首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Vocal communication between zebra finches includes the exchange of long calls (LCs) as well as song. By using this natural call behavior and quantifying the LCs emitted in response to playbacks of LCs of other birds, we have previously shown that adult male zebra finches have a categorical preference for the LCs of females over those of males. Female LCs are acoustically simpler than male LCs, which include complex acoustic features that are learned during development. Production of these male-typical features requires an intact nucleus RA, the sexually dimorphic source of the main telencephalic projection to brainstem vocal effectors. We have now made bilateral lesions of RA in 17 adult males and tested their discrimination behavior in the call response situation. Lesioned birds continue to call, but lose the male-typical preference for female LCs. The degree of loss is correlated with the extent of RA damage. Further, the simplified LCs of males with RA lesions have a variable duration that is correlated with stimulus features. In effect, the call response behavior of lesioned males becomes like that of females. Apparently, in the absence of RA, the remaining intact structures receive different call information than RA normally does, and/or process it differently. This suggests that the vocal motor nucleus RA could play a role in the transformation of a signal encoding the salience of stimulus parameters into a control signal that modulates the probability and strength of responding.  相似文献   

2.
The male zebra finch produces learned song and long calls while the female does not. This difference in behavior is believed to result from the action of sex steroids on brain areas responsible for vocal production and learning. In this study, the female zebra finch was used to explore further the specific role sex steroids play in vocal masculinization. We show that estradiol (E2) treatment at birth was sufficient to masculinize the vocal behavior of female zebra finches. Thirteen of 18 females treated with E2 as nestlings produced song-like vocalizations. Fifteen of 18 produced long calls with male-typical features. The degree of masculinization varied between individuals. Of the 15 early E2 females that produced at least one type of male-like vocalization, 7 showed evidence of vocal learning from their tutors. The ability of E2 to cause masculinization of vocal behavior was age dependent: treatment from birth was most effective, treatment at 20 days of age was partially effective, and treatment in adulthood was ineffective. The effect of subsequent testosterone exposure in adulthood differed depending on the quality of the vocalization produced after E2 treatment alone. These results suggest that E2 may play a more important role than previously thought in the development of sex differences in vocal behavior. Further-more, this study demonstrates that exogenous E2 treatment alone can induce vocal learning.  相似文献   

3.
The male zebra finch produces learned song and long calls while the female does not. This difference in behavior is believed to result from the action of sex steroids on brain areas responsible for vocal production and learning. In this study, the female zebra finch was used to explore further the specific role sex steroids play in vocal masculinization. We show that estradiol (E2) treatment at birth was sufficient to masculinize the vocal behavior of female zebra finches. Thirteen of 18 females treated with E2 as nestlings produced song-like vocalizations. Fifteen of 18 produced long calls with male-typical features. The degree of masculinization varied between individuals. Of the 15 early E2 females that produced at least one type of male-like vocalization, 7 showed evidence of vocal learning from their tutors. The ability of E2 to cause masculinization of vocal behavior was age dependent: treatment from birth was most effective, treatment at 20 days of age was partially effective, and treatment in adulthood was ineffective. The effect of subsequent testosterone exposure in adulthood differed depending on the quality of the vocalization produced after E2 treatment alone. These results suggest that E2 may play a more important role than previously thought in the development of sex differences in vocal behavior. Furthermore, this study demonstrates that exogenous E2 treatment alone can induce vocal learning.  相似文献   

4.
The caudomedial nidopallium (NCM) of songbirds is a telencephalic area involved in the auditory processing and memorization of complex vocal communication signals. We used pure tone stimuli and multiunit electrophysiological recordings in awake birds to investigate whether the basic properties of song-responding circuits in NCM differ between canaries and zebra finches, two species whose songs are markedly different in their spectral and temporal organization. We found that the responses in zebra finch NCM are characterized by broad tuning and sustained responses that may facilitate the integration of zebra finch song syllables and call notes that are of long duration and have a broad harmonic structure. In contrast, we found that the responses in canary NCM show narrower tuning and less sustained responses over the time periods analyzed. These characteristics may contribute to enhanced processing of the narrow-band whistles, rapid trills, and steep frequency modulations that are prominent features of canary song. These species differences are much less pronounced in field L2, the direct thalamorecipient region that represents a preceding station in the central avian auditory pathway. NCM responses did not differ across sexes of either species, but field L2 did show wider tuning in zebra finch females relative to males. In sum, species differences in the response properties of NCM likely reflect selectivity for the acoustic elements of each species' vocal repertoire.  相似文献   

5.
The lesion of nucleus robustus archistriatalis (RA) has no effect on normal short calls in the bramble finch, but affects significantly the temporal and acoustic features of learned long calls. It causes the principal frequency of basic sound in monotone long calls to increase 500 cents, and to lose two upper partials. The lesion of RA not only results in the increased sound length of loud-sound and shortened coda of variable-tone long calls by 13.4%-22.1% and 21.2%-24.2% on average, respectively, but also makes the frequency rising coefficient (FRC) of even order partial tone in loud-sound drop 18.5%-25.8% on an average, and the step-up rate decrease 22.7% -24.0% on an average with the increase of frequencies. These results show that the control of temporal and frequency features of learned calls by RA matches to each other. Moreover, the lesion of bilateral RA can confuse the vocal pattern, and the produced long call has the character of both the mono- and variable-tone long calls. The prelude shows ri  相似文献   

6.
The lesion of nucleus robustus archistriatalis (RA) has no effect on normal short calls in the bramble finch, but affects significantly the temporal and acoustic features of learned long calls. It causes the principal frequency of basic sound in monotone long calls to increase 500 cents, and to lose two upper partials. The lesion of RA not only results in the increased sound length of loud-sound and shortened coda of variable-tone long calls by 13.4%–22.1% and 21.2%–24.2% on average, respectively, but also makes the frequency rising coefficient (FRC) of even order partial tone in loud-sound drop 18.5%–25.8% on an average, and the step-up rate decrease 22.7% –24.0% on an average with the increase of frequencies. These results show that the control of temporal and frequency features of learned calls by RA matches to each other. Moreover, the lesion of bilateral RA can confuse the vocal pattern, and the produced long call has the character of both the mono- and variable-tone long calls. The prelude shows rising frequency, and the loud sound is monotone sound.  相似文献   

7.
The lesion of nucleus robustus archistriatalis (RA) has no effect on normal short calls in the bramble finch, but affects significantly the temporal and acoustic features of learned long calls. It causes the principal frequency of basic sound in monotone long calls to increase 500 cents, and to lose two upper partials. The lesion of RA not only results in the increased sound length of loud-sound and shortened coda of variable-tone long calls by 13.4%–22.1% and 21.2%–24.2% on average, respectively, but also makes the frequency rising coefficient (FRC) of even order partial tone in loud-sound drop 18.5%–25.8% on an average, and the step-up rate decrease 22.7% –24.0% on an average with the increase of frequencies. These results show that the control of temporal and frequency features of learned calls by RA matches to each other. Moreover, the lesion of bilateral RA can confuse the vocal pattern, and the produced long call has the character of both the mono- and variable-tone long calls. The prelude shows rising frequency, and the loud sound is monotone sound.  相似文献   

8.
Z Chi  D Margoliash 《Neuron》2001,32(5):899-910
In the zebra finch forebrain nucleus robustus archistriatalis (RA), neurons burst during singing. We showed that the internal structure of spike bursts was regulated with a precision of circa 0.2 ms, and yielded alignment of acoustic features of song with a precision of circa 1 ms. In addition, interburst intervals and corresponding syllable durations displayed systematic variation within song (average elongation 0.3 ms/s song), and slower "drift" across songs. Systematic variation on even a coarser time scale might be difficult to detect in other systems, but could affect the analysis of temporal patterning. The close relationship between precise timing of individual spikes and stereotypic behavior suggests that song is represented in RA by a temporal code.  相似文献   

9.
Recently, we described the distribution of testosterone-metabolizing enzymes (i.e., aromatase, 5 alpha- and 5 beta-reductases) in the zebra finch (Taeniopygia guttata) brain using a sensitive radioenzyme assay combined to the Palkovits punch method. A number of sex-differences in the activity of these enzymes were observed especially in nuclei of the song-control system. The hormonal controls of these differences have now been analyzed by gonadectomizing birds of both sexes and by giving them a replacement therapy with silastic implants of testosterone (T). Five nuclei of the song system (Area X [X], nucleus magnocellularis of the anterior neostriatum [MAN], nucleus robustus archistriatalis [RA], nucleus intercollicularis [ICo], hyperstriatum ventrale, pars caudalis [HVc]) and three preoptic-hypothalamic areas (preoptic anterior [POA], periventricular magnocellular nucleus [PVM], and posterior medial hypothalamic nucleus [PMH]) were studied as well as other limbic and control non-steroid-sensitive areas. The activity of the 5 alpha-reductase was higher in males than in females for the five song-control nuclei and was not affected by the hormonal treatments. The overall activity of this enzyme was not sexually dimorphic in POA and PVM. It was higher in males than in females in intact birds only, and was reduced by gonadectomy and enhanced by T. The activity of the 5 beta-reductase was higher in females than in males in all nuclei of the song system and in POA, but was not influenced by the changes in T level. Both sex and treatment effects were observed in the control of aromatase. The production of estrogens was dimorphic (females greater than males) in RA and PMH. It was increased by T in POA, PVM, and PMH, and also in RA. These data show that some of the sex differences in T-metabolizing enzymes result from the exposure to different levels of T in adulthood (e.g., 5 alpha-reductase in POA and PVM or aromatase in PVM), whereas others persist even if birds are exposed to the same hormonal conditions. These are presumably the result of organizational effects of steroids. The steroid modulation of the aromatase might be related directly to the activation of sexual, aggressive, and nest-building behaviors, whereas the stable dimorphism in 5 alpha- and 5 beta-reductase observed in the nuclei of the song system might be one of the neurochemical bases of the sex differences in the vocal behavior of the zebra finch.  相似文献   

10.
Unlearned calls are produced by all birds whereas learned songs are only found in three avian taxa, most notably in songbirds. The neural basis for song learning and production is formed by interconnected song nuclei: the song control system. In addition to song, zebra finches produce large numbers of soft, unlearned calls, among which “stack” calls are uttered frequently. To determine unequivocally the calls produced by each member of a group, we mounted miniature wireless microphones on each zebra finch. We find that group living paired males and females communicate using bilateral stack calling. To investigate the role of the song control system in call-based male female communication, we recorded the electrical activity in a premotor nucleus of the song control system in freely behaving male birds. The unique combination of acoustic monitoring together with wireless brain recording of individual zebra finches in groups shows that the neuronal activity of the song system correlates with the production of unlearned stack calls. The results suggest that the song system evolved from a brain circuit controlling simple unlearned calls to a system capable of producing acoustically rich, learned vocalizations.  相似文献   

11.
Zebra finch males may, depending on early experience with con-specifics and/or with Bengalese finches, develop a preference for either conspecific or Bengalese finch females. This preference is usually measured in choice tests, using directed song of the males as a criterion. So far, experiments are lacking on whether preferences measured in this way are indicative of social and aggressive behaviour and pair formation when zebra finch males are given the opportunity to show these behaviour patterns. Therefore, the preference of 19 males was first measured in choice tests. Thereafter the males were placed individually in a cage with one zebra finch and one Bengalese finch female and observations on social behaviour were made (free choice experiments). There appeared to be a clear relationship between the preference as measured in the choice tests and both the later orientation of social behaviour to the two females, as well as pair formation shown in the free choice experiment. Directed song during choice tests therefore is a useful predictor of other social behaviour and of pair formation.  相似文献   

12.
鸣禽鸟的基本发声中枢——丘间复合体背内侧核(nucleus dorsalis medialis of the intercollicular complex,DM)对叫声的调控模式是诱发单次叫声。应用电生理与声学分析相结合的方法研究鸣禽鸟燕雀(Fringilla montifringilla)DM核团对声音调控的模式。经语图和频谱图分析,结果显示:燕雀左侧DM诱发单次叫声的声长和主能量区的带宽分别为右侧DM诱发叫声的2倍和1.7~3.1倍,提示燕雀DM对叫声声长和声强的调控能力,均呈明显的左侧优势。这与高级发声中枢(high vocal center,HVC)和古纹状体粗核(nucleus robustus archistriatalis,RA)等发声控制核团在控声模式中具有左侧优势的特征相似,从而为鸣禽发声控制通路高、低级中枢具有内源投射关系提供了声学上的证据。  相似文献   

13.
Sex differences in the vertebrate brain (brain sex) are thought to develop owing to the tissue specific action of gonadal hormones similar to the development of secondary sex characteristics of the body. Small sex differences in body anatomy could, however, retrogradely control the sexual differentiation of the central nervous system. This possibility has so far been verified only for motorneuron pools, since the connectivity of sex-specific higher brain areas to the sexual dimorphic periphery is frequently not well known. Here, we tested whether somatic sex differences feed back on higher brain areas by bilateral denervation of the syringeal musculature of zebra finches before, during, and after onset of estrogen-sensitive sexual differentiation of forebrain vocal nuclei such as RA (nucleus robustus archistriatalis). In the zebra finch, the sound-producing musculature (the syrinx), the syrinx motornucleus hypoglossus pars tracheosyringealis (nXIIts), and the RA are much larger in males compared to females. Tract tracing studies revealed that the volume and neuron size distribution of the nXIIts was sexually dimorphic in intact but not in animals denervated as juveniles. In contrast, the volume of RA and size of RA neurons of denervated animals were highly sexually dimorphic. Furthermore, estrogen masculinized the RA of denervated females. Thus, sexual differentiation of the RA but not of the nXIIts appears independent of somatic sex differences. The syrinx muscles are, however, important for the soma size of those RA neurons that project to the nXIIts.  相似文献   

14.
There are several possible explanations for the female preference for male repertoires in birds. These males are older, and have better territories; thus there are functional reasons for females to prefer these males. However, there is an alternative explanation; females may habituate less quickly to song repertoires than single songs. I tested whether females have a non-functional, sensory bias for male song repertoires, by testing female preference for a repertoire in zebra finches (Taenopygia guttata), a species in which males possess a single stereotyped song. Females chose between a male repertoire of four different phrases created from the song phrase of one individual and that of one of those phrases repeated four times (natural zebra finch song). Females were also given a choice between the above repertoire and a song made from the phrases of four related males (''family'' stimulus). I tested female preference by training females to press a button for presentation of a song stimulus, and counting the number of button presses. Females preferred the song repertoire to a single phrase song, and did not differentiate between the repertoire and song phrases from four males. Evidence from the Estrildidae indicates that having a single song is the ancestral state for zebra finches, so the preference is not ancestral.  相似文献   

15.
Male crickets (Teleogryllus oceanicus) produce a complex call consisting of two elements, the long chirp (three to eight sound pulses) followed by a series of short chirps (each with two sound pulses). There is significant geographic variation in the temporal structure of calls, and the long chirp is selected against by acoustically orienting parasitoids in some populations. Here we examine geographic variation in female preference functions for the amount of long chirp. In general, females prefer calls with greater proportions of long chirp, although the strength and nature of selection varied across populations. Variation in preference functions did not match variation in call structure. There was a mismatch between the proportion of long chirp produced by males in a population and the proportion of long chirp preferred by females. The convergent preferences of predators and females are likely to maintain genetic variation in song traits in parasitized populations. The apparent mismatch between preference and trait is discussed in relation to theoretical models of preference evolution.  相似文献   

16.
Previous research in the zebra finch, a socially monogamous pair-bonding species, suggests that the preference for opposite-sex partners may arise in part through the organizing actions of sex steroids. To further investigate this process, zebra finch eggs were injected with 20 microg fadrozole, a potent estrogen synthesis inhibitor, or with the saline vehicle on embryonic day 5. As adults they were given two-choice sexual partner preference tests followed by group aviary tests. Fadrozole females had masculinized beak color and had testes or ovotestes instead of ovaries. Males were not affected by fadrozole; they did not differ from controls on any measure. In contrast, sexual partner preference was substantially masculinized in fadrozole females in the group aviary tests. Untreated males given a choice between fadrozole and untreated females preferred the untreated females, but this was equally the case when they were given a choice between saline-treated and untreated females. These results suggest that males do not specifically avoid females with testes and that male avoidance is unlikely to explain why fadrozole-treated females pair with other females. The present data add to the evidence that actions of gonadal steroids during development contribute to adult sex differences in partner preference in this pair-bonding species. Furthermore, because fadrozole-treated females do not produce audible song, the mechanisms regulating partner preference and song system development are dissociated.  相似文献   

17.
Sex differences in the vertebrate brain (brain sex) are thought to develop owing to the tissue specific action of gonadal hormones similar to the development of secundary sex characteristics of the body. Small sex differences in body anatomy could, however, retrogradely control the sexual differentiation of the central nervous system. This possibility has so far been verified only for motorneuron pools, since the connectivity of sex‐specific higher brain areas to the sexual dimorphic periphery is frequently not well known. Here, we tested whether somatic sex differences feed back on higher brain areas by bilateral denervation of the syringeal musculature of zebra finches before, during, and after onset of estrogen‐sensitive sexual differentiation of forebrain vocal nuclei such as RA (nucleus robustus archistriatalis). In the zebra finch, the sound‐producing musculature (the syrinx), the syrinx motornucleus hypolossus pars tracheosyringealis (nXIIts), and the RA are much larger in males compared to females. Tract tracing studies revealed that the volume and neuron size distribution of the nXIIts was sexually dimorphic in intact but not in animals denervated as juveniles. In contrast, the volume of RA and size of RA neurons of denervated animals were highly sexually dimorphic. Furthermore, estrogen masculinized the RA of denervated females. Thus, sexual differentiation of the RA but not of the nXIIts appears independent of somatic sex differences. The syrinx muscles are, however, important for the soma size of those RA neurons that project to the nXIIts. © 2000 John Wiley & Sons, Inc. J Neurobiol 42: 220–231, 2000  相似文献   

18.
Sound generation based on a pulmonary mechanism typically occurs during the expiratory phase of respiration. Phonation during inspiration has been postulated for the calls of some amphibians and for exceptional sounds in some human languages. No direct evidence exists for phonation during inspiration in birds, but such a mechanism has been proposed to explain very long uninterrupted songs. Here, we report the first physiological evidence for inspiratory sound production in the song of the zebra finch (Taeniopygia guttata). Motor gestures of the vocal and respiratory muscles leading to the production of inspiratory phonation differ from those of silent inspirations during song as well as from those leading to phonation during expiration. Inspiratory syllables have a high fundamental frequency, which makes them acoustically distinct from all other zebra finch song syllables. Furthermore, young zebra finches copy these inspiratory syllables from their tutor song, producing them during inspiration. This suggests that physical limitations confine the production of these sounds to the inspiratory phase in zebra finches. These findings directly demonstrate how novel respiratory-vocal coordination can enhance the acoustic structure of birdsong, and thus provide insight into the evolution of song complexity.  相似文献   

19.
All bird species reproduce sexually and individuals need to correctly identify conspecifics for successful breeding. Captive zebra finches are a model system for studying the factors involved in species recognition and mate choice. However, male zebra finches’ behavioural responses in a spatial preference paradigm to a range of estrildid finch species, other than domesticated Bengalese finches, remain unknown. We investigated spatial and display responses of male zebra finch subjects to stimulus females between conspecific and four phylogeographically relevant finch species, in addition to female Bengalese finches. Surprisingly, male subjects did not show consistent spatial association with conspecific over heterospecific females. Overall, as predicted by sexual selection theory, the spatial proximity responses of males were less discriminatory compared to female zebra finches’ responses tested previously using the same paradigm. However, male subjects showed consistently more behavioural displays towards female conspecifics than heterospecifics which were positively related to the behavioural display rates of the respective female stimuli. Some male behavioural responses, other than song, also showed significant differences between the different stimulus species and consistently differed across individual test subjects, with the most individual subject variation seen in choice trials between female conspecific and Bengalese finch stimuli. The results are important for the design and interpretation of future behavioural and neurobiological experiments on species recognition systems using the zebra finch as a model species.  相似文献   

20.
Assessment of vocal imitation requires a widely accepted way of describing and measuring any similarities between the song of a tutor and that of its pupil. Quantifying the similarity between two songs, however, can be difficult and fraught with subjective bias. We present a fully automated procedure that measures parametrically the similarity between songs. We tested its performance on a large database of zebra finch, Taeniopygia guttata, songs. The procedure uses an analytical framework of modern spectral analysis to characterize the acoustic structure of a song. This analysis provides a superior sound spectrogram that is then reduced to a set of simple acoustic features. Based on these features, the procedure detects similar sections between songs automatically. In addition, the procedure can be used to examine: (1) imitation accuracy across acoustic features; (2) song development; (3) the effect of brain lesions on specific song features; and (4) variability across different renditions of a song or a call produced by the same individual, across individuals and across populations. By making the procedure available we hope to promote the adoption of a standard, automated method for measuring similarity between songs or calls. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号