首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellulolytic enzyme beta-1,4-glucan cellobiohydrolase (CBH) has been isolated from the crude mixture of cellulase enzymes of Trichoderma viride by gel filtration and ion-exchange methods, and some aspects of its kinetic behaviour have been examined. Studies of the initial rates of the CBH-catalyzed production of cellobiose from fibrous alpha-cellulose show that (i) the dissociation constant for cellobiose competitive product inhibition of the reaction is Ki = (1.13 +/- 0.37) X 10(-3) M, (ii) the adsorption of CBH on fibrous alpha-cellulose and its subsequent reaction conform to kinetic equations developed in conjunction with the Langmuir adsorption isotherm, (iii) the rate-pH curve has a maximum at pH 5.2 and decreases at higher and lower pH values, exhibiting enzyme pK values of 3.8 and 6.5, and (iv) the energy of activation of the overall reaction between 5 and 60 degrees C is 5.3 +/- 0.3 kcal mol-1 at pH 5.2. Studies of the time course of the reaction over extended periods of time up to 40% hydrolysis of the cellulose show that (v) the data fit better to a competitive product inhibition model than to models of anticompetitive product inhibition or noncompetitive product inhibition.  相似文献   

2.
3.
An enzyme extract of mung bean roots and hypocotyls (Phaseolus aureus) that catalyzes the synthesis of a β-1,4-glucan from guanosine 5′-diphosphate-d-glucose was prepared by a modification of the method of T.-Y. Liu and W. Z. Hassid (1970, J. Biol. Chem.245, 1922–1925). Its activity was not increased by any of those factors that have contributed to the marked improvement in the performance of various cell-free polysaccharide-synthesizing systems from other organisms. Evidence is presented to suggest that in the mung bean system a stable precursor of the cell wall polysaccharide or intermediate in its synthesis is formed by incubation of the enzyme with guanosine 5′-diphosphate-d-mannose.  相似文献   

4.
5.
Cyclic beta-(1,2)-glucans are synthesized by members of the Rhizobiaceae family through protein-linked oligosaccharides as intermediates. The protein moiety is a large inner membrane molecule of about 319 kDa. In Agrobacterium tumefaciens and in Rhizobium meliloti the protein is termed ChvB and NdvB, respectively. Inner membranes of R. meliloti 102F34 and A. tumefaciens A348 were first incubated with UDP-[14C]Glc and then solubilized with Triton X-100 and analyzed by polyacrylamide gel electrophoresis under native conditions. A radioactive band corresponding to the 319-kDa protein was detected in both bacteria. Triton-solubilized inner membranes of A. tumefaciens were submitted to native electrophoresis and then assayed for oligosaccharide-protein intermediate formation in situ by incubating the gel with UDP-[14C]Glc. A [14C]glucose-labeled protein with an electrophoretic mobility identical to that corresponding to the 319-kDa [14C]glucan protein intermediate was detected. In addition, protein-linked radioactivity was partially chased when the gel was incubated with unlabeled UDP-Glc. A heterogeneous family of cyclic beta-(1,2)-glucans was formed upon incubation of the gel portion containing the 319-kDa protein intermediate with UDP-[14C]Glc. A protein with an electrophoretic behavior similar to the 319-kDa protein intermediate was "in gel" labeled by using Triton-solubilized inner membranes of an A. tumefaciens exoC mutant, which contains a protein intermediate without nascent glucan. These results indicate that initiation (protein glucosylation), elongation, and cyclization were catalyzed in situ. Therefore, the three enzymatic activities detected in situ reside in a unique protein component (i.e., cyclic beta-(1,2)-glucan synthase). It is suggested that the protein component is the 319-kDa protein intermediate, which might catalyze the overall cyclic beta-(1,2)-glucan synthesis.  相似文献   

6.
beta-(1----2)-Glucan, an unusual cyclic oligosaccharide, can be isolated from the periplasm of bacteria belonging to the family Rhizobiaceae. Data presented here suggest that the periplasmic beta-(1----2)-glucan of Rhizobium meliloti plays a major role in osmotic adaptation. First, growth of R. meliloti in a low-osmolarity medium causes a large accumulation of periplasmic beta-(1----2)-glucan. Second, mutations in the ndv genes, which prevent this accumulation of beta-(1----2)-glucan, reduce cell growth rates under low-osmolarity conditions and cause several other phenotypic changes indicative of an altered or stressed surface. Third, growth of the ndv mutants can be restored by raising the osmolarity of the medium with the addition of a variety of ionic or nonionic compounds. The phenotypic changes associated with the cell surface of the mutants can also be substantially suppressed by increasing the medium osmolarity. On the basis of these data and general considerations about the periplasmic space in gram-negative bacteria, we suggest a mechanism of hypoosmotic adaptation in R. meliloti in which beta-(1----2)-glucan plays an essential role.  相似文献   

7.
At 25 degrees C, the optimal temperature for growth of Rhizobium trifolii TA-1, extracellular and capsular polysaccharide (EPS and CPS) were the main carbohydrate products synthesized in mannitol-rich medium (10 g of mannitol and 1 g of glutamic acid per liter). In the same medium at 33 degrees C, EPS and CPS production was inhibited, and up to 3.9 g of cyclic beta-(1,2)-glucan was produced during an incubation period of 20 days with a total biomass of 0.55 g of protein. In a medium containing 50 g of mannitol and 10 g of glutamic acid per liter, high cell densities (3.95 g of protein) were obtained at 25 degrees C. This biomass excreted 10.9 g of cyclic beta-(1,2)-glucan within 10 days. Concomitantly, 4.8 g of EPS were synthesized, while CPS production was strongly suppressed. The excreted cyclic beta-(1,2)-glucans were neutral and had degrees of polymerization ranging from 17 to 25, with a degree of polymerization of 19 as the major glucan cycle.  相似文献   

8.
9.
The regulation of beta-1,3 galactosyltransferase (3betaGalT) and beta-1,4 galactosyltransferase enzymatic (4betaGalT) activities in the mammary gland of the tammar wallaby (Macropus eugenii) have been characterised. These two beta-galactosyltransferases are active at different times during the lactation cycle and play a central role in regulating the carbohydrate composition in tammar milk, which changes progressively throughout lactation to assist the physiological development of the altrical young. The 4betaGalT activity was present at parturition and increased 3-fold by day 10 of lactation (d10L), whereas 3betaGalT activity was barely detectable at day d5L and then increased 6-fold by d10L. This increase in activity of both enzymes was sucking dependent. While 3betaGalT activity was not observed in the mammary gland prior to d7L, this activity was found in mammary explants from late pregnant tammar cultured with insulin, hydrocortisone and prolactin (IFP) and was further stimulated by the addition of tri-iodothyronine (T) and 17beta-oestradiol (E). The activity of 4betaGalT in these explants was stimulated maximally with IFP. These data suggest the temporal activity of both 3betaGalT and 4betaGalT is most likely regulated by both endocrine stimuli and factors intrinsic to the mammary gland.  相似文献   

10.
11.
The Saccharomyces cerevisiae RHO1 gene encodes a low-molecular-weight GTPase. One of its recently identified functions is the regulation of beta-1,3-glucan synthase, which synthesizes the main component of the fungal cell wall (J. Drgonova et al., Science 272:277-279, 1996; T. Mazur and W. Baginsky, J. Biol. Chem. 271:14604-14609, 1996; and H. Qadota et al., Science 272:279-281, 1996). From the opportunistic pathogenic fungus Candida albicans, we cloned the RHO1 gene by the PCR and cross-hybridization methods. Sequence analysis revealed that the Candida RHO1 gene has a 597-nucleotide region which encodes a putative 22.0-kDa peptide. The deduced amino acid sequence predicts that Candida albicans Rho1p is 82.9% identical to Saccharomyces Rho1p and contains all the domains conserved among Rho-type GTPases from other organisms. The Candida albicans RHO1 gene could rescue a S. cerevisiae strain containing a rho1 deletion. Furthermore, recombinant Candida albicans Rho1p could reactivate the beta-1,3-glucan synthesis activities of both C. albicans and S. cerevisiae membranes in which endogenous Rho1p had been depleted by Tergitol NP-40-NaCl treatment. Candida albicans Rho1p was copurified with the beta-1,3-glucan synthase putative catalytic subunit, Candida albicans Gsc1p, by product entrapment. Candida albicans Rho1p was shown to interact directly with Candida albicans Gsc1p in a ligand overlay assay and a cross-linking study. These results indicate that Candida albicans Rho1p acts in the same manner as Saccharomyces cerevisiae Rho1p to regulate beta-1,3-glucan synthesis.  相似文献   

12.
We have examined some aspects of the mechanism of cyclic beta-1,2-glucan synthetase from Agrobacterium tumefaciens (235-kDa protein, gene product of the chvB region). The enzyme produces cyclic beta-1,2-glucans containing 17 to 23 glucose residues from UDP-glucose. In the presence of added cyclic beta-1,2-glucans (> 0.5 mg/ml) (containing 17 to 23 glucose residues), the enzyme instead synthesizes larger cyclic beta-1,2-glucans containing 24 to 30 glucose residues. This is achieved by de novo synthesis and not by disproportion reactions with the added product. This is interpreted as inhibition of the specific cyclization reaction for the synthesis of cyclic beta-1,2-glucans containing 17 to 23 glucose residues but with no concomitant effect on the elongation (polymerization) reaction. Temperature and detergents both affect the distribution of sizes of cyclic beta-1,2-glucans, but glucans containing 24 to 30 glucose residues are not produced. We suggest that the size distribution of cyclic beta-1,2-glucan products depends on competing elongation and cyclization reactions.  相似文献   

13.
At 25 degrees C, the optimal temperature for growth of Rhizobium trifolii TA-1, extracellular and capsular polysaccharide (EPS and CPS) were the main carbohydrate products synthesized in mannitol-rich medium (10 g of mannitol and 1 g of glutamic acid per liter). In the same medium at 33 degrees C, EPS and CPS production was inhibited, and up to 3.9 g of cyclic beta-(1,2)-glucan was produced during an incubation period of 20 days with a total biomass of 0.55 g of protein. In a medium containing 50 g of mannitol and 10 g of glutamic acid per liter, high cell densities (3.95 g of protein) were obtained at 25 degrees C. This biomass excreted 10.9 g of cyclic beta-(1,2)-glucan within 10 days. Concomitantly, 4.8 g of EPS were synthesized, while CPS production was strongly suppressed. The excreted cyclic beta-(1,2)-glucans were neutral and had degrees of polymerization ranging from 17 to 25, with a degree of polymerization of 19 as the major glucan cycle.  相似文献   

14.
15.
Brucella abortus cyclic glucan synthase (Cgs) is a 320-kDa (2868-amino acid) polytopic integral inner membrane protein responsible for the synthesis of the virulence factor cyclic beta-1,2-glucan by a novel mechanism in which the enzyme itself acts as a protein intermediate. Cgs functions as an inverting processive beta-1,2-autoglucosyltransferase and has the three enzymatic activities required for the synthesis of the cyclic glucan: initiation, elongation, and cyclization. To gain further insight into the protein domains that are essential for the enzymatic activity, we have compared the Cgs sequence with other glycosyltransferases (GTs). This procedure allowed us to identify in the Cgs region (475-818) the widely spaced D, DxD, E/D, (Q/R)xxRW motif that is highly conserved in the active site of numerous GTs. By site-directed mutagenesis and in vitro and in vivo activity assays, we have demonstrated that most of the amino acid residues of this motif are essential for Cgs activity. These sequence and site-directed mutagenesis analyses also indicate that Cgs should be considered a bi-functional modular GT, with an N-terminal GT domain belonging to a new GT family related to GT-2 (GT-84) followed by a GH-94 glycoside hydrolase C-terminal domain. Furthermore, over-expression of inactive mutants results in wild-type (WT) production of cyclic glucan when bacteria co-express the mutant and the WT form, indicating that Cgs may function in the membrane as a monomeric enzyme. Together, these results are compatible with a single addition model by which Cgs acts in the membrane as a monomer and uses the identified motif to form a single center for substrate binding and glycosyl-transfer reaction.  相似文献   

16.
Although cyclic glucans have been shown to be important for a number of symbiotic and pathogenic bacterium-plant interactions, their precise roles are unclear. Here, we examined the role of cyclic beta-(1,2)-glucan in the virulence of the black rot pathogen Xanthomonas campestris pv campestris (Xcc). Disruption of the Xcc nodule development B (ndvB) gene, which encodes a glycosyltransferase required for cyclic glucan synthesis, generated a mutant that failed to synthesize extracellular cyclic beta-(1,2)-glucan and was compromised in virulence in the model plants Arabidopsis thaliana and Nicotiana benthamiana. Infection of the mutant bacterium in N. benthamiana was associated with enhanced callose deposition and earlier expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Application of purified cyclic beta-(1,2)-glucan prior to inoculation of the ndvB mutant suppressed the accumulation of callose deposition and the expression of PR-1 in N. benthamiana and restored virulence in both N. benthamiana and Arabidopsis plants. These effects were seen when cyclic glucan and bacteria were applied either to the same or to different leaves. Cyclic beta-(1,2)-glucan-induced systemic suppression was associated with the transport of the molecule throughout the plant. Systemic suppression is a novel counterdefensive strategy that may facilitate pathogen spread in plants and may have important implications for the understanding of plant-pathogen coevolution and for the development of phytoprotection measures.  相似文献   

17.
Prevotella ruminicola B(1)4, TC1-1, TF1-3, and TS1-5 all produced immunologically cross-reacting 88- and 82-kDa carboxymethyl cellulases (CMCases). P. ruminicola 23, 118B, 20-63, and 20-78 had much lower CMCase activities, and Western blots (immunoblots) showed no cross-reaction with the B(1)4 CMCase antiserum. Fibrobacter succinogenes S85 and Selenomonas ruminantium HD4 and D produced CMCase, but these enzymes were smaller and did not cross-react with the B(1)4 CMCase antiserum. The B(1)4 CMCase antiserum inhibited the B(1)4, TC1-1, TF1-3, and TS1-5 CMCase activities and agglutinated these cells, but it had no effect on the other strains or species. On the basis of these results, the B(1)4 CMCase is a strain-specific enzyme that is located on the outside surface of the cells. P. ruminicola B(1)4 cultures, grown on sucrose, did not have significant CMCase activity, but these cells could bind purified 88- and 82-kDa CMCase but not 40.5-kDa CMCase. Because the 40.5-kDa CMCase is a fully active, truncated form of the CMCase, it appears that the N-terminal domain of the 88-kDa B(1)4 CMCase anchors the CMCase to the cells. Cells grown on cellobiose produced at least 10-fold more CMCase than the sucrose-grown cells, and the cellobiose-grown cells could only bind 15% as much CMCase as sucrose-grown cells. Virtually all of the CMCase activity of exponentially growing cultures was cell associated, but CMCase activity was eventually detected in the culture supernatant. On the basis of the observation that the 88-kDa CMCase was gradually converted to the 82-kDa CMCase when cultures reached the stationary phase without a change in specific activity, it appears that the 82-kDa protein is probably a proteolytic degradation product of the 88-kDa CMCase.  相似文献   

18.
19.
The transglycosylation reactions catalyzed by beta-1,3-D-glucanases (laminaranases) were used to synthesize a number of 4-methylumbelliferyl (MeUmb) (1-->3)-beta-D-gluco-oligosaccharides having the common structure [beta-D-Glcp-(1-->3)](n)-beta-D-Glcp-MeUmb, where n=1-5. The beta-1,3-D-glucanases used were purified from the culture liquid of Oerskovia sp. and from a homogenate of the marine mollusc Spisula sachalinensis. Laminaran and curdlan were used as (1-->3)-beta-D-glucan donor substrates, while MeUmb-beta-D-glucoside (MeUmbGlcp) was employed as a transglycosylation acceptor. Modification of [beta-D-Glcp-(1-->3)](2)-beta-D-Glcp-MeUmb (MeUmbG(3)) gives 4,6-O-benzylidene-D-glucopyranosyl or 4,6-O-ethylidene-D-glucopyranosyl groups at the non-reducing end of artificial oligosaccharides. The structures of all oligosaccharides obtained were solved by 1H and 13C NMR spectroscopy and electrospray tandem mass spectrometry. The synthetic oligosaccharides were shown to be substrates for a beta-1,3-1,4-D-glucanase from Rhodothermus marinus, which releases MeUmb from beta-di- and beta-triglucosides and from acetal-protected beta-triglucosides. When acting upon substrates with d.p.>3, the enzyme exhibits an endolytic activity, primarily cleaving off MeUmbGlcp and MeUmbG(2).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号