首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytokinesis in bacteria is accomplished by a ring-shaped cell-division complex (the Z-ring). The primary component of the Z-ring is FtsZ, a filamentous tubulin homolog that serves as a scaffold for the recruitment of other cell-division-related proteins. FtsZ forms filaments and bundles. In the cell, it has been suggested that FtsZ filaments form the arcs of the ring and are aligned in the cell-circumferential direction. Using polarized fluorescence microscopy in live Escherichia coli cells, we measure the structural organization of FtsZ filaments in the Z-ring. The data suggest a disordered organization: a substantial portion of FtsZ filaments are aligned in the cell-axis direction. FtsZ organization in the Z-ring also appears to depend on the bacterial species. Taken together, the unique arrangement of FtsZ suggests novel unexplored mechanisms in bacterial cell division.  相似文献   

2.
Cytokinesis in bacteria is accomplished by a ring-shaped cell-division complex (the Z-ring). The primary component of the Z-ring is FtsZ, a filamentous tubulin homolog that serves as a scaffold for the recruitment of other cell-division-related proteins. FtsZ forms filaments and bundles. In the cell, it has been suggested that FtsZ filaments form the arcs of the ring and are aligned in the cell-circumferential direction. Using polarized fluorescence microscopy in live Escherichia coli cells, we measure the structural organization of FtsZ filaments in the Z-ring. The data suggest a disordered organization: a substantial portion of FtsZ filaments are aligned in the cell-axis direction. FtsZ organization in the Z-ring also appears to depend on the bacterial species. Taken together, the unique arrangement of FtsZ suggests novel unexplored mechanisms in bacterial cell division.  相似文献   

3.
During Escherichia coli cell division, an intracellular complex of cell division proteins known as the Z-ring assembles at midcell during early division and serves as the site of constriction. While the predominant protein in the Z-ring is the widely conserved tubulin homolog FtsZ, the actin homolog FtsA tethers the Z-ring scaffold to the cytoplasmic membrane by binding to FtsZ. While FtsZ is known to function as a dynamic, polymerized GTPase, the assembly state of its partner, FtsA, and the role of ATP are still unclear. We report that a substitution mutation in the FtsA ATP-binding site impairs ATP hydrolysis, phospholipid vesicle remodeling in vitro, and Z-ring assembly in vivo. We demonstrate by transmission electron microscopy and Förster Resonance Energy Transfer that a truncated FtsA variant, FtsA(ΔMTS) lacking a C-terminal membrane targeting sequence, self assembles into ATP-dependent filaments. These filaments coassemble with FtsZ polymers but are destabilized by unassembled FtsZ. These findings suggest a model wherein ATP binding drives FtsA polymerization and membrane remodeling at the lipid surface, and FtsA polymerization is coregulated with FtsZ polymerization. We conclude that the coordinated assembly of FtsZ and FtsA polymers may serve as a key checkpoint in division that triggers cell wall synthesis and division progression.  相似文献   

4.
FtsZ is part of a mid-cell cytokinetic structure termed the Z-ring that recruits a hierarchy of fission related proteins early in the bacterial cell cycle. The widely conserved ZapA has been shown to interact with FtsZ, to drive its polymerisation and to promote FtsZ filament bundling thereby contributing to the spatio-temporal tuning of the Z-ring. Here, we show the crystal structure of ZapA (11.6 kDa) from Pseudomonas aeruginosa at 2.8 A resolution. The electron density reveals two dimers associating via an extensive C-terminal coiled-coil protrusion to form an elongated anti-parallel tetramer. In solution, ZapA exists in a dimer-tetramer equilibrium that is strongly correlated with concentration. An increase in concentration promotes formation of the higher oligomeric state. The dimer is postulated to be the predominant physiological species although the tetramer could become significant if, as FtsZ is integrated into the Z-ring and is cross-linked, the local concentration of the dimer becomes sufficiently high. We also show that ZapA binds FtsZ with an approximate 1:1 molar stoichiometry and that this interaction provokes dramatic FtsZ polymerisation and inter-filament association as well as yielding filaments, single or bundled, more stable and resistant to collapse. Whilst in vitro dynamics of FtsZ are well characterised, its in vivo arrangement within the ultra-structural architecture of the Z-ring is yet to be determined despite being fundamental to cell division. The ZapA dimer has single 2-fold symmetry whilst the bipolar tetramer displays triple 2-fold symmetry. Given the symmetry of these ZapA oligomers and the polar nature of FtsZ filaments, the structure of ZapA carries novel implications for the inherent architecture of the Z-ring in vivo.  相似文献   

5.
Experimental conditions that simulate the crowded bacterial cytoplasmic environment have been used to study the assembly of the essential cell division protein FtsZ from Escherichia coli. In solutions containing a suitable concentration of physiological osmolytes, macromolecular crowding promotes the GTP-dependent assembly of FtsZ into dynamic two-dimensional polymers that disassemble upon GTP depletion. Atomic force microscopy reveals that these FtsZ polymers adopt the shape of ribbons that are one subunit thick. When compared with the FtsZ filaments observed in vitro in the absence of crowding, the ribbons show a lag in the GTPase activity and a decrease in the GTPase rate and in the rate of GTP exchange within the polymer. We propose that, in the crowded bacterial cytoplasm under assembly-promoting conditions, the FtsZ filaments tend to align forming dynamic ribbon polymers. In vivo these ribbons would fit into the Z-ring even in the absence of other interactions. Therefore, the presence of mechanisms to prevent the spontaneous assembly of the Z-ring in non-dividing cells must be invoked.  相似文献   

6.
FtsZ, a prokaryotic homolog of eukaryotic tubulin, is a major constituent of the bacterial Z-ring, which contracts the cell wall during cell division. Because the mechanical properties of FtsZ are unknown, its function in the maintenance and constriction of the Z-ring is not well understood. Here, quantitative rheometry shows that, at physiological concentrations, FtsZ filaments form, extremely rapidly, highly elastic networks within physiological time scales ( approximately minutes), much faster than other major dynamic cytoskeletal filaments, including microtubule, actin, and vimentin in eukaryotes. FtsZ networks display a relatively low viscosity and a high resilience against shear stresses, as well as an elasticity that depends weakly on concentration, G approximately C(0.57), a power-law dependence consistent with crosslinked flexible filaments. Calcium, whose intracellular concentration increases during bacterial division, further enhances the elasticity of FtsZ networks through filament bundling, an effect that occurs in the presence of GTP, not GDP. These studies suggest that FtsZ filaments have the toughness to provide strong mechanical support for the maintenance and circumferential constriction of the bacterial Z-ring.  相似文献   

7.
Cytokinesis in bacteria is initiated by polymerization of the tubulin homologue FtsZ into a circular structure at midcell, the Z-ring. This structure functions as a scaffold for all other cell division proteins. Several proteins support assembly of the Z-ring, and one such protein, SepF, is required for normal cell division in Gram-positive bacteria and cyanobacteria. Mutation of sepF results in deformed division septa. It is unclear how SepF contributes to the synthesis of normal septa. We have studied SepF by electron microscopy (EM) and found that the protein assembles into very large (~50 nm diameter) rings. These rings were able to bundle FtsZ protofilaments into strikingly long and regular tubular structures reminiscent of eukaryotic microtubules. SepF mutants that disturb interaction with FtsZ or that impair ring formation are no longer able to align FtsZ filaments in vitro, and fail to support normal cell division in vivo. We propose that SepF rings are required for the regular arrangement of FtsZ filaments. Absence of this ordered state could explain the grossly distorted septal morphologies seen in sepF mutants.  相似文献   

8.
FtsZ is a tubulin homolog essential for prokaryotic cell division. In living bacteria, FtsZ forms a ringlike structure (Z-ring) at the cell midpoint. Cell division coincides with a gradual contraction of the Z-ring, although the detailed molecular structure of the Z-ring is unknown. To reveal the structural properties of FtsZ, an understanding of FtsZ filament and bundle formation is needed. We develop a kinetic model that describes the polymerization and bundling mechanism of FtsZ filaments. The model reveals the energetics of the FtsZ filament formation and the bundling energy between filaments. A weak lateral interaction between filaments is predicted by the model. The model is able to fit the in vitro polymerization kinetics data of another researcher, and explains the cooperativity observed in FtsZ kinetics and the critical concentration in different buffer media. The developed model is also applicable for understanding the kinetics and energetics of other bundling biopolymer filaments.  相似文献   

9.
FtsZ is an essential cell division protein in Escherichia coli, and its localization, filamentation, and bundling at the mid-cell are required for Z-ring stability. Once assembled, the Z-ring recruits a series of proteins that comprise the bacterial divisome. Zaps (FtsZ-associated proteins) stabilize the Z-ring by increasing lateral interactions between individual filaments, bundling FtsZ to provide a scaffold for divisome assembly. The x-ray crystallographic structure of E. coli ZapA was determined, identifying key structural differences from the existing ZapA structure from Pseudomonas aeruginosa, including a charged α-helix on the globular domains of the ZapA tetramer. Key helix residues in E. coli ZapA were modified using site-directed mutagenesis. These ZapA variants significantly decreased FtsZ bundling in protein sedimentation assays when compared with WT ZapA proteins. Electron micrographs of ZapA-bundled FtsZ filaments showed the modified ZapA variants altered the number of FtsZ filaments per bundle. These in vitro results were corroborated in vivo by expressing the ZapA variants in an E. coli ΔzapA strain. In vivo, ZapA variants that altered FtsZ bundling showed an elongated phenotype, indicating improper cell division. Our findings highlight the importance of key ZapA residues that influence the extent of FtsZ bundling and that ultimately affect Z-ring formation in dividing cells.  相似文献   

10.
The FtsZ protein, a tubulin-like GTPase, plays a pivotal role in prokaryotic cell division. In vivo it localizes to the midcell and assembles into a ring-like structure-the Z-ring. The Z-ring serves as an essential scaffold to recruit all other division proteins and generates contractile force for cytokinesis, but its supramolecular structure remains unknown. Electron microscopy (EM) has been unsuccessful in detecting the Z-ring due to the dense cytoplasm of bacterial cells, and conventional fluorescence light microscopy (FLM) has only provided images with limited spatial resolution (200–300 nm) due to the diffraction of light. Hence, given the small sizes of bacteria cells, identifying the in vivo structure of the Z-ring presents a substantial challenge. Here, we used photoactivated localization microscopy (PALM), a single molecule-based super-resolution imaging technique, to characterize the in vivo structure of the Z-ring in E. coli. We achieved a spatial resolution of ∼35 nm and discovered that in addition to the expected ring-like conformation, the Z-ring of E. coli adopts a novel compressed helical conformation with variable helical length and pitch. We measured the thickness of the Z-ring to be ∼110 nm and the packing density of FtsZ molecules inside the Z-ring to be greater than what is expected for a single-layered flat ribbon configuration. Our results strongly suggest that the Z-ring is composed of a loose bundle of FtsZ protofilaments that randomly overlap with each other in both longitudinal and radial directions of the cell. Our results provide significant insight into the spatial organization of the Z-ring and open the door for further investigations of structure-function relationships and cell cycle-dependent regulation of the Z-ring.  相似文献   

11.
Cell division in Escherichia coli starts with assembly of FtsZ protofilaments into a ring-like structure, the Z-ring. Positioning of the Z-ring at midcell is thought to be coordinated by two regulatory systems, nucleoid occlusion and the Min system. In E. coli, nucleoid occlusion is mediated by the SlmA proteins. Here, we address the question of whether there are additional positioning systems that are capable of localizing the E. coli divisome with respect to the cell center. Using quantitative fluorescence imaging we show that slow growing cells lacking functional Min and SlmA nucleoid occlusion systems continue to divide preferentially at midcell. We find that the initial Z-ring assembly occurs over the center of the nucleoid instead of nucleoid-free regions under these conditions. We determine that Z-ring formation begins shortly after the arrival of the Ter macrodomain at the nucleoid center. Removal of either the MatP, ZapB, or ZapA proteins significantly affects the accuracy and precision of Z-ring positioning relative to the nucleoid center in these cells in accordance with the idea that these proteins link the Ter macrodomain and the Z-ring. Interestingly, even in the absence of Min, SlmA, and the putative Ter macrodomain – Z-ring link, there remains a weak midcell positioning bias for the Z-ring. Our work demonstrates that additional Z-ring localization systems are present in E. coli than are known currently. In particular, we identify that the Ter macrodomain acts as a landmark for the Z-ring in the presence of MatP, ZapB and ZapA proteins.  相似文献   

12.
Popp D  Gov NS  Iwasa M  Maéda Y 《Biopolymers》2008,89(9):711-721
The length distribution of cytoskeletal filaments is an important physical parameter, which can modulate physiological cell functions. In both eukaryotic and prokaryotic cells various biological cytoskeletal polymers form supramolecular structures due to short-range forces induced mainly by molecular crowding or cross linking proteins, but their in vivo length distribution remains difficult to measure. In general, based on experimental evidence and mathematical modeling of actin filaments in aqueous solutions, the steady state length distribution of fibrous proteins is believed to be exponential. We performed in vitro TIRF- and electron-microscopy to demonstrate that in the presence of short-range forces, which are an integral part of any living cell, the steady state length distributions of the eukaryotic cytoskeletal biopolymer actin, its prokaryotic homolog ParM and microtubule homolog FtsZ deviate from the classical exponential and are either double-exponential or Gaussian, as recent theoretical modeling predicts. Double exponential or Gaussian distributions opposed to exponential can change for example the visco-elastic properties of actin networks within the cell, influence cell motility by decreasing the amount of free ends at the leading edge of the cell or effect the assembly of FtsZ into the bacterial Z-ring thus modulating membrane constriction.  相似文献   

13.
In Escherichia coli cell division is driven by the tubulin-like GTPase, FtsZ, which forms the cytokinetic Z-ring. The Z-ring serves as a dynamic platform for the assembly of the multiprotein divisome, which catalyzes membrane cleavage to create equal daughter cells. Several proteins effect FtsZ assembly, thereby providing spatiotemporal control over cell division. One important class of FtsZ interacting/regulatory proteins is the Z-ring-associated proteins, Zaps, which typically modulate Z-ring formation by increasing lateral interactions between FtsZ protofilaments. Strikingly, these Zap proteins show no discernable sequence similarity, suggesting that they likely harbor distinct structures and mechanisms. The 19.8-kDa ZapC in particular shows no homology to any known protein. To gain insight into ZapC function, we determined its structure to 2.15 Å and performed genetic and biochemical studies. ZapC is a monomer composed of two domains, an N-terminal α/β region and a C-terminal twisted β barrel-like domain. The structure contains two pockets, one on each domain. The N-domain pocket is lined with residues previously implicated to be important for ZapC function as an FtsZ bundler. The adjacent C-domain pocket contains a hydrophobic center surrounded by conserved basic residues. Mutagenesis analyses indicate that this pocket is critical for FtsZ binding. An extensive FtsZ binding surface is consistent with the fact that, unlike many FtsZ regulators, ZapC binds the large FtsZ globular core rather than C-terminal tail, and the presence of two adjacent pockets suggests possible mechanisms for ZapC-mediated FtsZ bundling.  相似文献   

14.
In this review, genes and proteins involved in cytokinesis and cell proliferation of cell-wall bacteria and mycoplasms are considered. We hope that this comparative analysis of genes and proteins of phylogenetically distant bacteria, including the minimal cells of mycoplasmas, can be useful for understanding the basic principles of prokaryotic cell division. The ftsZ gene was found among representatives of all bacterial groups. The recent data indicate that FtsZ protein plays the central role in the process of bacterial cell division. FtsZ protein was revealed in all Eubacterial groups (including mycoplasmas), in Archaebacteria and chloroplasts, All FtsZ proteins are able to form protofilaments as a result of polymerization in vitro and demonstrate GTF-ase activity. On the base of these properties and some similarities in amino acid sequences with tubulins, it has been suggested that FtsZ protein is an evolutionary ancestor of Eukaryotic tubulins. On the earliest stage of bacterial cytokinesis FtsZ protein assembles into a submembranous Z-ring which encircles bacterial cell in the predivisional site. Some other bacterial proteins take part in stabilization and contraction of the Z-ring, which is considered as a cytoskeleton-like bacterial structure.  相似文献   

15.
In Escherichia coli, the Min system, consisting of three proteins, MinC, MinD, and MinE, negatively regulates FtsZ assembly at the cell poles, helping to ensure that the Z ring will assemble only at midcell. Of the three Min proteins, MinC is sufficient to inhibit Z-ring assembly. By binding to MinD, which is mostly localized at the membrane near the cell poles, MinC is sequestered away from the cell midpoint, increasing the probability of Z-ring assembly there. Previously, it has been shown that the two halves of MinC have two distinct functions. The N-terminal half is sufficient for inhibition of FtsZ assembly, whereas the C-terminal half of the protein is required for binding to MinD as well as to a component of the division septum. In this study, we discovered that overproduction of the C-terminal half of MinC (MinC(122-231)) could also inhibit cell division and that this inhibition was at the level of Z-ring disassembly and dependent on MinD. We also found that fusing green fluorescent protein to either the N-terminal end of MinC(122-231), the C terminus of full-length MinC, or the C terminus of MinC(122-231) perturbed MinC function, which may explain why cell division inhibition by MinC(122-231) was not detected previously. These results suggest that the C-terminal half of MinC has an additional function in the regulation of Z-ring assembly.  相似文献   

16.
Löwe J  Amos LA 《Biological chemistry》2000,381(9-10):993-999
Bacterial cell division depends on the formation of a cytokinetic ring structure, the Z-ring. The bacterial tubulin homologue FtsZ is required for Z-ring formation. FtsZ assembles into various polymeric forms in vitro, indicating a structural role in the septum of bacteria. We have used recombinant FtsZ1 protein from M. jannaschii to produce helical tubes and sheets with high yield using the GTP analogue GMPCPP [guanylyl-(alpha,beta)-methylene-diphosphate]. The sheets appear identical to the previously reported Ca++-induced sheets of FtsZ from M. jannaschii that were shown to consist of 'thick'-filaments in which two protofilaments run in parallel. Tubes assembled either in Ca++ or in GMPCPP contain filaments whose dimensions indicate that they could be equivalent to the 'thick'-filaments in sheets. Some tubes are hollow but others are filled by additional protein density. Helical FtsZ tubes differ from eukaryotic microtubules in that the filaments curve around the filament axis with a pitch of approximately 430 A for Ca++-induced tubes or 590 - 620 A for GMPCPP. However, their assembly in vitro as well-ordered polymers over distances comparable to the inner circumference of a bacterium may indicate a role in vivo. Their size and stability make them suitable for use in motility assays.  相似文献   

17.
Cell division proteins FtsZ (FtsA, ZipA, ZapA), FtsE/X, FtsK, FtsQ, FtsL/B, FtsW, PBP3, FtsN and AmiC localize at mid cell in Escherichia coli in an interdependent order as listed. To investigate whether this reflects a time dependent maturation of the divisome, the average cell age at which FtsZ, FtsQ, FtsW, PBP3 and FtsN arrive at their destination was determined by immuno- and GFP-fluorescence microscopy of steady state grown cells at a variety of growth rates. Consistently, a time delay of 14-21 min, depending on the growth rate, between Z-ring formation and the mid cell recruitment of proteins down stream of FtsK was found. We suggest a two-step model for bacterial division in which the Z-ring is involved in the switch from cylindrical to polar peptidoglycan synthesis, whereas the much later localizing cell division proteins are responsible for the modification of the envelope shape into that of two new poles.  相似文献   

18.
FtsZ是与真核微管蛋白类似的原核骨架蛋白,能在细胞分裂位点聚合组装成环状结构而调控细胞分裂过程。为了研究钝顶螺旋藻(Spirulina platensis)FtsZ蛋白的功能,构建了钝顶螺旋藻FtsZ与绿色荧光蛋白GFP融合表达的质粒,并在大肠杆菌中进行了表达和定位研究,结果发现,表达融合蛋白GFP-FtsZ的大肠杆菌细胞由短杆状变为长丝状,且菌丝体长度与融合蛋白的表达量呈正比。在荧光显微镜下观察到融合蛋白GFP-FtsZ在长丝状体细菌中呈有规律的点状分布,这说明FtsZ蛋白功能高度保守,钝顶螺旋藻FtsZ蛋白能识别大肠杆菌分裂位点并装配成环状结构调控大肠杆菌细胞分裂,FtsZ蛋白的过量表达能抑制大肠杆菌正常的细胞分裂而导致长丝状体细胞的形成。  相似文献   

19.
Bacterial cell division typically requires assembly of the cytoskeletal protein FtsZ into a ring (Z-ring) at the nascent division site that serves as a foundation for assembly of the division apparatus. High resolution imaging suggests that the Z-ring consists of short, single-stranded polymers held together by lateral interactions. Several proteins implicated in stabilizing the Z-ring enhance lateral interactions between FtsZ polymers in vitro. Here we report that residues at the C terminus of Bacillus subtilis FtsZ (C-terminal variable region (CTV)) are both necessary and sufficient for stimulating lateral interactions in vitro in the absence of modulatory proteins. Swapping the 6-residue CTV from B. subtilis FtsZ with the 4-residue CTV from Escherichia coli FtsZ completely abolished lateral interactions between chimeric B. subtilis FtsZ polymers. The E. coli FtsZ chimera readily formed higher order structures normally seen only in the presence of molecular crowding agents. CTV-mediated lateral interactions are important for the integrity of the Z-ring because B. subtilis cells expressing the B. subtilis FtsZ chimera had a low frequency of FtsZ ring formation and a high degree of filamentation relative to wild-type cells. Site-directed mutagenesis of the B. subtilis CTV suggests that electrostatic forces are an important determinant of lateral interaction potential.  相似文献   

20.
Bacterial cell division requires the coordinated assembly of more than ten essential proteins at midcell1,2. Central to this process is the formation of a ring-like suprastructure (Z-ring) by the FtsZ protein at the division plan3,4. The Z-ring consists of multiple single-stranded FtsZ protofilaments, and understanding the arrangement of the protofilaments inside the Z-ring will provide insight into the mechanism of Z-ring assembly and its function as a force generator5,6. This information has remained elusive due to current limitations in conventional fluorescence microscopy and electron microscopy. Conventional fluorescence microscopy is unable to provide a high-resolution image of the Z-ring due to the diffraction limit of light (~200 nm). Electron cryotomographic imaging has detected scattered FtsZ protofilaments in small C. crescentus cells7, but is difficult to apply to larger cells such as E. coli or B. subtilis. Here we describe the application of a super-resolution fluorescence microscopy method, Photoactivated Localization Microscopy (PALM), to quantitatively characterize the structural organization of the E. coli Z-ring8.PALM imaging offers both high spatial resolution (~35 nm) and specific labeling to enable unambiguous identification of target proteins. We labeled FtsZ with the photoactivatable fluorescent protein mEos2, which switches from green fluorescence (excitation = 488 nm) to red fluorescence (excitation = 561 nm) upon activation at 405 nm9. During a PALM experiment, single FtsZ-mEos2 molecules are stochastically activated and the corresponding centroid positions of the single molecules are determined with <20 nm precision. A super-resolution image of the Z-ring is then reconstructed by superimposing the centroid positions of all detected FtsZ-mEos2 molecules.Using this method, we found that the Z-ring has a fixed width of ~100 nm and is composed of a loose bundle of FtsZ protofilaments that overlap with each other in three dimensions. These data provide a springboard for further investigations of the cell cycle dependent changes of the Z-ring10 and can be applied to other proteins of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号