首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Some effects of organophosphorus anticholinesterase compounds that are unrelated to cholinesterase inhibition and that are sometimes long lasting may be due to alterations at the cellular membrane level. Phosphatidylcholine exchange protein was used to assess the effects of sarin and soman on phosphatidylcholine asymmetry in the inner and outer leaflets of the plasma membrane bilayer of the electroplax. Exposure of electroplax (30 min in vitro) to soman (10(-4), 10(-6) M) or sarin (10(-4), 10(-6), 5 x 10(-9) M) increased the percentage of phosphatidylcholine in the outer monolayer of the innervated plasma membrane bilayer and decreased the percentage in the inner monolayer. These changes by sarin were observed at concentrations that produced 100% cholinesterase inhibition (10(-4), 10(-6) M) and at a concentration (5 x 10(-9) M) where no inhibition occurred, suggesting that these effects are not directly due to cholinesterase inhibition. A 1-week exposure of live eels to soman (10(-8) M) in vivo caused an increase in phosphatidylcholine labeling in the outer monolayer of the innervated and noninnervated surfaces of the electroplax. Two weeks after stopping exposure to soman, increased labeling was still observed, suggesting that this may be a long-term effect. Because the organophosphates did not increase the permeability of the electroplax, all of these changes in labeling appear to be due to a redistribution of phosphatidylcholine from the inner to the outer monolayer of the plasma membrane bilayer.  相似文献   

2.
Phospholipid asymmetry in the isolated sarcoplasmic reticulum membrane   总被引:1,自引:0,他引:1  
The total phospholipid content and distribution of phospholipid species between the outer and inner monolayers of the isolated sarcoplasmic reticulum membrane was measured by phospholipase A2 activities and neutron diffraction. Phospholipase measurements showed that specific phospholipid species were asymmetric in their distribution between the outer and inner monolayers of the sarcoplasmic reticulum lipid bilayer; phosphatidylcholine (PC) was distributed 48/52 +/- 2% between the outer and inner monolayer of the sarcoplasmic reticulum bilayer, 69% of the phosphatidyl-ethanolamine (PE) resided mainly in the outer monolayer of the bilayer, 85% of the phosphatidylserine (PS) and 88% of the phosphatidylinositol (PI) were localized predominantly in the inner monolayer. The total phospholipid distribution determined by these measurements was 48/52 +/- 2% for the outer/inner monolayer of the sarcoplasmic reticulum lipid bilayer. Sarcoplasmic reticulum phospholipids were biosynthetically deuterated and exchanged into isolated vesicles with both a specific lecithin and a general exchange protein. Neutron diffraction measurements directly provided lipid distribution profiles for both PC and the total lipid content in the intact sarcoplasmic reticulum membrane. The outer/inner monolayer distribution for PC was 47/53 +/- 1%, in agreement with phospholipase measurements, while that for the total lipid was 46/54 +/- 1%, similar to the phospholipase measurements. These neutron diffraction results regarding the sarcoplasmic reticulum membrane bilayer were used in model calculations for decomposing the electron-density profile structure (10 A resolution) of isolated sarcoplasmic reticulum previously determined by X-ray diffraction into structures for the separate membrane components. These structure studies showed that the protein profile structure within the membrane lipid bilayer was asymmetric, complementary to the asymmetric lipid structure. Thus, the total phospholipid asymmetry obtained by two independent methods was small but consistent with a complementary asymmetric protein structure, and may be related to the highly vectorial functional properties of the calcium pump ATPase protein in the sarcoplasmic reticulum membrane.  相似文献   

3.
Two phospholipid exchange proteins and two phospholipases C have been employed to determine the phospholipid composition of the outer surface of the membrane of influenza virus. These four protein probes have defined the same accessible and inaccessible pool for each viral phospholipid. Phospholipids which are exchangeable or hydrolyzable are located on the outer surface, whereas the inaccessible pool is located at the inner surface of the viral bilayer. The two pools are unequal in size, with ca. 30% of the total phospholipid accessible to the four proteins, and ca. 70% inaccessible. The membrane is thus highly asymmetric with regard to the amount of phospholipid on each side of the membrane. There is also a marked asymmetry of phospholipid composition. Phosphatidylcholine and phosphatidylinositol are enriched in the outer surface, and sphingomyelim is enriched in the inner surface, whereas phosphatidylethanolamine and phosphatidylserine are present in similar proportions in each surface. This distribution is qualitatively different from that previously reported for the human erythrocyte. The close agreement between results obtained with excahnge proteins and phospholipases C demonstrates that the hydrolytic action of these enzymes does not alter phospholipid asymmetry. The nonperturbing nature of the exchange proteins has permitted the rate of transmembrane movement of phospholipids (flip-flop) in the intact virion to be studied. This process could not be detected after 2 days at 37 degrees C. It was estimated that the half-time for flip-flop is indeterminately in excess of 30 days for sphingomyelin and 10 days for phosphatidylcholine at 37 degrees C. These extremely long times provide a simple explanation for the maintenance of transbilayer asymmetry in influenza virions and possibly, other membranes. Since the viral membrane is acquired by budding through the host cell plasma membrane, the transbilayer distribution of phospholipids observed in the virions presumably reflects a similar asymmetric distribution of phospholipids in the host cell surface membrane. Because animal cells in culture do not incorporate extracellular phospholipid, our results demonstrate that individual cells have the capacity to generate asymmetric membranes.  相似文献   

4.
Membrane phospholipid and protein organization was studied in intact human erythrocytes exposed to phenylhydrazine, an oxidative agent inducer. The evaluation of the membrane phospholipid and protein organization was carried out in terms of asymmetric distribution across the membrane bilayer for the phospholipids, and in terms of accessibility of cleavable sites present on the outer membrane surface for the proteins. Treatment of phenylhydrazine-exposed erythrocytes either with bee venom phospholipase A2 or with trinitrobenzenesulfonic acid indicated that phosphatidylserine (PS), which is the only phospholipid not formally present on the outer leaflet of the membrane, was translocated to the outer surface of the cell membrane. The extent of this phenomenon was directly proportional to the concentration of the oxidant having a peak value at 0.1 mM. Phosphatidylcholine and phosphatidylethanolamine conserved their original distribution across the erythrocyte membrane throughout the study. The oxidant, at a dose which did not induce any modification of the sodium dodecyl sulfate-polyacrylamide gel electrophoresis cytoskeleton membrane protein pattern, did not provoke any alteration of the membrane protein surface architecture, although the translocation of PS to the membrane outer leaflet in intact erythrocytes was present.  相似文献   

5.
The outer membrane of yeast mitochondria was studied with respect to its lipid composition, phospholipid topology and membrane fluidity. This membrane is characterized by a high phospholipid to protein ratio (1.20). Like other yeast cellular membranes the outer mitochondrial membrane contains predominantly phosphatidylcholine (44% of total phospholipids), phosphatidylethanolamine (34%) and phosphatidylinositol (14%). Cardiolipin, the characteristic phospholipid of the inner mitochondrial membrane (13% of total phospholipids) is present in the outer membrane only to a moderate extent (5%). The ergosterol to phospholipid ratio is higher in the inner (7.0 wt%) as compared to the outer membrane (2.1 wt.%). Attempts to study phospholipid asymmetry by selective degradation of phospholipids of the outer leaflet of the outer mitochondrial membrane failed, because isolated right-side-out vesicles of this membrane became leaky upon treatment with phospholipases. Selective removal of phospholipids of the outer leaflet with the aid of phospholipid transfer proteins and chemical modification with trinitrobenzenesulfonic acid on the other hand, gave satisfactory results. Phosphatidylcholine and phosphatidylinositol are more or less evenly distributed between the two sides of the outer mitochondrial membrane, whereas the majority of phosphatidylethanolamine is oriented towards the intermembrane space. The fluidity of mitochondrial membranes was determined by measuring fluorescence anisotropy using diphenylhexatriene (DPH) as a probe. The lower anisotropy of DPH in the outer as compared to the inner membrane, which is an indication for an increased lipid mobility in the outer membrane, was attributed to the higher phospholipid to protein and the lower ergosterol to phospholipid ratio. The data presented here show, that the outer mitochondrial membrane, in spite of its close contact to the inner membrane, is distinct not only with respect to its protein pattern, but also with respect to its lipid composition and physical membrane properties.  相似文献   

6.
The lipid composition and transbilayer distribution of plasma membrane isolated from primary tumor (L-929, LM, A-9 and C3H) and nine metastatic cell lines cultured under identical conditions was examined. Cultured primary tumor and metastatic cells differed two-fold in sterol/phospholipid molar ratios. There was a direct correlation between plasma membrane anionic phospholipid (phosphatidylinositol and phosphatidylserine) content and plasma membrane sterol/phospholipid ratio. This finding may bear on the possible link between oncogenes and inositol lipids. The fluorescent sterol, dehydroergosterol, was incorporated into primary tumor and metastatic cell lines. Selective quenching of outer monolayer fluorescence by covalently linked trinitrophenyl groups demonstrated an asymmetric transbilayer distribution of sterol in the plasma membranes. The inner monolayer of the plasma membranes from both cultured primary and metastatic tumor cells was enriched in sterol as compared with the outer monolayer. Consistent with this, the inner monolayer was distinctly more rigid as determined by the limiting anisotropy of 1,6-diphenyl-1,3,5-hexatriene. Dehydroergosterol fluorescence was temperature dependent and sensitive to lateral phase separations in phosphatidylcholine vesicles and in LM cell plasma membranes. Dehydroergosterol detected phase separations near 24 degrees C in the outer monolayer and at 21 degrees C and 37 degrees C in the inner monolayer of LM plasma membranes. Yet, no change in transbilayer sterol distribution was detected in ascending or descending temperature scans between 4 and 45 degrees C. Alterations in plasma membrane phospholipid polar head group composition by choline analogues (N,N-dimethylethanolamine, N-methylethanolamine, and ethanolamine) also did not perturb transbilayer sterol asymmetry. Treatment with phenobarbital or prilocaine, drugs that selectively fluidize the outer and inner monolayer of LM plasma membranes, respectively, did not change dehydroergosterol transbilayer distribution.  相似文献   

7.
The investigation focuses on the phospholipid composition of the sarcolemma of cultured neonatal rat heart cells and on the distribution of the phospholipid classes between the two monolayers of the sarcolemma. The plasma membranes are isolated by 'gas-dissection' technique and 38% of total cellular phospholipid is present in the sarcolemma with the composition: phosphatidylethanolamine (PE) 24.9%, phosphatidylcholine (PC) 52.0%, phosphatidylserine/phosphatidylinositol (PS/PI) 7.2%, sphingomyelin 13.5%. The cholesterol/phospholipid ratio of the sarcolemma is 0.5. The distribution of the phospholipids between inner and outer monolayer is defined with the use of two phospholipases A2, sphingomyelinase C or trinitrobenzene sulfonic acid as lipid membrane probes in whole cells. The probes have access to the entire sarcolemmal surface and do not produce detectable cell lysis. The phospholipid classes are asymmetrically distributed: (1) the negatively charged phospholipids, PS/PI are located exclusively in the inner or cytoplasmic leaflet; (2) 75% of PE is in the inner leaflet; (3) 93% of sphingomyelin is in the outer leaflet; (4) 43% of PC is in the outer leaflet. The predominance of PS/PI and PE at the cytoplasmic sarcolemmal surface is discussed with respect to phospholipid-ionic binding relations between phospholipids and exchange and transport of ions, and the response of the cardiac cell on ischemia-reperfusion.  相似文献   

8.
Membrane phospholipid asymmetry is considered to be a general property of biological membranes. Detailed information is presently available on the non-random orientation of phospholipids in red cell- and platelet membranes. The outer leaflet of the lipid bilayer membrane is rich in choline-phospholipids, whereas amino-phospholipids are abundant in the inner leaflet. Studies with blood platelets have shown that these asymmetries are not maintained when the cells are activated in various ways. Undoing the normal asymmetry of membrane phospholipids in activated blood cells is presumably mediated by increased transbilayer movement of phospholipids. This process, which leads to increased exposure of negatively charged phosphatidylserine at the outer surface, plays an important physiological role in local blood clotting reactions. A similar phenomenon occurs in sickled red cells. Phospholipid vesicles breaking off from reversibly sickled cells contribute similarly to intravascular clotting in the crisis phase of sickle cell disease.The loss of membrane phospholipid asymmetry in activated platelets seems to be strictly correlated with degradation of cytoskeletal proteins by endogenous calpain. It is remarkable that membrane phospholipid asymmetry can be (partly) restored when activated platelets are treated with reducing agents. This leads to disappearance of phosphatidylserine from the outer leaflet where it was previously exposed during cell activation. These observations will be discussed in relation to two mechanisms which have been recognized to play a role in the regulation of membrane phospholipid asymmetry; i.e. the interaction of aminophospholipids to cytoskeletal proteins, and the involvement of a phospholipid-translocase catalyzing outward-inward transbilayer movement of amino-phospholipids.  相似文献   

9.
The regulation of the asymmetric distribution of aminophospholipids in mammalian cell plasma membranes is not understood at this time. One approach to determine the nature of such regulatory mechanisms is to attempt alteration of the plasma membrane phospholipid composition. Choline analogues such as N,N'-dimethylethanolamine and N-monomethylethanolamine lowered the quantity of phosphatidylethanolamine in the plasma membrane of LM fibroblasts grown in defined medium without serum. Ethanolamine supplementation increased the phosphatidylethanolamine content while ethanolamine analogues such as 2-amino-2-methyl-1-propanol, 2-amino-1-butanol, 1-aminopropanol, and 3-aminopropanol did not alter the aminophospholipid content significantly. The transverse distribution of aminophospholipids in the plasma membrane was determined by use of a chemical labelling reagent trinitrobenzenesulfonic acid. The percent phosphatidylethanolamine trinitrophenylated by trinitrobenzenesulfonate in the outer plasma membrane monolayer of LM cells supplemented with choline analogues was not altered. In contrast, ethanolamine analogue supplementation increased the percentage of aminophospholipid in the outer monolayer 2--3-fold. Ethanolamine analogue-containing phospholipids were distributed asymmetrically across the plasma membrane with 85 to 91% being located in the inner monolayer of the plasma membrane, a distribution similar to that of phosphatidylethanolamine. The fatty acyl composition of aminophospholipids in the outer monolayer was in all cases more saturated than in the corresponding phospholipids of the inner monolayer. However, choline analogues and especially the ethanolamine analogues reduced this difference. Thus, base analogues of choline and ethanolamine may alter the aminophospholipid asymmetry, the surface charge, and the acyl chain asymmetry of LM cell plasma membranes.  相似文献   

10.
The phospholipids in plasma membranes of erythrocytes, as well as platelets, lymphocytes and other cells are asymmetrically distributed, with sphingomyelin and phosphatidylcholine residing predominantly in the outer leaflet of the bilayer, and phosphatidylserine and phosphatidylethanolamine in the inner leaflet. It is known that Ca2+ can disrupt the phospholipid asymmetry by activation of a protein known as phospholipid scramblase, which affects bidirectional phospholipid movement in a largely non-selective manner. As Ca2+ also inhibits aminophospholipid translocase, whose Mg(2+)-ATPase activity is responsible for active translocation of aminophospholipids from the outer to the inner leaflet, it is important to accurately determine the sensitivity of scramblase to intracellular free Ca2+. In the present study we have utilized the favourable Kd of Mag-fura-2 for calcium in the high micromolar range to determine free Ca2+ levels associated with lipid scrambling in resealed human red cell ghosts. The Ca2+ sensitivity was measured in parallel to the translocation of a fluorescent-labelled lipid incorporated into the ghost bilayer. The phospholipid scrambling was found to be half-maximally activated at 63-88 microM free intracellular Ca2+. The wider applicability of the method and the physiological implications of the calcium sensitivity determined is discussed.  相似文献   

11.
In the plasma membrane of various eucaryotic cell types, in particular blood platelets and erythrocytes, it is known that phospholipids are asymmetrically distributed between the two leaflets of the lipid bilayer and that this transverse asymmetry is controlled by an aminophospholipid translocase activity. In this respect, it was of interest to check whether there are differential transbilayer movements between amino- and neutral phospholipids in the apical plasma membrane of vascular endothelial cells which form the inner nonthrombogenic lining of the large blood vessel. In the first step we compared the transbilayer localization and also the rate of lateral motion of two fluorescent analogs of phosphatidylcholine and phosphatidylethanolamine, namely C6-NBD-PC and C6-NBD-PE, inserted into the apical plasma membrane of bovine aortic endothelial cells, in vitro. By the use of back-exchange experiments we have found that C6-NBD-PC could be removed from the cell membrane toward the culture medium regardless of the incubation conditions used, i.e., just after cell labeling at 0°C or even after further cell incubation for 1 h at 0 or 20°C. In contrast, C6-NBD-PE could be removed only when the cells were maintained at 0°C. After incubation for 1 h at 20°C, 85% of the probe molecules remained nonexchangeable, indicating probe translocation from the outer to the inner leaflet of the lipid bilayer. This "flip" process, which occurred at 20°C, was abolished when the endothelial cells were preincubated with N-ethylmaleimide, diamide, vanadate (VO3-4) and vanadyl (VO2+) ions, a set of substances which inhibit aminophospholipid translocase activity in various systems, and with a combination of sodium azide and 2-deoxyglucose which led to nearly complete ATP depletion in the cells. Fluorescence recovery after photobleaching experiments were also carried out to specify more precisely the localization and dynamics of the probes in the two leaflets of the plasma membrane lipid bilayer. They produced lateral diffusion coefficients D of 1.2 ± 0.05 × 10-9 cm2/s for C6-NBD-PC and 2.8 ± 0.3 × 10-9 cm2/s for C6-NBD-PE, when the two probes were located in the outer leaflet of the plasma membrane, just after cell labeling at 0°C. After cell incubation for one hour at 20°C, i.e., when C6-NBD-PC was still in the outer leaflet whereas C6-NBD-PE was translocated in the inner leaflet, D was observed to slightly increase for C6-NBD-PC (D = 1.9 ± 0.06 × 10-9 cm2/s) and to greatly increase by at least a factor of 3 for C6-NBD-PE (D = 9.1 ± 0.9 × 10-9 cm2/s). These results show that the plasma membrane of bovine aortic endothelial cells is equipped with a protein-dependent and energy-mediated phosphatidylethanolamine translocase activity and that the lateral diffusion rate of this phospholipid is much faster in the inner than in the outer leaflet of the lipid bilayer, thus indicating large differences in the fluidity of the two halves of this membrane.  相似文献   

12.
Maintenance and regulation of the asymmetric lipid distribution across eukaryotic plasma membranes is governed by the concerted action of specific membrane proteins controlling lipid movement across the bilayer. Here, we show that the miltefosine transporter (LdMT), a member of the P4-ATPase subfamily in Leishmania donovani, and the Cdc50-like protein LdRos3 form a stable complex that plays an essential role in maintaining phospholipid asymmetry in the parasite plasma membrane. Loss of either LdMT or LdRos3 abolishes ATP-dependent transport of NBD-labelled phosphatidylethanolamine (PE) and phosphatidylcholine from the outer to the inner plasma membrane leaflet and results in an increased cell surface exposure of endogenous PE. We also find that promastigotes of L. donovani lack any detectable amount of phosphatidylserine (PS) but retain their infectivity in THP-1-derived macrophages. Likewise, infectivity was unchanged for parasites without LdMT-LdRos3 complexes. We conclude that exposure of PS and PE to the exoplasmic leaflet is not crucial for the infectivity of L. donovani promastigotes.  相似文献   

13.
Various structural components of biological membranes are asymmetrically localized in the two surfaces of the membrane bilayer. This asymmetry is absolute for membrane (glyco) proteins, but only a partial asymmetry has been observed for membrane phospholipids. In the red cell membrane, choline-phospholipids are localized mainly in the outer monolayer whereas aminophospholipids are distributed almost exclusively in the inner monolayer. Several evidences are now available to suggest that this distribution of membrane phospholipids in red cells is directly or indirectly maintained by the membrane-associated cytoskeleton (membrane skeleton). This belief is well supported by the previous as well as recent studies carried out in the authors laboratory. Previously, it has been shown that lipid-lipid interactions play no major role in maintaining the transmembrane phospholipid asymmetry in erythrocytes, and that the asymmetry is lost upon covalent crosslinking of the major membrane skeletal protein, spectrin. The recent data presented here further shows that degradation or denaturation of spectrin indices rapid transbilayer movement of membrane phospholipids in the cells which, in turn, leads to more random phospholipid distributions across the membrane. These studies taken together strongly suggest that the skeleton-membrane associations are the major determinants of the transmembrane phospholipid asymmetry in erythrocytes, and that the dissociation of the skeleton from the membrane bilayer probably results in generation of new reorientation sites for phospholipids in the membrane. Communication No 3648 from C.D.R.I., Lucknow.  相似文献   

14.
The distribution of phospholipids over outer and inner layers of the plasma membranes of Friend erythroleukemic cells (Friend cells) and mature mouse erythrocytes has been determined. The various techniques which have been applied to establish the phospholipid localization include the following: phospholipase A2, phospholipase C, and sphingomyelinase C treatment, fluorescamine labeling of phosphatidylethanolamine, and a phosphatidylcholine transfer protein mediated exchange procedure. The data obtained with these different techniques were found to be in good agreement with each other. Phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol were found to be distributed symmetrically over both layers of the plasma membrane of Friend cells. In contrast, sphingomyelin was found to be enriched in the outer layer of the membrane (80-85%), and phosphatidylserine appeared to be present mainly in the inner layer (80-90%). From these results, it was calculated that the outer and inner layers accounted for 46% and 54%, respectively, of the total phospholipid complement of that membrane. Analogous studies on the plasma membrane of mature mouse erythrocytes showed that the transbilayer distribution of the total phospholipid mass appeared to be the same as in the plasma membrane of the Friend cell, namely, 46% and 54% in outer and inner layers, respectively. The outer layer of this membrane contains 57% of the phosphatidylcholine, 20% of the phosphatidylethanolamine, 85% of the sphingomyelin, and 42% of the phosphatidylinositol, and none of the phosphatidylserine was present.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The phospholipid composition of ram spermatozoa plasma membranes has been investigated. An exclusively high participation of the choline- and ethanolamine-plasmalogens in the phosphatidylcholine and phosphatidylethanolamine fractions has been established. Phosphatidylcholine of ram spermatozoa plasma membranes contains a great amount of polyunsaturated fatty acids. The phospholipid distribution in spermatozoa plasma membrane was investigated. It was established that the choline containing phospholipids are situated mainly in the outer membrane lipid monolayer, whereas diphosphatidylglycerol and phosphatidylserine are localized predominantly in the inner monolayer. The rest of the phospholipids are evenly distributed among the two monolayers. Ram spermal plasma membranes exhibit high phospholipase A2 activity.  相似文献   

16.
We previously showed [Herbette, L. G., Blasie, J. K., DeFoor, P., Fleischer, S., Bick, R. J., Van Winkle, W. B., Tate, C. A., & Entman, M. L. (1984) Arch. Biochem. Biophys. 234, 235-242; Herbette, L. G., DeFoor, P., Fleischer, S., Pascolini, D., Scarpa, A., & Blasie, J. K. (1985) Biochim. Biophys. Acta 817, 103-122] that the phospholipid head-group distribution in the membrane bilayer of isolated sarcoplasmic reticulum is asymmetric. From these studies, both the total number of phospholipid head groups and the total lipid, as well as the head-group species for these lipids, were found to be different for each monolayer of the membrane bilayer. In this paper, we demonstrate for the first time that there is significant asymmetry in the distribution of unsaturated fatty acids between the two monolayers; i.e., the outer monolayer of the sarcoplasmic reticulum contained more unsaturated and polyunsaturated chains when compared to the inner monolayer. X-ray diffraction measurements demonstrated that the time-averaged fatty acyl chain extension for the outer monolayer was approximately 20% less than for the inner monolayer. This is consistent with the concept that the greater degree of unsaturation in the outer monolayer may provide for a decreased average fatty acyl chain extension for that layer. This architecture for the bilayer may be related to both the "resting" state mass distribution of the calcium pump protein within the membrane bilayer and possible "conformational" states of the calcium pump protein during calcium transport by the sarcoplasmic reticulum.  相似文献   

17.
Apoptosis is generally accompanied by a late phase of ceramide (Cer) production, the significance of which is unknown. This study describes a previously unrecognized link between Cer accumulation and phosphatidylserine (PS) exposure at the cell surface, a characteristic of the execution phase of apoptosis resulting from a loss of plasma membrane phospholipid asymmetry. Using a fluorescent sphingomyelin (SM) analogue, N-(N-[6-[(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino]caproyl]-sphingosylphosphorylcholine (C(6)-NBD-SM), we show that Cer is derived from SM, initially located in the outer leaflet of the plasma membrane, which gains access to a cytosolic SMase by flipping to the inner leaflet in a process of lipid scrambling paralleling PS externalization. Lipid scrambling is both necessary and sufficient for SM conversion: Ca(2+) ionophore induces both PS exposure and SM hydrolysis, whereas scrambling-deficient Raji cells do not show PS exposure or Cer formation. Cer is not required for mitochondrial or nuclear apoptotic features since these are still observed in Raji cells. SM hydrolysis facilitates cholesterol efflux to methyl-beta-cyclodextrin, which is indicative of a loss of tight SM-cholesterol interaction in the plasma membrane. We provide evidence that these biophysical alterations in the lipid bilayer are essential for apoptotic membrane blebbing/vesiculation at the cell surface: Raji cells show aberrant apoptotic morphology, whereas replenishment of hydrolyzed SM by C(6)- NBD-SM inhibits blebbing in Jurkat cells. Thus, SM hydrolysis, during the execution phase of apoptosis, results from a loss of phospholipid asymmetry and contributes to structural changes at the plasma membrane.  相似文献   

18.
The transverse asymmetry (sidedness) of phospholipids in plasma membrane bilayers is well characterized, distinctive, actively maintained and functionally important. In contrast, numerous studies using a variety of techniques have concluded that plasma membrane bilayer cholesterol is either mostly in the outer leaflet or the inner leaflet or is fairly evenly distributed. Sterols might simply partition according to their differing affinities for the asymmetrically disposed phospholipids, but some studies have proposed that it is actively transported to the outer leaflet. Other work suggests that the sterol is enriched in the inner leaflet, driven by either positive interactions with the phosphatidylethanolamine on that side or by its exclusion from the outer leaflet by the long chain sphingomyelin molecules therein. This uncertainty raises three questions: is plasma membrane cholesterol sidedness fixed in a given cell or cell type; is it generally the same among mammalian species; and does it serve specific physiological functions? This review grapples with these issues.   相似文献   

19.
We have examined the effects of phospholipase C from Bacillus cereus on the extent of phospholipid hydrolysis in envelope membrane vesicles and in intact chloroplasts. When isolated envelope vesicles were incubated in presence of phospholipase C, phosphatidylcholine and phosphatidylglycerol, but not phosphatidylinositol, were totally converted into diacylglycerol if they were available to the enzyme (i.e., when the vesicles were sonicated in presence of phospholipase C). These experiments demonstrate that phospholipase C can be used to probe the availability of phosphatidylcholine and phosphatidylglycerol in the cytosolic leaflet of the outer envelope membrane from spinach chloroplasts. When isolated, purified, intact chloroplasts were incubated with low amounts of phospholipase C (0.3 U/mg chlorophyll) under very mild conditions (12 degrees C for 1 min), greater than 80% of phosphatidylcholine molecules and almost none of phosphatidylglycerol molecules were hydrolyzed. Since we have also demonstrated, by using several different methods (phase-contrast and electron microscopy, immunochemical and electrophoretic analyses) that isolated spinach chloroplasts, and especially their outer envelope membrane, remained intact after mild treatment with phospholipase C, we can conclude that there is a marked asymmetric distribution of phospholipids across the outer envelope membrane of spinach chloroplasts. Phosphatidylcholine, the major polar lipid of the outer envelope membrane, is almost entirely accessible from the cytosolic side of the membrane and therefore is probably localized in the outer leaflet of the outer envelope bilayer. On the contrary, phosphatidylglycerol, the major polar lipid in the inner envelope membrane and the thylakoids, is probably not accessible to phospholipase C from the cytosol and therefore is probably localized mostly in the inner leaflet of the outer envelope membrane and in the other chloroplast membranes.  相似文献   

20.
The plasma membrane is composed of two leaflets that are asymmetric with regard to their phospholipid composition with phosphatidylserine (PS) predominantly located within the inner leaflet whereas other phospholipids such as phosphatidylcholine (PC) are preferentially located in the outer leaflet. An intimate relationship between cellular physiology and the composition of the plasma membrane has been demonstrated, with for example apoptosis requiring PS exposure for macrophage recognition. In skeletal muscle development, differentiation also requires PS exposure in myoblasts to create cell-cell contact areas allowing the formation of multinucleate myotubes. Although it is clearly established that membrane composition/asymmetry plays an important role in cellular physiology, the role of cytokines in regulating this asymmetry is still unclear. When incubated with myoblasts, insulin-like growth factor I (IGF-1) has been shown to promote proliferation versus differentiation in a concentration dependent manner and therefore, may be a potential candidate regulating cell membrane asymmetry. We show, in non-apoptotic C2C12 cells, that relocation of an exogenous PS analogue, from the outer into the inner leaflet, is accelerated by IGF-1 in a concentration-dependent manner and that maintenance of membrane asymmetry triggered by IGF-1 is however independent of the PI3K inhibitor wortmannin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号