首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Olfactory receptor neuron (ORN) response was measured to assess why some males ("rare males") of the Asian corn borer (ACB), Ostrinia furnacalis, have a broad behavioral response to fly upwind to both the ACB and the European corn borer (ECB), Ostrinia nubilalis, pheromone blends. We performed single-sensillum electrophysiological recordings on ACB males that had been behaviorally assessed for upwind flight response to the ACB blend [60:40 (Z)-12-tetradecenyl acetate (Z12-14:OAc) to (E)-12-tetradecenyl acetate (E12-14:OAc)], as well as to ECB (Z-strain) and ECB (E-strain) blends [3:97 and 99:1 (Z)-11-tetradecenyl acetate (Z11-14:OAc) to (E)-11-tetradecenyl acetate (E11-14:OAc)]. Sensilla from all types of males had large- and small-spike-sized ORNs responding strongly to Z12- or E12-14:OAc, but weakly to Z11- and E11-14:OAc. In the majority of males ("normal males") that flew upwind only to the ACB blend, Z11-14:OAc elicited responses in an intermediate spike-sized ORN associated with behavioral antagonism that is mainly tuned to (Z)-9-tetradecenyl acetate (Z9-14:OAc). In the rare-type ACB males that flew to both the ACB and ECB pheromone blends, Z11-14:OAc did not stimulate this ORN. Increased responsiveness to ancestral pheromone components by ORNs associated with behavioral antagonism could be instrumental in reproductive character displacement, or in reinforcement and reproductive isolation during speciation by helping to increase assortative mating between males and females in derived populations that use novel sex pheromone blends.  相似文献   

2.
First generation hybrid males from crosses between the Asian corn borer (ACB), Ostrinia furnacalis, and the “univoltine Z-strain” European corn borer (ECB), Ostrinia nubilalis, were examined with respect to behavioral and physiological responses to ACB and ECB pheromones. The hybrid males often flew to the pheromone of ECB Z-strain, but very rarely to the ACB pheromone. We mapped the tuning profiles of each ORN of the F1 hybrids with respect to the relevant pheromone components and a common behavioral antagonist by employing differential cross-adaptation and varying doses of the ligands. In the trichoid sensilla of F1 hybrid males, the three co-compartmentalized ORNs produced spikes that were very difficult to distinguish by size, unlike the parental populations. Comparing the responses to ACB and ECB components at different doses reveals overlapping profiles similar to males of both parental types, but more responsiveness to the ECB pheromone components. We were unable to detect any differences in the ORN tuning profiles when comparing males with different behavioral phenotypes. While the two ECB pheromone races have similar ORN tuning properties that are different from those in ACB, the spike-amplitude patterns of ECB E-strain and ACB have greater homology when compared to ECB Z-strain.  相似文献   

3.
4.
Three percent of E-strain Ostrinia nubilalis males fly upwind in response to the Ostrinia furnacalis pheromone blend [a 40:60 ratio of (E)-12-tetradecenyl acetate to (Z)-12-tetradecenyl acetate (E12-14:OAc to Z12-14:OAc)], in addition to their own pheromone blend [a 99:1 ratio of (E)-11-tetradecenyl acetate to (Z)-11-tetradecenyl acetate) (E11-14:OAc to Z11-14:OAc)]. We assessed the olfactory receptor neuron (ORN) responses of these behaviorally "rare" males versus those of normal males. For the three ORNs housed within each sensillum, we tested responsiveness to Z12-14:OAc, E12-14:OAc, Z11-14:OAc, E11-14:OAc, and the behavioral antagonist (Z)-9-tetradecenyl acetate (Z9-14:OAc). Z11-14:OAc, E11-14:OAc, and Z9-14:OAc stimulated ORNs exhibiting distinct small, large, and medium spike sizes, respectively. For rare and normal males, both Z12-14:OAc and E12-14:OAc usually elicited responses from the largest-spiking ORN. In many ORNs of normal males, Z12-14:OAc or E12-14:OAc stimulated the smaller-spiking ORN that is responsive to Z11-14:OAc. In rare males, detectable ORN responses from the smaller-spiking ORN in response to Z12- and E12-14:OAc were virtually non-existent. These differences in ORN tuning in rare males will tend to create an ORN firing ratio between the large- and small-spiking ORNs in response to the O. furnacalis blend that is similar to that elicited by the O. nubilalis blend.  相似文献   

5.
亚洲玉米螟与欧洲玉米螟混生区的研究   总被引:2,自引:0,他引:2  
生殖隔离试验、形态鉴定、网室内性信息素活性反应和食性试验的结果表明 :张家口苍耳中的玉米螟与新疆伊宁的欧洲玉米螟同种 ,而为害玉米的优势种与广东阳山的亚洲玉米螟同种。张家口为害玉米的种群中 ,有部分雄蛾对欧洲玉米螟性信息素及苍耳中的雌处女蛾具有反应。苍耳和玉米中的种群在玉米、谷子、高梁、苍耳、草和大马蓼等 6种寄主上均可产卵和取食为害 ,并能正常完成生活史。研究结果证实张家口为亚洲玉米螟和欧洲玉米螟混生区 ,而且在玉米中很可能有少量欧洲玉米螟与亚洲玉米螟混生。  相似文献   

6.

Background  

The European corn borer (ECB), Ostrinia nubilalis, is a textbook example of pheromone polymorphism. Males of the two strains (Z and E) prefer opposite ratios of the two pheromone components, Z11- and E11-tetradecenyl acetate, with a sex-linked factor underlying this difference in preference. The male antennal lobes of the two strains contain a pheromone sensitive macroglomerular complex (MGC) that is identical in morphology, but reversed in functional topology. However, hybrids prefer intermediate ratios. How a topological arrangement of two glomeruli can accommodate for an intermediate preference was unclear. Therefore we studied the neurophysiology of hybrids and paternal backcrosses to see which factors correlated with male behavior.  相似文献   

7.
8.
Antennal responses of male European corn borer moths, Ostrinia nubilalis, to their two pheromone components, (Z)- and (E)-11-tetradecenyl acetates (tda), were studied. The electroantennogram (EAG) response was highest when the ventral side and lowest when the dorsal side of the antenna faced the air stream carrying the chemical stimulus. Repetitive stimulation with one of the isomers resulted in adaptation which affected the amplitude of response in subsequent tests of both (Z)- and (E)-11-tda. This suggested that the receptors for the two tda isomers are either identical or highly interactive. Mixtures of the two pheromone components did not elicit higher responses than the major component, (Z)-11-tda. A significant difference was observed between London and New York strains of this insect in their relative responses to (Z)- and (E)-11-tda. EAG responses of hybrids of these two strains resembled those for the New York strain.  相似文献   

9.
The E and Z pheromone strains of the European corn borer (ECB) provide an exceptional model system for examining the genetic basis of sexual isolation. Differences at two major genes account for variation in female pheromone production and male behavioral response, components of the pheromone communication system known to be important for mate recognition and mate choice. Strains of ECB are morphologically indistinguishable, and surveys of allozyme and DNA sequence variation have revealed significant allele frequency differences at only a single sex-linked locus, Tpi. Here we present a detailed genetic linkage map of ECB using AFLP and microsatellite markers and map the factors responsible for pheromone production (Pher) and male response (Resp). Our map covers 1697 cM and identifies all 31 linkage groups in ECB. Both Resp and Tpi map to the Z (sex) chromosome, but the distance between these markers (>20 cM) argues against the hypothesis that patterns of variation at Tpi are explained by tight linkage to this "speciation gene." However, we show, through analysis of marker density, that Tpi is located in a region of low recombination and suggest that a second Z-linked reproductive barrier could be responsible for the origin and/or persistence of differentiation at Tpi.  相似文献   

10.
We are proposing that the "relative" abundances of the differently tuned pheromone-component-responsive olfactory receptor neurons (ORNs) on insect antennae are not a result of natural selection working to maximize absolute sensitivity to individual pheromone components. Rather, relative abundances are a result of specifically tuned sensillum-plus-ORN units having been selected to accurately transduce and report to the antennal lobe the maximal ranges of molecular flux imparted by each pheromone component in every plume strand. To not reach saturating stimulus flux levels from the most concentrated plume strands of a pheromone blend, the dendritic surface area of the ORN type that is tuned to the most abundant component of a pheromone blend is increased in dendritic diameter in order to express a greater number of major pheromone component-specific odorant receptors. The increased ability of these enlarged dendrite, major component-tuned ORNs to accurately report very high flux of its component results in a larger working range of stimulus flux able to be accurately transduced by that type of ORN. However, the larger dendrite size and possibly other high-flux adjustments in titers of pheromone-binding proteins and degrading enzymes cause a decrease in absolute sensitivity to lower flux levels of the major component in lower concentration strands of the pheromone blend. In order to restore the ability of the whole-antenna major pheromone component-specific channel to accurately report to its glomerulus the abundance of the major component in lower concentration strands, the number of major component ORNs over the entire antenna is adjusted upward, creating a greater proportion of major component-tuned ORNs than those tuned to minor components. Pheromone blend balance reported by the whole-antennal major and minor component channels in low plume-flux strands is now restored, and the relative fluxes of the 2 components occurring in both low- and high-flux strands are thereby accurately reported to the component-specific glomeruli. Thus, we suggest that the 2 phenomena, dendrite size and relative numbers of differentially tuned ORNs are linked, and both are related to wide disparities in molecular flux ranges occurring for the more abundant and less abundant components in the pheromone blend plume strands.  相似文献   

11.
12.
J. Zhu  C. Lofstedt    B. O. Bengtsson 《Genetics》1996,144(2):757-766
The major difference in pheromone production between the so-called E and Z strains of the European corn borer Ostrinia nubilalis is controlled by two alleles at a single autosomal locus. E-strain females produce an (E)-11-tetradecenyl acetate pheromone with 1-3% of the Z isomer, whereas Z-strain females produce the opposite blend. In laboratory-reared insects we found that F(1) females produced, on average, a 71:29 E/Z ratio, but the distribution was clearly bimodal. The variability in pheromone blend produced by heterozygous females could be explained by the existence of two different alleles in the Z strain which in combination with the E-strain allele for the major production locus cause the production of a component mixture either high or low in the E isomer. In addition, evidence was found for an independently inherited factor, existing in the E strain, with a dominant effect on the amount of E isomer produced by females homozygous for Z-alleles at the major production locus. Thus, the low variability normally found in the pheromone mixture produced by O. nubilalis and other moth females may, by canalization, hide a considerable amount of underlying genetic variation.  相似文献   

13.
In two races of European corn-borer moths (ECB), the E-race females emit and males respond to 99:1 sex pheromone blend of (E)/(Z)-11-tetradecenyl acetates, whereas the Z-race females and males produce and respond to the opposite 3:97 pheromone blend of (E)/(Z)-11-tetradecenyl acetates, respectively. We previously have shown that female production of the final blend ratio is under control of a major autosomal locus but that the sequence of male upwind flight responses to the blend is controlled by a sex-linked (Z-linked) locus. This sex-linked control of behavioral responses in crosses of E and Z ECB now is confirmed by use of sex-linked TPI (triose phosphate isomerase) allozyme phenotypes to determine the origin of the sex chromosomes in F2 populations. F1 males from reciprocal E × Z crosses generate similar behavioral-response profiles in wind-tunnel studies, with moderate numbers responding to the Z pheromone and intermediate blends (35%–65% Z), but very few responding to the E pheromone. The F2 behavioral-response profiles indicate that they are composed of 1:1 mixtures of hybrids and paternal profiles. Analysis of TPI allozyme differences allowed us to separate male F2 populations into individuals whose Z chromosomes both originated from their grandfathers, and individuals who had one Z chromosome originating from each grandparent. With these partitioned F2s, the TPI homozygotes exhibited behavioral-response profiles very much like their grandfathers, whereas the TPI hybrids produced response profiles similar to their heterozygous F1 fathers. These results demonstrate incontrovertibly that the response to sex pheromone in male ECB is controlled by a sex-linked gene that is tightly linked to the TPI locus and therefore is independent of the locus controlling pheromone blend production in females.  相似文献   

14.
We used the cut-sensillum technique to assess the effect of both adult age and egg-to-adult development time on olfactory neuron responses of Z strain moths of the European corn borer, Ostrinia nubilalis. Compounds tested included the pheromone components, (Z)-11-tetradecenyl acetate and (E)-11-tetradecenyl acetate, the behavioral antagonist, (Z)-9-tetradecenyl acetate, and components of the O. furnicalis (Asian corn borer) sex pheromone, (Z)-12-tetradecenyl acetate and (E)-12-tetradecenyl acetate. The proportion of moths having neurons responding to the two O. nubilalis sex pheromone components and antagonist increased with longer development time and age. The spike frequency of neurons responding to (E)-11-tetradecenyl acetate and the antagonist increased with longer development time. Fourteen of 45 moths with neurons sensitive to either of the O. nubilalis pheromone components responded to (Z)-12-tetradecenyl acetate or (E)-12-tetradecenyl acetate. The likelihood of (Z)-12-tetradecenyl acetate stimulating a neuron similar in spike shape and waveform to that responding to (E)-11-tetradecenyl acetate increased with development time.  相似文献   

15.
Males of the E and Z strains of the European corn borer Ostrinia nubilalis (Lepidoptera: Crambidae) are attracted to different blends of the same pheromone components. The difference in male behavioral response is controlled by the sex-linked locus Resp. The two types of males have identical neuroanatomy but their physiological specificity is reversed, suggesting that variation at the periphery results in behavioral change. Differences in the olfactory receptors (ORs) could explain the strain-specific antennal response and blend preference. Gene genealogies can provide insights into the processes involved in speciation and allow delineation of genome regions that contribute to reproductive barriers. We used intronic DNA sequences from five OR-encoding genes to investigate whether they exhibit fixed differences between strains and therefore might contribute to reproductive isolation. Although two genealogies revealed shared polymorphism, molecular polymorphism at three genes revealed nearly fixed differences between strains. These three OR genes map to the sex chromosome, but our data indicate that the distance between Resp and the ORs is >20 cM, making it unlikely that variation in pheromone-sensitive OR genes is directly responsible for the difference in behavioral response. However, differences in male antennal response may have their origin in the selection of strain-specific alleles.  相似文献   

16.
Identification of the sex pheromone of Ostrinia palustralis   总被引:2,自引:0,他引:2  
By means of gas chromatography with electroantennographic detection, gas chromatography-mass spectrometry and a series of bioassays, (E)-11-tetradecenyl acetate (E11-14:OAc) and (Z)-11-tetradecenyl acetate (Z11-14:OAc) at a ratio of 99:1 were identified as female sex pheromone components of Ostrinia palustralis. The average amounts of E11- 14:OAc and Z11-14:OAc in a single sex pheromone gland were 37.2±24.4 ng and 0.3±0.2 ng, respectively. In a wind-tunnel bioassay, the binary blend of E11- and Z11-14:OAc elicited the same male behavioral responses as did virgin females.  相似文献   

17.
Electrical responses of the whole antenna (electroantennogram) and that of the single sensillum trichodeum (electrosensillogram) of male moth of the European corn borer, Ostrinia nubilalis, to their two pheromone components, (Z)- and (E)-11-tetradecenyl acetates, were recorded simultaneously. The configuration characteristics of both responses resemble each other, and demonstrate an interaction between sensilla trichodea. The typical difference in the response pattern between London (Ontario) and New York strains of this moth seems to be a property of the sensillum trichodeum.  相似文献   

18.
19.
溴氰菊酯对亚洲玉米螟雄蛾感受雌性信息素的影响   总被引:3,自引:1,他引:2  
为了探索溴氰菊醋对亚洲玉米螟雄蛾感受雌性信息素的影响,本文运用触角电位仪和风洞装置对亚洲玉米螟雄蛾进行了电生理和行为反应的测试.结果表明,处理雄蛾对不同比例雌性信息素的触角电位反应分别在E/Z;1/9、5/5和9/1处出现峰值,与对照相比无显著改变,但反应幅度为0.25—0.45mV,比对照下降0.15—0.35mV.对不同剂量的性信息素,引起可见触角电位反应的低限阈值为1ng,饱和反应剂量为10000ng,但反应幅度亦下降0.1—0.5mV,说明溴氰菊酯主要是影响雄蛾周缘感受系统的敏感性.但在风洞测试中,雄蛾除在反应率上比对照明显降低外,其峰值感受比例从E/Z=1/1漂移到7/3以上.雄蛾对雌性信息素的低限反应剂量也从10ng漂移到100ng,并且高限反应剂量也从100000ng降低到50000ng,使有效作用剂量范围缩小.这说明溴氰菊酯对雄蛾的行为反应有较大影响,不仅使雄蛾对性信息素感受的敏感性降低,也影响到其感受的专化性。  相似文献   

20.
New agricultural pest species attacking introduced crops may evolve from pre‐existing local herbivores by ecological speciation, thereby becoming a species by becoming a pest. We compare the evolutionary pathways by which two maize pests (the Asian and the European corn borers, ACB and ECB) in the genus Ostrinia (Lepidoptera, Crambidae) probably diverged from an ancestral species close to the current Adzuki bean borer (ABB). We typed larval Ostrinia populations collected on maize and dicotyledons across China and eastern Siberia, at microsatellite and mitochondrial loci. We found only two clusters: one on maize (as expected) and a single one on dicotyledons despite differences in male mid‐tibia morphology, suggesting that all individuals from dicotyledons belonged to the ABB. We found evidence for migrants and hybrids on both host plant types. Hybrids suggest that field reproductive isolation is incomplete between ACB and ABB. Interestingly, a few individuals with an ‘ABB‐like’ microsatellite profile collected on dicotyledons had ‘ACB’ mtDNA rather than ‘ABB‐like’ mtDNA, whereas the reverse was never found on maize. This suggests asymmetrical gene flow directed from the ACB towards the ABB. Hybrids and backcrosses in all directions were obtained in no‐choice tests. In laboratory conditions, they survived as well as parental strain individuals. In Xinjiang, we found ACB and ECB in sympatry, but no hybrids. Altogether, our results suggest that reproductive isolation between ACB and ABB is incomplete and mostly prezygotic. This points to ecological speciation as a possible evolutionary scenario, as previously found for ECB and ABB in Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号