首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported that exon skipping in vivo due to point mutations in the 5' splice site (5'ss) signal of an internal mammalian exon can be prevented by coexpression of U1 small nuclear RNAs, termed shift-U1s, with complementarity to sequence upstream or downstream of the mutated site. We now show by S1 nuclease protection experiments that a typical shift-U1 restores splicing of the upstream intron, but not necessarily of the down stream intron. This indicates that the normal 5'ss sequence acts as an enhancer for splicing of the upstream intron, that it owes this activity to base pairing with U1, and that the enhancer activity is reproduced by base pairing of U1 with other sequences in the area. Shift-U1s are dispensable when the 3'ss sequence of the upstream intron is improved, which suggests that base pairing of U1 with sequences at or near the downstream end of the exon normally functions by compensating for a weakness in the upstream 3'ss. Accordingly, U1 appears to be involved in communication across the exon, but our data indicate at the same time that extensive base pairing between U1 and the 5'ss sequence is not necessary for accurate splicing of the downstream intron. These findings are discussed in relation to the coordinate selection exon termini proposed by the exon definition model.  相似文献   

2.
Little is currently known about proteins that make contact with the pre-mRNA in the U12-dependent spliceosome and thereby contribute to intron recognition. Using site-specific cross-linking, we detected an interaction between the U11-48K protein and U12-type 5' splice sites (5'ss). This interaction did not require branch point recognition and was sensitive to 5'ss mutations, suggesting that 48K interacts with the 5'ss during the first steps of prespliceosome assembly in a sequence-dependent manner. RNA interference-induced knockdown of 48K in HeLa cells led to reduced cell growth and the inhibition of U12-type splicing, as well as the activation of cryptic, U2-type splice sites, suggesting that 48K plays a critical role in U12-type intron recognition. 48K knockdown also led to reduced levels of U11/U12 di-snRNP, indicating that 48K contributes to the stability and/or formation of this complex. In addition to making contact with the 5'ss, 48K interacts with the U11-59K protein, a protein at the interface of the U11/U12 di-snRNP. These studies provide important insights into the protein-mediated recognition of the U12-type 5'ss, as well as functionally important interactions within the U11/U12 di-snRNP.  相似文献   

3.
Higher order RNA structures can mask splicing signals, loop out exons, or constitute riboswitches all of which contributes to the complexity of splicing regulation. We identified a G to A substitution between branch point (BP) and 3' splice site (3'ss) of Saccharomyces cerevisiae COF1 intron, which dramatically impaired its splicing. RNA structure prediction and in-line probing showed that this mutation disrupted a stem in the BP-3'ss region. Analyses of various COF1 intron modifications revealed that the secondary structure brought about the reduction of BP to 3'ss distance and masked potential 3'ss. We demonstrated the same structural requisite for the splicing of UBC13 intron. Moreover, RNAfold predicted stable structures for almost all distant BP introns in S. cerevisiae and for selected examples in several other Saccharomycotina species. The employment of intramolecular structure to localize 3'ss for the second splicing step suggests the existence of pre-mRNA structure-based mechanism of 3'ss recognition.  相似文献   

4.
5.
Alternative 3' and 5' splice site (ss) events constitute a significant part of all alternative splicing events. These events were also found to be related to several aberrant splicing diseases. However, only few of the characteristics that distinguish these events from alternative cassette exons are known currently. In this study, we compared the characteristics of constitutive exons, alternative cassette exons, and alternative 3'ss and 5'ss exons. The results revealed that alternative 3'ss and 5'ss exons are an intermediate state between constitutive and alternative cassette exons, where the constitutive side resembles constitutive exons, and the alternative side resembles alternative cassette exons. The results also show that alternative 3'ss and 5'ss exons exhibit low levels of symmetry (frame-preserving), similar to constitutive exons, whereas the sequence between the two alternative splice sites shows high symmetry levels, similar to alternative cassette exons. In addition, flanking intronic conservation analysis revealed that exons whose alternative splice sites are at least nine nucleotides apart show a high conservation level, indicating intronic participation in the regulation of their splicing, whereas exons whose alternative splice sites are fewer than nine nucleotides apart show a low conservation level. Further examination of these exons, spanning seven vertebrate species, suggests an evolutionary model in which the alternative state is a derivative of an ancestral constitutive exon, where a mutation inside the exon or along the flanking intron resulted in the creation of a new splice site that competes with the original one, leading to alternative splice site selection. This model was validated experimentally on four exons, showing that they indeed originated from constitutive exons that acquired a new competing splice site during evolution.  相似文献   

6.
Although spliceosomal introns are present in all characterized eukaryotes, intron numbers vary dramatically, from only a handful in the entire genomes of some species to nearly 10 introns per gene on average in vertebrates. For all previously studied intron-rich species, significant fractions of intron positions are shared with other widely diverged eukaryotes, indicating that 1) large numbers of the introns date to much earlier stages of eukaryotic evolution and 2) these lineages have not passed through a very intron-poor stage since early eukaryotic evolution. By the same token, among species that have lost nearly all of their ancestral introns, no species is known to harbor large numbers of more recently gained introns. These observations are consistent with the notion that intron-dense genomes have arisen only once over the course of eukaryotic evolution. Here, we report an exception to this pattern, in the intron-rich diatom Thalassiosira pseudonana. Only 8.1% of studied T. pseudonana intron positions are conserved with any of a variety of divergent eukaryotic species. This implies that T. pseudonana has both 1) lost nearly all of the numerous introns present in the diatom-apicomplexan ancestor and 2) gained a large number of new introns since that time. In addition, that so few apparently inserted T. pseudonana introns match the positions of introns in other species implies that insertion of multiple introns into homologous genic sites in eukaryotic evolution is less common than previously estimated. These results suggest the possibility that intron-rich genomes may have arisen multiple times in evolution. These results also provide evidence that multiple intron insertion into the same site is rare, further supporting the notion that early eukaryotic ancestors were very intron rich.  相似文献   

7.
Zhang Z  Krainer AR 《Molecular cell》2004,16(4):597-607
Nonsense mutations influence several aspects of gene expression, including mRNA stability and splicing fidelity, but the mechanism by which premature termination codons (PTCs) can apparently affect splice-site selection remains elusive. We used a model human beta-globin gene with duplicated 5' splice sites (5'ss) and found that PTCs inserted between the two 5'ss do not directly influence splicing in this system. Instead, their apparent effect on 5'ss selection in vivo is an indirect result of nonsense-mediated mRNA decay (NMD), as conditions that eliminated NMD also abrogated the effect on splicing. Remarkably, we found an unexpected function of SR proteins in targeting several mRNAs with PTCs to the NMD pathway. Overexpression of various SR proteins strongly enhanced NMD, and this effect required an RS domain. Our data argue against a universal role of PTCs in regulating pre-mRNA splicing and reveal an additional function of SR proteins in eukaryotic gene expression.  相似文献   

8.
Poor understanding of the spliceosomal mechanisms to select intronic 3' ends (3'ss) is a major obstacle to deciphering eukaryotic genomes. Here, we discern the rules for global 3'ss selection in yeast. We show that, in contrast to the uniformity of yeast splicing, the spliceosome uses all available 3'ss within a distance window from the intronic branch site (BS), and that in ~70% of all possible 3'ss this is likely to be mediated by pre-mRNA structures. Our results reveal that one of these RNA folds acts as an RNA thermosensor, modulating alternative splicing in response to heat shock by controlling alternate 3'ss availability. Thus, our data point to a deeper role for the pre-mRNA in the control of its own fate, and to a simple mechanism for some alternative splicing.  相似文献   

9.
Determinants of the inherent strength of human 5' splice sites   总被引:1,自引:0,他引:1       下载免费PDF全文
We previously showed that the authentic 5' splice site (5'ss) of the first exon in the human beta-globin gene is intrinsically stronger than a cryptic 5'ss located 16 nucleotides upstream. Here we examined by mutational analysis the contribution of individual 5'ss nucleotides to discrimination between these two 5'ss. Based on the in vitro splicing efficiencies of a panel of 26 wild-type and mutant substrates in two separate 5'ss competition assays, we established a hierarchy of 5'ss and grouped them into three functional subclasses: strong, intermediate, and weak. Competition between two 5'ss from different subclasses always resulted in selection of the 5'ss that belongs to the stronger subclass. Moreover, each subclass has different characteristic features. Strong and intermediate 5'ss can be distinguished by their predicted free energy of base-pairing to the U1 snRNA 5' terminus (DeltaG). Whereas the extent of splicing via the strong 5'ss correlates well with the DeltaG, this is not the case for competition between intermediate 5'ss. Weak 5'ss were used only when the competing authentic 5'ss was inactivated by mutation. These results indicate that extensive complementarity to U1 snRNA exerts a dominant effect for 5'ss selection, but in the case of competing 5'ss with similarly modest complementarity to U1, the role of other 5'ss features is more prominent. This study reveals the importance of additional submotifs present in certain 5'ss sequences, whose characterization will be critical for understanding 5'ss selection in human genes.  相似文献   

10.
11.
12.
Modulation of the interaction between U1 snRNP and the 5' splice site (5'ss) is a key event that governs 5'ss recognition and spliceosome assembly. Using the methylene blue-mediated cross-linking method (Z. R. Liu, A. M. Wilkie, M. J. Clemens, and C. W. Smith, RNA 2:611-621, 1996), a 65-kDa protein (p65) was shown to interact with the U1-5'ss duplex during spliceosome assembly (Z. R. Liu, B. Sargueil, and C. W. Smith, Mol. Cell. Biol. 18:6910-6920, 1998). In this report, p65 was identified as p68 RNA helicase and shown to be essential for in vitro pre-mRNA splicing. Depletion of endogenous p68 RNA helicase does not affect the loading of the U1 snRNP to the 5'ss during early stage of splicing. However, dissociation of the U1 from the 5'ss is largely inhibited. The data suggest that p68 RNA helicase functions in destabilizing the U1-5'ss interactions. Furthermore, depletion of p68 RNA helicase arrested spliceosome assembly at the prespliceosome stage, suggesting that p68 may play a role in the transition from prespliceosome to spliceosome.  相似文献   

13.
14.
15.
16.
Conservation versus parallel gains in intron evolution   总被引:10,自引:1,他引:9  
Orthologous genes from distant eukaryotic species, e.g. animals and plants, share up to 25–30% intron positions. However, the relative contributions of evolutionary conservation and parallel gain of new introns into this pattern remain unknown. Here, the extent of independent insertion of introns in the same sites (parallel gain) in orthologous genes from phylogenetically distant eukaryotes is assessed within the framework of the protosplice site model. It is shown that protosplice sites are no more conserved during evolution of eukaryotic gene sequences than random sites. Simulation of intron insertion into protosplice sites with the observed protosplice site frequencies and intron densities shows that parallel gain can account but for a small fraction (5–10%) of shared intron positions in distantly related species. Thus, the presence of numerous introns in the same positions in orthologous genes from distant eukaryotes, such as animals, fungi and plants, appears to reflect mostly bona fide evolutionary conservation.  相似文献   

17.
Numerous previous studies have elucidated 2 surprising patterns of spliceosomal intron evolution in diverse eukaryotes over the past roughly 100 Myr. First, rates of recent intron gain in a wide variety of eukaryotic lineages have been surprisingly low, far too low to explain modern intron densities. Second, intron losses have outnumbered intron gains over a variety of lineages. For several reasons, land plants might be expected to have comparatively high rates of intron gain and thus to represent a possible exception to this pattern. However, we report several studies that indicate low rates of intron gain and an excess of intron losses over intron gains in a variety of plant lineages. We estimate that intron losses have outnumbered intron gains in recent evolution in Arabidopsis thaliana (roughly 12.6 times more losses than gains), Oryza sativa (9.8 times), the green alga Chlamydomonas reinhardtii (5.1 times), and the Bigelowiella natans nucleomorph, an enslaved green algal nucleus (2.8 times). We estimate that during recent evolution, A. thaliana and O. sativa have experienced very low rates of intron gain of around one gain per gene per 2.6-8.0 billion years. In addition, we compared 8,258 pairs of putatively orthologous A. thaliana-O. sativa genes. We found that 5.3% of introns in conserved coding regions are species-specific. Observed species-specific A. thaliana and O. sativa introns tend to be exact and to lie adjacent to each other along the gene, in a pattern suggesting mRNA-mediated intron loss. Our results underscore that low intron gain rates and intron number reduction are common features of recent eukaryotic evolution. This pattern implies that rates of intron creation were higher during earlier periods of evolution and further focuses attention on the causes of initial intron proliferation.  相似文献   

18.
The 5' splice site signal (5'ss) in Moloney murine sarcoma virus ts110 (MuSVts110) RNA was found to participate in the regulation of its splicing phenotype. This 5'ss (CAG/GUAGGA) departs from the mammalian consensus (CAG/GURAGU) at positions +4 and +6, both of which base pair with U1 and U6 small nuclear RNAs during splicing. A doubling in splicing efficiency and near elimination of the splicing thermosensitivity characteristic of MuSVts110 were observed in 5'ss mutants containing a U at position +6 (termed 5' A6U), even in those in which U1-5'ss complementarity had been reduced. At the permissive temperature (28 degrees C), the 5' A6U mutation increased the efficiency of the second splicing reaction, while at the nonpermissive temperature (39 degrees C), both splicing reactions were positively affected.  相似文献   

19.
For the purpose of analyzing the relation between the splice sites and the order of introns, we conducted the following analysis for the GT-AG and GC-AG splice site groups. First, the pre-mRNAs of H. sapiens, M. musculus, D. melanogaster, A. thaliana and O. sativa were sampled by mapping the full-length cDNA to the genomes. Next, the consensus sequences at different regions of pre-mRNAs were analyzed in the five species. We also investigated the mononucleotide and dinucleotide frequencies in the extensive regions around the 5' splice sites (5'ss) and 3' splice sites (3'ss). As a result, differential frequencies of nucleotides at the first 5'ss in both the GT-AG and GC-AG splice site groups were observed in A. thaliana and O. sativa pre-mRNAs. The trend, which indicates that GC 5'ss possess strong consensus sequences, was observed not only in mammalian pre-mRNAs but also in the pre-mRNAs of D. melanogaster, A. thaliana and O. sativa. Furthermore, we examined the consensus sequences of the constitutive and alternative splice sites. It was suggested that in the case of the alternative GC-AG introns, the tendency to have a weak consensus sequence at 5'ss is different between H. sapiens and M. musculus pre-mRNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号