxidation of P-700. At 21°C the size of flash-induced ΔA is slightly decreased (5–15%) when the sample is subjected to a 400 G magnetic field. The kinetics of decay are not affected; they are not affected either by the oxygen concentration. At 10 K the spectrum of the flash-induced ΔA has been measured between 650 and 1700 nm. Between 650 and 720 nm, the spectrum presents only one major negative peak at 702 nm; it is quite different from that due to the chemical oxidation of P-700 (which has additional peaks at 688 and 677 nm). Between 720 and 870 nm, the spectrum is identical to that obtained at 21°C. Above 870 nm, the spectrum includes a broad band around 1250 nm, which is absent in P-700+. A saturation curve leads to a maximum ΔA greater than that at 21°C and which is also greater with a 1 μs dye laser flash than with a 10 ns ruby laser flash. An analysis of the spectral data indicates that these do not fit correctly with the hypothesis of a contribution of P-700+ and of a chlorophyll a anion radical. They fit more closely with the hypothesis of a triplet state of P-700, a hypothesis which is discussed in relation to other experimental data.  相似文献   

5.
G.D. Case  W.W. Parson 《BBA》1973,325(3):441-453
Shifts in the absorption bands of bacteriochlorophyll and carotenoids in Chromatium vinosum chromatophores were measured after short actinic flashes, under various conditions. The amplitude of the bacteriochlorophyll band shift correlated well with the amount of cytochrome c-555 that was oxidized by P870+ after a flash. No bacteriochlorophyll band shift appeared to accompany the photooxidation of P870 itself, nor the oxidation of cytochrome c-552 by P870+. The carotenoid band shift also correlated with cytochrome c-555 photooxidation, although a comparatively small carotenoid shift did occur at high redox potentials that permitted only P870 oxidation.

The results explain earlier observations on infrared absorbance changes that had suggested the existence of two different photochemical systems in Chromatium. A single photochemical system accounts for all of the absorbance changes.

Previous work has shown that the photooxidations of P870 and cytochrome c-555 cause similar changes in the electrical charge on the chromatophore membrane. The specific association of the band shifts with cytochrome c-555 photooxidation therefore argues against interpretations of the band shifts based on a light-induced membrane potential.  相似文献   


6.
Bacon Ke  Edward Dolan 《BBA》1980,590(3):401-406
The decay time of flash-induced absorption changes in a Photosystem-II subchloroplast fragment is very temperature sensitive down to 210 K, below which it remains constant at 1.25 ± 0.05 ms. The difference spectrum from the near-infra-red to the ultraviolet regions indicates that the monophasic decay represents charge recombination between P-680+ and the reduced primary acceptor. The charge recombination proceeds by electron tunneling. The P-680 concentration in the TSF-IIa fragment was estimated to be one in 30 ± 5 total chlorophyll molecules.  相似文献   

7.
The orientation of membrane-bound radicals in spinach chloroplasts is examined by electron paramagnetic resonance (EPR) spectroscopy of chloroplasts oriented by magnetic fields. Several of the membrane-bound radicals which possess g-tensor anisotropy display EPR signals with a marked dependence on the orientation of the membranes relative to the applied EPR field. The fraction of oxidized and reduced plastocyanin, P-700, iron-sulfur proteins A and B, and the X center, an early acceptor of Photosystem I, can be controlled by the light intensity during steady-state illumination and can be trapped by cooling. The X center can be photoreduced and trapped in the absence of strong reductants and high pH, conditions previously found necessary for its detection. These results confirm its role as an early electron acceptor in P-700 photo-oxidation. X is oriented with its smallest principal g-tensor axis (gx) predominantly parallel to the normal to the thylakoid membrane, the same orientation as was found for an early electron acceptor based on time-resolved electron spin polarization studies. We propose that the X center is the first example of a high potential iron-sulfur protein which functions in electron transfer in its ‘;superreduced’; state. We present evidence which suggests that iron-sulfur proteins A and B are 4Fe-4S clusters in an 8Fe-8S protein. Center B is oriented with gy predominantly normal to the membrane plane. The spectra of center A and plastocyanin do not show significant changes with sample orientation. In the case of plastocyanin, this may indicate a lack of molecular orientation. The absence of an orientation effect for reduced center A is reconcilable with a 4Fe-4S geometry, provided that the electron obtained upon reduction can be shared between any pair of Fe atoms in the center. Orientation of the ‘;Rieske’; iron-sulfur protein is also observed. It has axial symmetry with g close to the plane of the membrane. A model is proposed for the organization of these proteins in the thylakoid membrane.

A new EPR signal was observed in oriented chloroplasts. This broad unresolved resonance displays a g value of 3.2 when the membrane normal is parallel to the field. It shifts to g = 1.9 when the membrane normal is perpendicular to the field. The signal is sensitive to illumination and to washing of the thylakoid membranes of broken chloroplasts. We suggest that there is a relation between this signal and the water-oxidizing enzyme system.  相似文献   


8.
The light excitation of P-960 results in the oxidation of P-960 and the reduction of P-800 (bacteriophytin b-800) in the reaction centers from Rhodopseudomonas viridis. A negative 847 nm band of the circular dichroism spectrum disappears under P-960 photooxidation, while a positive 827 nm band disappears under P-800 photoreduction. Exciton interaction of the pigment molecules in the reaction center is discussed.  相似文献   

9.
The reduction of P-700 by its electron donors shows two fast phases with half-times of 20 and 200 μs in isolated spinach chloroplasts. We have studied this electron transfer and the oxidation kinetics of cytochrome f.

Incubation of chloroplasts with KCN or HgCl2 decreased the amplitude of the 20 μs phase. This provides evidence for a function of plastocyanin as the immediate electron donor of P-700.

At low concentrations of salt and sugar the fast phases of P-700+ reduction were largely inhibited. Increasing concentrations of MgCl2, KCl and sorbitol (up to 5, 150 and 200 mM, respectively) were found to increase the relative amplitudes of the fast phases to about one-third of the total P-700 signal. Addition of both 3 mM MgCl2 and 200 mM sorbitol increased the relative amplitude of the 20 μs phase to 70%. The interaction between P-700 and plastocyanin is concluded to be favoured by a low internal volume of the thylakoids and compensation of surface charges of the membrane.

The half-time of 20 μs was not changed when the amplitude of this phase was altered either by salt and sorbitol, or by inhibition of plastocyanin. This is evidence for the existence of a complex between plastocyanin and P-700 with a lifetime long compared to the measuring time. The 200 μs phase exhibited changes in its half-time that indicated the participation of a more mobile pool of plastocyanin.

Cytochrome f was oxidized with a biphasic time course with half-times of 70–130 μs and 440–860 μs at different salt and sorbitol concentrations. The half-time of the faster phase and a short lag of 30–50 μs in the beginning of the kinetics indicate an oxidation of cytochrome f via the 20 μs electron transfer to P-700. An inhibition of this oxidation by MgCl2 suggests that the electron transfer from cytochrome f to complexed plastocyanin is not controlled by negative charges in contrast to that from plastocyanin to P-700.  相似文献   


10.
Wolfgang Haehnel   《BBA》1976,440(3):506-521
The flash-induced oxidation kinetics of the primary acceptor of light Reaction II (X-320) and the reduction kinetics of chlorophyll a1 (P-700) after far-red preilluination have been studied with high time resolution in spinach chloroplasts.

1. 1. The kinetics of chlorophyll a1 exhibits a pronounced lag phase of 2–3 ms at the onset of reduction as would be expected for the final product of consecutive reactions. Because the oxidation of the plastoquinone pool is the rate-limiting step for the electron transport between the two light reactions, the lag indicates the maximal electron transfer time over all preceding reactions after light Reaction II.

2. 2. The observation that the lag phase decreases with decreasing pH is evidence of an electron transfer step coupled to a proton uptake reaction.

3. 3. Protonation of X-320 after reduction in the flash is excluded because a slight increase of the decay time is found at decreasing pH values.

4. 4. The time course of plastohydroquinone formation is deduced from the first derivative of the reduction kinetics of chlorophyll a1. This approach covers those plastohydroquinone molecules being available to the electron carriers of System I via the rate-limiting step. Direct measurements of absorbance changes would not allow to discriminate between these and functionally different plastohydroquinone molecules.

5. 5. The derived time course of plastohydroquinone at different pH gives evidence for an additional electron transfer step with a half time of about 1 ms following the proton uptake and preceding the rate-limiting step. It is tentatively attributed to the diffusion of neutral plastohydroquinone across the hydrophobic core of the thylakoid membrane.

6. 6. The lower limit of the rate constant for proton uptake by an electron carrier, consistent with the lag of chlorophyll a1 reduction, is estimated as > 1011 M−1 · s−1. The value is higher than that of the fastest diffusion controlled protonations of organic molecules in solution.

Possible mechanisms of linear electron transport between light Reaction II and the rate-limiting oxidation of neutral plastohydroquinone are thoroughly discussed.  相似文献   


11.
Sandor Demeter  Bacon Ke   《BBA》1977,462(3):770-774
Absorption changes accompanying light-induced P-700+ formation and its decay in the dark at 15 K in Photosystem-I particles poised at various redox potentials have been examined. In unpoised samples, the light-induced absorption change is practically irreversible. At increasingly negative potentials, an increasing fraction of the absorption change, proportional to the fraction of bound iron-sulfur protein chemically reduced, becomes reversible, and the titration curve has a midpoint potential of −530 mV (vs. normal hydrogen electrode). At −666 mV, the P-700 absorption change is 97% reversible. The total P-700-signal amplitude decreases over the same potential span and levels off at about 43% (to slightly over 50% at a substantially higher excitation intensity). These results provide additional support to previous suggestions of an existence of an intermediate electron acceptor located between the primary donor, P-700, and the more stable primary electron acceptor (P-430 or bound iron-sulfur protein).  相似文献   

12.
M. D. Il''ina  A. Y. Borisov 《BBA》1980,590(3):345-352
The pigment-protein complexes enriched with Photosystem I (PPC-I) and Photosystem II (PPC-II) were obtained using sievorptive chromatography on DEAE-Sephadex column. Both types of complexes contain Chlorophyll a, β-carotene and minor quantities of Chl b. Red absorbance maxima are located at 676 nm and 673 nm for PPC-I and PPC-II, respectively. The degrees of reaction centre enrichment were measured by the method of differential spectrophotometry: PPC-I has one P-700 per 35 bulk Chl a molecules, PPC-II contains one P-680 per 18 bulk Chl a molecules. The yield of PPC-II is 7–10 times lower than that of PPC-I. After one chromatographic procedure the amount of P-680 in PPC-I preparation does not exceed 7% of that of P-700, the amount of P-700 in PPC-II preparation 2% of that of P-680. The product of PPC-II degradation was studied.  相似文献   

13.
Keith A. Rose  Alan Bearden 《BBA》1980,593(2):342-352
Electron paramagnetic resonance (EPR) power saturation and saturation recovery methods have been used to determine the spin lattice, T1, and spin-spin, T2, relaxation times of P-700+ reaction-center chlorophyll in Photosystem I of plant chloroplasts for 10 K T 100 K. T1 was 200 μs at 100 K and increased to 900 μs at 10 K. T2 was 40 ns at 40 K and increased to 100 ns at 10 K. T1 for 40 K T 100 K is inversely proportional to temperature, which is evidence of a direct-lattice relaxation process. At T = 20 K, T1 deviates from the 1/T dependence, indicating a cross relaxation process with an unidentified paramagnetic species. The individual effects of ascorbate and ferricyanide on T1 of P-700+ were examined: T1 of P-700+ was not affected by adding 10 mM ascorbate to digitonin-treated chloroplast fragments (D144 fragments). The P-700+ relaxation time in broken chloroplasts treated with 10 mM ferricyanide was 4-times shorter than in the untreated control at 40 K. Ferricyanide appears to be relaxing the P-700+ indirectly to the lattice by a cross-relaxation process. The possibility of dipolar-spin broadening of P-700+ due to either the iron-sulfur center A or plastocyanin was examined by determining the spin-packet linewidth for P-700+ when center A and plastocyanin were in either the reduced or oxidized states. Neither reduced center A nor oxidized plastocyanin was capable of broadening the spin-packet linewidth of the P-700+ signal. The absence of diplolar broadening indicates that both center A and plastocyanin are located at a distance at least 3.0 nm from the P-700+ reaction center chlorophyll. This evidence supports previous hypotheses that the electron donor and acceptor to P-700 are situated on opposite sides of the chloroplast membrane. It is also shown that the ratio of photo-oxidized P-700 to photoreduced centers A and B at low temperature is 2 : 1 if P-700 is monitored at a nonsaturating microwave power.  相似文献   

14.
Herman Kramer  Paul Mathis   《BBA》1980,593(2):319-329
The formation of the triplet state of carotenoids (detected by an absorption peak at 515 nm) and the photo-oxidation of the primary donor of Photosystem II, P-680 (detected by an absorption increase at 820 nm) have been measured by flash absorption spectroscopy in chloroplasts in which the oxygen evolution was inhibited by treatment with Tris. The amount of each transient form has been followed versus excitation flash intensity (at 590 or 694 nm). At low excitation energy the quantum yield of triplet formation (with the Photosystem II reaction center in the state Q) is about 30% that of P-680 photo-oxidation. The yield of carotenoid triplet formation is higher in the state Q than in the state Q, in nearly the same proportion as chlorophyll a fluorescence. It is concluded that, for excited chlorophyll a, the relative rates of intersystem crossing to the triplet state and of fluorescence emission are the same in vivo as in organic solvent. At high flash intensity the signal of P-680+ completely saturates, whereas that of carotenoid triplet continues to increase.

The rate of triplet-triplet energy transfer from chlorophyll a to carotenoids has been derived from the rise time of the absorption change at 515 nm, in chloroplasts and in several light-harvesting pigment-protein complexes. In all cases the rate is very high, around 8 · 107 s−1 at 294 K. It is about 2–3 times slower at 5 K. The transitory formation of chlorophyll triplet has been verified in two pigment-protein complexes, at 5 K.  相似文献   


15.
W. A. Cramer  P. Horton  J. J. Donnell 《BBA》1974,368(3):361-370
The presence of low (1–4 μM) concentrations of carbonylcyanide p-trifluoromethoxyphenylhydrazone during actinic illumination of chloroplasts generally inhibits the rate of subsequent dark chemical oxidation-reduction reactions of cytochrome ƒ and b-559. Ferricyanide oxidation and ascorbate reduction of cytochromes ƒ and b-559 are inhibited, as is hydroquinone reduction of cytochrome b-559. Inhibition by carbonylcyanide p-trifluoromethoxyphenylhydrazone of hydroquinone reduction of cytochrome ƒ, the most rapid of these chemical oxidation-reduction reactions, cannot be detected. The rate of the chemical redox reactions of the cytochromes in the presence of carbonylcyanide p-trifluoromethoxyphenylhydrazone are all markedly dependent upon the concentration of oxidant or reductant except the hydroquinone reduction of cytochrome b-559 photooxidized in the presence of carbonylcyanide p-trifluoromethoxyphenylhydrazone.

The data is interpreted in terms of an effect of carbonylcyanide p-trifluoromethoxyphenylhydrazone on thylakoid membrane structure which generally inhibits accessibility to the hydrophobic interior of the membrane, possibly through an increase in membrane microviscosity. The question of whether such an effect on membrane structure could be involved in uncoupling or inhibition effects of the carbonylcyanidephenylhydrazone compounds is discussed, as is the special effect of these compounds on the cytochrome b-559 photoreactions at room temperature.  相似文献   


16.
Flash-induced P515 absorbance changes have been studied in dark-adapted chloroplasts isolated from spinach plants grown under two different light intensities. The slow component (reaction 2), normally present in the P515 response of chloroplasts isolated from plants grown at an intensity of 60 W · m–2, was largely reduced in chloroplasts isolated from plants grown at an intensity of 6 W · m–2. This reduction of the slow component in the P515 response appeared to be coincident with an alteration in the lipid composition of the thylakoid membrane. Mainly the ratio monogalactosyldiacylglycerol to digalactosyldiacylglycerol appeared to be altered. In thylakoids from plants grown at 6 W · m–2, the ratio was approximately 35% lower than that of plants grown at 60 W · m–2. The amount of both cytochromeb 563 and cytochromef was largely reduced in chloroplasts isolated from plants grown at low light intensity. These results may indicate a possible correlation between structural organization of the thylakoid membrane and the kinetics of the flash-induced P515 response.  相似文献   

17.
Chromatophores from Rhodopseudomonas sphaeroides were oriented by allowing aqueous suspensions to dry on glass plates. Orientation of reaction center pigments was investigated by studying the linear dichroism of chromatophores in which the absorption by antenna bacteriochlorophyll had been attenuated through selective oxidation. Alternatively the light-induced absorbance changes, in the ranges 550–650 and 700–950 nm, were studied in untreated chromatophores. The long wave transition moment of reaction center bacteriochlorophyll (P-870) was found to be nearly parallel to the plane of the membrane, whereas the long wave transition moments of bacteriopheophytin are polarized out of this plane. For light-induced changes the linear dichroic ratios, defined as Δavah, are nearly the same for untreated and for oxidized chromatophores. Typical values are 1.60 at 870 nm, 0.80 at 810 nm, 1.20 at 790 nm, 0.70 at 765 nm, 0.30 at 745 nm, and 0.50 at 600 nm. The different values for the absorbance decrease at 810 nm (0.80) and the increase at 790 nm (1.20) are incompatible with the hypothesis that these changes are due to the blue-shift of a single band. We propose that the decreases at 870 and 810 nm reflect bleaching of the two components of a bacteriochlorophyll dimer, the “special pair” that shares in the photochemical donation of a single electron. The increase at 790 nm then represents the appearance of a monomer band in place of the dimer spectrum, as a result of electron donation. This hypothesis is consistent with available data on circular dichroism. It is confirmed by the presence of a shoulder at 810 nm in the absorption spectrum of reaction centers at low temperature; this band disappears upon photooxidation of the reaction centers. For the changes near 760 nm, associated with bacteriopheophytin, the polarization and the shape of the “light-dark” difference spectrum (identical to the first derivative of the absorption spectrum) show that the 760 nm band undergoes a light-induced shift to greater wavelengths.  相似文献   

18.
Molecular dimensions and molecular orbital calculations of the electronic structures of 56 substrates, inhibitors and inducers of the cytochromes P-448 and other families of the cytochromes P-450 are reported. Substrates of the cytochromes P-448 are shown to be planar molecules with relatively large values of area/depth2, and to have electronic structures with relatively low values for ΔE, the difference in energy between the frontier orbitals (E(LEMO) − E(HOMO)). Substrates of other families of the cytochromes P-450 are globular molecules, with relatively low values of area/depth2 and relatively high values of ΔE. Molecular orbital calculations of the active oxygen species, singlet oxygen and superoxy anion, have also been made. Singlet oxygen is a poor electron donor (low values of E(HOMO)) but a good electron acceptor (low values of E(LEMO)), whereas superoxy anion is a good electron donor and a poor electron acceptor. Cytochrome P-448 substrates, which are good electron donors, would preferentially accept singlet oxygen, a good electron acceptor; substrates of the other families of cytochrome P-450, which are less effective electron donors, would preferentially accept superoxy anion, a good electron donor, although substrates of both cytochromes P-448 and other P-450s may accept both species of active oxygen. Together with recent published evidence, these data provide a greater understanding of the mode of activation of oxygen by the various families of the cytochromes P-450, and to the insertion of active oxygen into the substrates. Mechanisms are proposed for the oxygenation of substrates, namely, epoxidation involving singlet oxygen and hydroxylation by superoxy anion. Finally, a detailed explanation of the cytochrome P-450 cycle is discussed, and mechanisms of the different types of oxidative metabolism are presented.  相似文献   

19.
Light-induced absorbance change at 515 nm in spinach chloroplastswas studied in the temperature range from –2?C to 27?C.Lowering of temperature had no marked effect on the extentsof initial "light-on" spike and the steady-state change overthe temperature range examined, whereas the rate of recoveryof the 515-nm change was significantly reduced at lower temperatures.Above 15?C, recovery of the 515-nm change after continuous illuminationshowed a first-order kinetics. In contrast, the recovery wascomposed of a fast and a slow phases at lower temperatures. The fast phase of the recovery of the 515-nm change was acceleratedby carbonyl cyanide m-chlorophenylhydrazone, valinomycin plusK+ or sodium tetraphenylboron, while the slow phase was completelyeliminated in glutaraldehyde-fixed chloroplasts. Light-inducedchange in absorbance at 546 nm, an indicator of structural changesof membrane, showed almost the same dependency on temperatureas the slow phase of the recovery of the 515-nm change. Theseresults suggest that not only electric field formation acrossthe thylakoid membrane but also structural or conformationalchanges in the membrane participate in the 515-nm absorbancechange observed under steady illumination. (Received July 5, 1976; )  相似文献   

20.
Pre-illumination of the thylakoid membrane of Peperomia metallica chloroplasts leads to a reversible suppression of the flash-induced electrical potential as measured either with the electrochromic bandshift (P515), microelectrode impalement or patch-clamp technique. The energization-dependent potential suppression was not observed in the presence of 1 μ M nigericin suggesting the involvement of proton and/or cation gradients. Energization in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and N,N,N',N'-tetramethylphenylenediamine (TMPD), i.e. cyclic electron flow around photosystem (PS) I, results in the accumulation of TMPD+ in the thylakoid lumen. The reversible suppression of the flash-induced membrane potential was not observed in these conditions indicating that it is not a general cation-induced increase of membrane capacitance. Cyclic electron flow around PSI in the presence of DCMU and phenazine methosulfate (PMS) results in the accumulation of PMS+ and H+ in the thylakoid lumen. The absence of reversible suppression of the flash-induced membrane potential for this condition shows that accumulation of protons does not lead to (1) a reversible increase of membrane capacitance and (2) a reversible suppression of PSI-dependent electrogenesis. Reversible inactivation of PSII by a low pH in the thylakoid lumen is therefore proposed to be the cause for the temporary suppression of the flash-induced electrical potential. The flash-induced PSII-dependent membrane potential, as measured after major oxidation of P700 in far-red background light, was indeed found to be suppressed at low assay pH (pH 5) in isolated spinach ( Spinacia oleracea ) chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号